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Abstract: Background and Objectives: In the early period after liver transplantation, patients are
exposed to a high rate of complications and several scores are currently available to predict adverse
postoperative outcomes. However, an ideal, universally accepted and validated score to predict ad-
verse events in liver transplant recipients with hepatitis C is lacking. Therefore, we aimed to establish
and validate a machine learning (ML) model to predict short-term outcomes of hepatitis C patients
who underwent liver transplantation. Materials and Methods: We conducted a retrospective observa-
tional two-center cohort study involving hepatitis C patients who underwent liver transplantation.
Based on clinical and laboratory parameters, the dataset was used to train a deep-learning model for
predicting short-term postoperative complications (within one month following liver transplantation).
Adverse events prediction in the postoperative setting was the primary study outcome. Results: A
total of 90 liver transplant recipients with hepatitis C were enrolled in the present study, 80 patients
in the training cohort and ten in the validation cohort, respectively. The age range of the participants
was 12–68 years, 51 (56,7%) were male, and 39 (43.3%) were female. Throughout the 85 training
epochs, the model achieved a very good performance, with the accuracy ranging between 99.76%
and 100%. After testing the model on the validation set, the deep-learning classifier confirmed the
performance in predicting postoperative complications, achieving an accuracy of 100% on unseen
data. Conclusions: We successfully developed a ML model to predict postoperative complications
following liver transplantation in hepatitis C patients. The model demonstrated an excellent per-
formance for accurate adverse event prediction. Consequently, the present study constitutes the
foundation for careful and non-invasive identification of high-risk patients who might benefit from a
more intensive postoperative monitoring strategy.

Keywords: liver transplantation; transplant recipients; hepatitis C; machine learning; prediction model

1. Introduction

Recent medical history has proved that, in an extended sense, humans have “spare
parts” [1]. There is undoubtedly a mythical and ethical emotion-triggered philosophy
regarding human organ transplantation and the “meaning of life” concept. Although it
was impossible to even imagine during the heuristic era of medicine, nowadays organ
transplant is no longer “magic” or an “in extremis” procedure but a logical and lifesaving,
almost “common” treatment [2].
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The preoccupation for finding a means of using the organs of a human being to save
another human being is, of course, not new; in fact, it is as old as the first surgical attempts
performed by Egyptian or Indian doctors with skin grafts. Nevertheless, it was only in 1959
that Louisiana’s Charity Hospital performed the first successful kidney transplant between
twins [3], followed by the first liver transplant in 1967 at the University of Colorado,
performed by Dr. Thomas Starzl, with an unfortunate brief post-procedure survival of
the patient [4]. After discovering cyclosporine, the post-transplant survival rate improved
significantly [3].

Today, a liver transplant is a leading indication for patients with hepatitis C virus
(HCV) final stages of infection; even after successful transplantation, the disease remains a
clinical and therapeutic challenge for both the patient and the doctor [5].

Approximately 150 million people worldwide (3% of the world population) suffer from
hepatitis C [6], and unmanaged viral infection is one of the leading causes of liver cirrhosis
and hepatocellular carcinoma (HCC) [7]. However, considering the natural tendency
towards malignancy or hepatitis C Cirrhosis, the onset of liver decompensation rapidly
orients the disease management toward liver transplant [8].

Treatment with direct-acting antivirals (DAAs) significantly improved the treatment
of chronic hepatitis C, and the association of interferon-free agents has proved to be a better
tolerated and more efficient solution [9] for post-liver transplant patients as well as for
patients on the waiting list for liver transplant [10]. Not all current regimes are suitable for
patients awaiting liver transplant because one of the objectives for this particular category
is improving, to some extent, the liver function [11] (and, as cynical as it sounds, may result
in de-listing), but also lowering the viremia to prevent the graft infection [12–15].

In an extensive review, Lens et al. underlined the clear indication of interferon-free
treatment before liver transplant, with inerrant complications due to the treatment’s un-
certain duration. The authors question the clarity of the post-transplant interferon-free
treatment guidelines, as the drug interactions between antiviral therapy and immuno-
suppressants can put the patient at risk but are still the “weapon of choice” for both
transplanted or waiting-listed patients with hepatitis C [16]. There are, however, contro-
versial data regarding the risk of developing hepatocellular carcinoma (HCC) in patients
receiving DAAs as a singular treatment, without a liver transplant, for hepatitis C [17,18].

