
Citation: Ammar, A.; Koubaa, A.;

Boulila, W.; Benjdira, B.; Alhabashi, Y.

A Multi-Stage Deep-Learning-Based

Vehicle and License Plate Recognition

System with Real-Time Edge

Inference. Sensors 2023, 23, 2120.

https://doi.org/10.3390/s23042120

Academic Editors: Houbing Song, Jie

Chen, Jianqiang Li and Victor C. M.

Leung

Received: 22 December 2022

Revised: 2 February 2023

Accepted: 8 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Multi-Stage Deep-Learning-Based Vehicle and License Plate
Recognition System with Real-Time Edge Inference
Adel Ammar * , Anis Koubaa * , Wadii Boulila , Bilel Benjdira and Yasser Alhabashi

Robotics and Internet-of-Things Lab, Prince Sultan University, Riyadh 11586, Saudi Arabia
* Correspondence: aammar@psu.edu.sa (A.A.); akoubaa@psu.edu.sa (A.K.)

Abstract: Video streaming-based real-time vehicle identification and license plate recognition
systems are challenging to design and deploy in terms of real-time processing on edge, dealing with
low image resolution, high noise, and identification. This paper addresses these issues by introducing
a novel multi-stage, real-time, deep learning-based vehicle identification and license plate recognition
system. The system is based on a set of algorithms that efficiently integrate two object detectors, an
image classifier, and a multi-object tracker to recognize car models and license plates. The information
redundancy of Saudi license plates’ Arabic and English characters is leveraged to boost the license
plate recognition accuracy while satisfying real-time inference performance. The system optimally
achieves real-time performance on edge GPU devices and maximizes models’ accuracy by taking
advantage of the temporally redundant information of the video stream’s frames. The edge device
sends a notification of the detected vehicle and its license plate only once to the cloud after completing
the processing. The system was experimentally evaluated on vehicles and license plates in real-world
unconstrained environments at several parking entrance gates. It achieves 17.1 FPS on a Jetson
Xavier AGX edge device with no delay. The comparison between the accuracy on the videos and on
static images extracted from them shows that the processing of video streams using this proposed
system enhances the relative accuracy of the car model and license plate recognition by 13% and 40%,
respectively. This research work has won two awards in 2021 and 2022.

Keywords: vehicle identification; license plate recognition; tracking; deep learning; computer vision;
video analytics

1. Introduction

With the significant advances in artificial intelligence (AI) in recent years, AI-based
surveillance is a growing market worldwide. The global AI surveillance camera market was
reported to have reached USD 4 billion in 2022 and is projected to reach USD 13.76 billion by
2027, with a compound annual growth rate (GACR) of 19.9% [1]. Within this market share,
the automatic number plate recognition (ANPR) market takes a considerable percentage.
The ANPR system market is projected to evolve from USD 3.1 billion in 2022 to USD 4.8
billion in 2027, with a GACR rate of 9.2% between 2022 and 2027 [2]. In other words, the
ANPR market is estimated to take one-third of the global market for AI-based surveillance
by 2027.

The primary factors propelling the expansion of the ANPR market are many and could
be summarized in six factors. The first factor is the high need to deploy ANPR systems
in security, smart surveillance, and intelligent traffic management systems. Secondly, the
global increase in infrastructure facilities allows the deployment of such systems, especially
in developing countries. The third factor is the government’s rising allocation of funds to
intelligent transportation systems (ITSs). The fourth factor is the rapidly increasing use of
video analytics technologies for vehicle activity monitoring. Fifth is the increasing demand
for access control, smart parking management, and road usage pricing. The sixth factor is
the technological advancement noted in recent years in various fields such as the Internet of
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Things (IoT), artificial intelligence (AI), computer vision (CV), and deep Learning (DL). The
noticeable advancement in these areas has attracted attention. This is due to the efficiency
of the algorithms, the high number of utilities, and the adaptability to different scenarios
and cases. The ANPR systems represent, among others, one aspect of the global transition
into smart cities’ features and applications.

However, the design and implementation of ANPR systems is a challenging problem.
Although the technical advancements increase its feasibility and efficiency, many issues still
need to be carefully addressed. The first problem is that, in actual cases, the images used
to identify the license plate number are captured from unconstrained environments. The
license recognition algorithm should efficiently recognize the plate characters regardless
of the quality of the image, its resolution, the lighting conditions, and the position of the
camera from the plane of the plate (distance from the camera and the translation and
rotation parameters between the camera focal plane and the plane of the license plate). If
needed, the ANPR system may set some constraints on the position of the license plate
and the lighting conditions. However, increasing these constraints reduces the system’s
portability and the ability to treat variant scenarios and cases. The second challenge met in
the ANPR system is the variability in the number plate designs. The designs differ from
one country to another. In the same country, one may have different designs following the
plate’s creation date, the corresponding vehicle type, the driver allowed to drive it, and
the location from where the plate is issued inside the country. It is recommended that the
ANPR system focuses on the designs used in a specific country and solves all the related
technical issues. The third challenge is the orchestration between the different sensors,
the processing units, the application interface, and the cloud infrastructure to manage the
application’s workflow. The license plate should be efficiently recognized in real time, and
the data should be directly synchronized with the different parts of the cloud application.
This is a significant concern for analyzing and managing the tracked vehicles in the system.
These are the three main challenges to be solved by every ANPR system to be used in real
scenarios.

In this paper, these three challenges are profoundly and consistently targeted, and a
complete ANPR system for Saudi Arabian license plates is designed and assessed. Our work
is the fruit of a commercial-level product tested and validated in real cases inside Prince
Sultan University (PSU). Multiple tests have been performed to monitor vehicles circulating
inside the PSU campus and parking entrances. The system won two international awards.
The first award was granted in the KAUST Challenge for Hajj & Umrah 2020, in the Mobility
track [3]. The second award was the AI Leadership Award for the best AI Product granted
at the Saudi International Artificial Intelligence & Cloud Expo 2022 [4].

In this paper, we present a novel automatic number plate recognition (ANPR) solution
that focuses on four key contributions made over previous works on the same problem.
Our approach significantly differs from previous works as we tackle the challenge of license
plate detection and recognition in real-world deployment scenarios using low-resolution
video frames, whereas most studies have focused on static images. The problem we
address in this paper is more challenging as it addresses real-world working scenarios
These contributions are summarized as follows:

• This study proposes a novel multi-stage system for real-time vehicle identification
based on deep learning models. Two different techniques (single-character and double-
character detection) are presented and assessed. To the best of our knowledge, the
matching post-processing procedure for the single character detection and the double
character detection approach are both introduced for the first time in the literature.

• New dedicated datasets of vehicles, license plates, and license characters are carefully
collected and manually labeled.

• A set of carefully designed algorithms efficiently integrate two object detectors, an
image classifier, and a customized version of the DeepSort tracker, so that the system
processes video streams in real-time and sends unique information about cars and
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license plates to a cloud server while maximizing the accuracy by taking advantage of
redundancies.

• Extensive experiments