Several scores are currently available to predict outcomes following liver transplanta-
tion, including the model for end-stage liver disease (MELD), survival outcome following
liver transplantation (SOFT), and balance of risk (BAR) scores [19]. However, an ideal and
universally accepted score to predict adverse events in liver transplant recipients with
hepatitis C is lacking.

Machine learning (ML)-based solutions are novel and promising tools that could lead
us closer to an ideal score. These methods have been used to predict complications in
various types of transplantation, including heart, lung, liver, and kidney transplantation.
The results have been promising; ML models were trained to predict acute rejection,
infection, and other complications in heart and kidney transplant recipients. In lung
transplantation, they proved to be reliable in predicting chronic lung allograft dysfunction,
which is a common complication in this clinical setting. For liver transplant recipients,
artificial intelligence algorithms predicted postoperative complications such as hepatic
artery thrombosis and primary non-function, which are common and serious complications
in this category of patients. Overall, the results of ML methods to predict complications
in transplantation show promise and have the potential to improve patient outcomes.
However, no study focused on the vulnerable and risk prone category of hepatitis C
populations receiving liver transplant.

We aimed to establish and validate the first-ever ML model to predict short-term out-
comes of hepatitis C patients who underwent liver transplantation. Our approach is meant
to demonstrate that artificial intelligence and ML methods can significantly contribute to the
advancement of clinical management in hepatitis C-liver transplant recipients.
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2. Materials and Methods
2.1. Study Population

Our study was conducted on 90 hepatitis C patients who underwent liver trans-
plantation. Surgical interventions were performed within the Surgery Department of
the Sf. Spiridon Hospital Ias, i and Fundeni Clinical Institute, Bucharest, Romania, be-
tween September 2000 and April 2017. All included patients were eligible candidates
for liver transplantation according to the national criteria: a MELD-sodium (MELD-Na)
score > 15 or a diagnosis of HCC. Patients with an uncertain diagnosis of HCV infection in
their history were excluded.

All patients provided written informed consent. The study has full ethical approval
from Gr. T. Popa University of Medicine and Pharmacy Ias, i (158/27.02.2022), Sf. Spiridon
Hospital and Fundeni Clinical Institute Ethics Committees. No sex-based or racial/ethnic-
based differences were present.

2.2. Study Design: Definitions, Transplantation Techniques, and Follow-Up

We conducted a retrospective observational two-center cohort study.
All patients were hospitalized to perform liver transplantation after a rigorous selection

of the cases. Patients had to meet the national criteria for transplantation, as stated above.
The MELD-Na score predicted early mortality in cirrhosis patients and was calculated using
online tools (https://www.mdcalc.com/calc/1754/meldna-meld-na-score-liver-cirrhosis)
(accessed on 1 November 2022). The diagnosis of HCC was established by imaging (com-
puter tomography/magnetic resonance imaging) or histopathological findings, according
to the American Association for the Study of Liver Diseases [20].

Three types of liver transplantation techniques were performed for this study: whole
deceased transplantation, deceased segmental transplantation, and living donor segmen-
tal transplantation.

All patients received lifelong follow-up, as recommended by the European Association
for the Study of the Liver (EASL) [21].

2.3. Data Collection

The study database contains the predicted outcome’s value and a series of variables
selected as predictors for each patient.

The outcome to be predicted by our model is the presence or absence of postoperative
complications in the first month after surgical intervention. Short-term postoperative com-
plications were defined to be: sepsis; variceal hemorrhage; renal dysfunction; respiratory
failure; disseminated intravascular coagulation; septic shock; multiple organ dysfunction
syndromes; cardiac arrest; multiple systems organ failures; post-transplant lymphoprolifer-
ative disorder; biliary anastomosis stenosis—endoscopic stent; tumor recurrence, peritoneal
carcinomatosis; HCV reinfection; graft infection with the hepatitis B virus; idiopathic trans-
verse colon necrosis; bone and brain metastases; necrotizing pancreatitis; hepatic artery
thrombosis; hemoperitoneum; primary non-functioning of the transplant graft; or common
bile duct necrosis.

The following 14 clinical and laboratory pre-transplant parameters were collected and
used as predictors: age, sex, blood type (ABO, RH), the diagnosis which prompted the
need for liver transplantation (1—hepatitis C cirrhosis; 2—hepatitis C cirrhosis and HCC;
3—coinfection of HCV, hepatitis B virus and hepatitis D virus; 4—HCC associated with
the coinfection of HCV, hepatitis B virus and hepatitis D virus), age at diagnosis, MELD-
Na score, alpha-fetoprotein, pre-transplant antiviral treatment, liver re-transplantation,
total bilirubin, platelet count, albumin, international normalized ratio, and the presence
of ascites.

https://www.mdcalc.com/calc/1754/meldna-meld-na-score-liver-cirrhosis
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2.4. Machine Learning Approach: Model Training

The dataset was used to train a deep-learning model for predicting short-term post-
operative complications based on the clinical and laboratory parameters defined above.
The model was built and validated using the following Python libraries: Tensorflow 2.8.0,
Numpy 1.22.3, Pandas 1.4.2, and Matplotlib 3.3.2.

The database contained no missing values.
Firstly, numeric predictors from the dataset were normalized according to the formula:

Xnormalized =
X − Xmin

Xmax − Xmin

Further, we randomly divided the dataset into a training set (80 records) and a valida-
tion set (10 records).

The training set was used to build the deep learning classifier based on a sequential
model defined by three dense layers of sizes 64, 32, and 8 neurons, with a dropout of 0—0.2.
The sigmoid function was used as the activation function for the last layer, while the other
layers were activated by the rectified linear unit (ReLU) function:

ReLU ∼ f (x) =

{
x x > 0
0 x <= 0

Adam [22], an optimization algorithm specific to deep learning models, was used
instead of the classical stochastic gradient descent procedure to update network weights in
the training data iteratively.

The learning rate was set to be 10−3, and the number of epochs was 85. We identified
the correct number of epochs following an iterative process. We started by setting the
number of epochs to 45 (3 times the number of columns in our data). We incremented the
number of epochs as long as the model was still improving (lower loss, higher accuracy).

Mean absolute error (MAE), loss and accuracy are the metrics used to evaluate the
model’s performance on the training set based on the output probabilities.

The validation set was finally interrogated to evaluate the model’s performance on
independent data that did not participate in the training process. Accuracy, the area under
the receiver operating characteristic curve (AUC) and F2 are the metrics used to assess the
performance of the validation set.

3. Results
3.1. Patients’ Characteristics

Of all 90 patient records, 51 (56.7%) were male and 39 (43.3%) were female. The age
range of the participants was 12–68. The training and validation sets’ clinical characteristics
and laboratory findings are summarized in Tables 1 and 2, respectively.
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Table 1. Characterization of the numerical and categorical variables included in the training set
(80 patients).

Numerical Variables

Mean Standard
Deviation Median Median

Absolute Deviation Min Max

Age 47.93 8.74 48 5.19 12 68

Age at diagnosis 37.89 8.26 40 1.48 2 51

MELD-Na 16.35 6.63 16 5.93 5 37

AFP (ng/mL) 127.03 358.30 10.43 10.27 0.01 2000

Categorical variables

Categories definition Number of occurrences of each category
1 2 3 4 5

Sex 1 (female), 2 (male) 35 45 - - -

AB0 blood type 1 (0), 2(A), 3 (B), 4 (AB) 16 43 12 9 -

Rh group 1 (−), 2 (+) 10 70 - - -

The diagnosis that
prompted LT

1 (hepatitis C cirrhosis), 2 (hepatitis C cirrhosis
and HCC), 3 (coinfection of HCV, hepatitis B

virus, and hepatitis D virus), 4 (HCC associated
with the coinfection of HCV, hepatitis B virus,

and hepatitis D virus)

55 23 1 1 -

Total bilirubin
(mg/dL) 1 (0.2–1.20), 2 (1.2–4), 3 (4–8), 4 (>8) 16 39 22 3 -

Platelet count
(×103/µL) 1 (0–20) 2 (20–40) 3 (40–80) 4 (80–150) 5 (150–400) 9 28 27 11 4

Albumin (g/dL) 1 (≤2.8), 2 (2.8–3.5), 3 (≥3.5) 5 50 25 - -

INR 1 (<1.7), 2 (1.7–2.2), 3 (>2.2) 5 56 19 - -

Pre-transplant
antiviral

treatment
1 (none), 2 (interferon), 3 (interferon free) 1 68 11 - -

Liver
re-transplantation 1 (No), 2 (Yes) 74 6 - - -

Ascites 1 (No), 2 (Yes) 20 60 - - -

Postoperative
complications 1 (No), 2 (Yes) 58 22 - - -
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Table 2. Characterization of the numerical and categorical variables included in the validation set (10
patients).

Numerical Variables

Mean Standard
Deviation Median

Median
Absolute
Deviation

Min Max

Age 47.93 47.1 10.24 47 12.60 32

Age at diagnosis 37.89 36.2 9.81 36.5 7.41 20

MELD-Na 16.35 17.9 6.47 15 5.19 11

AFP (ng/mL) 127.03 53 69.61 2 0.01 0.1

Categorical variables

Categories definition Number of occurrences of each category
1 2 3 4 5

Sex 1 (female), 2 (male) 4 6 - - -

AB0 blood type 1 (0), 2(A), 3 (B), 4 (AB) 3 2 3 2 -

Rh group 1 (−), 2 (+) 4 6 - - -

The diagnosis
that prompted

LT

1 (hepatitis C cirrhosis), 2 (hepatitis C
cirrhosis and HCC), 3 (coinfection of HCV,
hepatitis B virus, and hepatitis D virus), 4
(HCC associated with the coinfection of
HCV, hepatitis B virus, and hepatitis D

virus)

6 4 0 0 -

Total bilirubin
(mg/dL) 1 (0.2–1.20), 2 (1.2–4), 3 (4–8), 4 (>8) 2 2 3 3 -

Platelet count
(×103/µL)

1 (0–20) 2 (20–40) 3 (40–80) 4 (80–150) 5
(150–400) 2 3 3 2 -

Albumin (g/dL) 1 (≤2.8), 2 (2.8–3.5), 3 (≥3.5) 3 5 2 - -

INR 1 (<1.7), 2 (1.7–2.2), 3 (>2.2) 3 5 2 - -

Pre-transplant
antiviral

treatment
1 (none), 2 (interferon), 3 (interferon free) 1 4 5 - -

Liver re-
transplantation 1 (No), 2 (Yes) 8 2 - - -

Ascites 1 (No), 2 (Yes) 5 5 - - -

Postoperative
complications 1 (No), 2 (Yes) 6 4 - - -

3.2. Training and Validation of the ML Model

We first trained the model on the training set. To ensure that no overfitting was
happening and that the model performed well on the training data, we monitored its
performance as illustrated in Figure 1. The figure proves that, once the number of epochs
increases, the errors’ values (loss and MAE) decrease and accuracy increases, as expected.
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Throughout the 85 training epochs, the model achieved a very good performance with
the accuracy ranging between 99.76% and 100%. After achieving an excellent performance
of the model during the training step, we moved to testing the model on an independent
patient cohort.

After testing the model on the validation set, the deep-learning classifier confirmed the
performance in predicting postoperative complications, achieving an accuracy of 100% on
unseen data. The model also obtained an AUC and an F2 score of one on the validation set.

4. Discussion

To the best of our knowledge, the present study is the first to establish and validate an
ML model for the short-term outcomes prediction of hepatitis C patients who underwent
liver transplantation.

The developed ML model had an excellent accuracy for postoperative outcomes pre-
diction in the training cohort (99.76–100%) and in the validation cohort (100%). Therefore,
reported results could be a solution for better identifying high-risk hepatitis C patients
in the pre-liver transplant setting. Moreover, the proposed model does not constitute a
preclusion instrument for liver transplantation, but rather a reliable tool to guide a more
intensive follow-up protocol in high-risk patients. As well as the ML model, we provided
data regarding postoperative complications in this particular subset of patients.

Available data on artificial intelligence usefulness in liver transplant patients with
hepatitis C are limited. Concerning this issue, an early study investigated the opportunities
provided by artificial neural networks for significant liver fibrosis prediction [23]. In 123
hepatitis C-infected liver transplant patients (training cohort), the proposed algorithm had
an excellent predictive value for liver fibrosis (AUC 0.87, 95% CI, 0.84–0.90). In addition,
the performance was even better in the validation cohort (AUC 0.93, 95% CI, 0.86–0.97) [23].

Anticipated success in treating HCV raises the hope of reducing the rate of complica-
tions, preventing progression to liver decompensation and progression to hepatocarcinoma.
On the other hand, efforts have been made to improve liver function in patients with de-
compensated cirrhosis, and liver transplantation remains the only opportunity in end-stage
disease [24]. Thus, patients awaiting liver transplantation are frequently frail, and a better
stratification of the postoperative risk of adverse outcomes is required.

The importance of the artificial intelligence approach for outcomes prediction fol-
lowing liver transplantation was highlighted in a Korean registry involving 785 deceased
donor transplant recipients [25]. Among all analyzed methods, the random forest model
had the best predictive power for survival at one month, 3, and 12 months (respectively,
AUC = 0.80, AUC = 0.85, and AUC = 0.81). Traditional risk scores such as MELD and
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BAR performed significantly lower in survival prediction (at one month, AUC = 0.64 and
AUC = 0.68, respectively). Therefore, ML methods might be a better solution than classic
models for outcomes prediction in patients with liver transplantation. Nevertheless, only
6.4% of patients (n = 50) had hepatitis C, and subgroup analysis in this particular subset of
patients was not performed [25].

Patients undergoing LT for virus C related cirrhosis have one of the highest short-
and long-term mortality compared to other etiologies [21]. Studies have also shown that
patients with hepatitis C-related cirrhosis have higher rates of postoperative complications,
such as primary non-function, hepatic artery thrombosis, and recurrent hepatitis C infection,
compared to patients with other etiologies [21]. These complications can contribute to
higher short- and long-term mortality rates in patients with hepatitis C-related cirrhosis
who undergo liver transplantation. However, none of the AI-based studies published so far
focused on predicting complications amongst hepatitis C patients. Moreover, their datasets
contain a very low number of patients with HCV infection. This makes their predictions on
this specific population unreliable.

Further research on the ML approach in hepatitis C patients is warranted, as 85% of
infected patients develop chronic hepatitis and 10–20% progress to cirrhosis [26]. Addition-
ally, 7% of patients with cirrhosis will develop hepatocarcinoma [27]. Notably, end-stage
hepatitis C is the leading indication for liver transplantation. Patients diagnosed with
chronic hepatitis C virus display increased morbidity, the hospitalization rate is high [28],
and the mortality rate is three times higher than in the general population [29]. Although
hepatitis C virus transmission has been significantly reduced and prevention strategies are
effective [30], patients still represent an economic burden [31].

In the early period after liver transplantation, patients are exposed to a high rate of
complications which constitutes a key motivation for our study. The risk of infections repre-
sents a possible complication associated with a series of pre-existing comorbidities, age, or
obesity. In addition, immunosuppressive treatment administered systemically to transplant
recipients could increase the susceptibility of de novo infections or the reactivation of
pre-existing latent infections [32]. Usually, infections occurring during the first-month
post-liver transplantation are healthcare-associated, donor-derived, or a consequence of
organ dysfunction [33].

A recent review of the Organ Procurement and Transplantation Network (OPTN)
data from 64,977 patients who underwent liver transplantation identified a 5% and a
10% mortality incidence at 90-day and 1-year follow-up, respectively. Particularly, death
associated with cardiovascular/cerebrovascular/pulmonary/hemorrhage was the most
common cause of death within the first 21 days (at seven days, 53%) [34]. Thus, identifying
these patients with an increased risk of adverse events in early postoperative settings was
the main objective of our endeavor.

Our study was conducted on 90 hepatitis C patients who underwent liver transplan-
tation. They all were eligible candidates for the procedure. We conducted a retrospective
observational two-center cohort study on patients meeting the national criteria for liver
transplantation. Although our deep learning algorithm performed excellently in predicting
the most common post-transplantation complications, it should be tested and validated
in large cohorts of liver transplant patients before being implemented extensively. In this
way, patients’ evolution could be predicted accurately and non-invasively according to a
series of pre-transplant variables. Consequently, we could aim to increase the survival rate
and the quality of life of liver transplant patients infected with hepatitis C by adopting an
appropriate monitoring strategy in the early post-transplant period.

Following extensive external validation, our system could assist doctors in making
early lifesaving decisions in day-to-day clinical practice. For instance, high urgent status
patients in need of an acute re-transplantation due to hepatic artery thrombosis after LT or
primary non-functioning of the transplant graft [21] would greatly benefit from the early
prediction of the complications and timely initiation of the re-transplantion procedures.
Our software predictions could also prompt the initiation of early antiviral therapy in
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patients with HCV recurrence after LT. This has a great clinical impact, as HCV infection
after LT is characterized by an accelerated fibrotic progression towards chronic hepatitis and
cirrhosis [21]. Early treatment followed by sustained viral response significantly improves
outcomes in these patients [21]. In the case of the risk of developing renal dysfunction after
LT, a practical utility of the implementation of our algorithm could be to assist the doctor
in the timely reduction or withdrawal of the nephrotoxic calcineurin inhibitors (CNI) and
switch to alternative CNI-free protocols for immunosuppression (according to the grade I
recommendation of the EASL guidelines) [21].

Clinical and laboratory parameters before transplantation can be important risk factors
for predicting postoperative complications after liver transplant. The evaluation of these
parameters can provide valuable information about the patient’s overall health and the
potential challenges that may arise during and after the transplant procedure. Studies have
shown that certain demographic factors, such as age, gender, and race, can be associated
with an increased risk of complications [35]. Older patients, for example, are more likely to
have additional medical conditions and a weakened immune system, which can increase
the risk of complications. Similarly, there is some evidence to suggest that female gender
may be associated with an increased risk of post-liver transplant morbidity and mortality
compared to male recipients [35]. However, the reasons for this difference are not well
understood and further research is needed to fully understand the relationship between
gender and outcomes after liver transplantation. Therefore, it is important for healthcare
providers to consider the individual patient’s risk factors, including gender, when assessing
their risk for post-liver transplant complications and developing a comprehensive care
plan. Additionally, pre-transplant laboratory parameters, such as ABO blood type, can
also play a role in predicting the risk of complications [36]. A study showed that patients
with an ABO blood type mismatch between the donor and recipient have an increased
risk of acute rejection [36]. Therefore, the pre-transplant parameters can help in predicting
complications, allowing for more proactive and tailored management strategies.

The severity and frequency of postoperative complications (especially infections)
within 30 days after a liver transplant can be higher compared to long-term complica-
tions [33]. While some of these complications can be severe and potentially life-threatening,
they are usually more treatable and reversible compared to long-term complications if
detected early and managed appropriately. Thus, the vital need for a predictive tool for
short-term postoperative complications arises.

Our ML model trained on data from hepatitis C transplant recipients could be adapted
for use in predicting complications in hepatitis B transplant recipients by retraining it on
relevant data from this other population, or by modifying the model architecture to better
handle the differences in underlying biology and disease progression between the two
types of hepatitis (for example, HCV replicates more rapidly; the body’s immune response
to HCV and hepatitis B virus can differ as some individuals can clear hepatitis B virus on
their own, while this is less common with HCV; and chronic hepatitis C can progress more
rapidly to cirrhosis and liver cancer). However, this would need to be undertaken carefully
and be validated on a separate dataset to ensure its accuracy.

Limitations

Firstly, the size of our dataset is small and from the same two centers as the indepen-
dent validation set, as the training set prompts more external validation with data from
other centers. Secondly, the retrospective nature of our study predisposes us to selection
bias which can be overcome in future prospective studies on larger datasets. Thirdly, our
ML system cannot yet detect if the patient will incur low or high prevalence of postoperative
complications. However, this ability will be incorporated in the model in our future studies.
Fourthly, the results of our study carried out in Romania may not be directly applicable to
other regions, and it may be necessary to develop and validate separate models for different
regions or demographic groups. The outcomes of the ML model may differ if the study is
carried out in different parts of the world, due to differences in demographic factors such
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as age, gender, race, and socioeconomic status, as well as differences in healthcare systems,
medical practices, access to medical technology, lifestyle and environmental factors. In
addition, there may also be differences in the prevalence and severity of hepatitis C and its
complications in different regions of the world, which can impact the results of the study.

5. Conclusions

To the best of our knowledge, this is the first ML-based study to provide an ML algo-
rithm for predicting postoperative complications in liver transplant recipients infected with
hepatitis C. We successfully developed an ML model to predict postoperative complications
following liver transplantation. The model demonstrated excellent performance and holds
promise for future clinical applications and research to accurately predict post-transplant
short-term evolution. Consequently, the present study constitutes the foundation for the
careful and non-invasive identification of high-risk patients who might benefit from a more
intensive post-operative monitoring strategy. Nevertheless, the results should be confirmed
in extensive prospective studies to facilitate the implementation of ML risk stratification in
patients scheduled for liver transplantation.
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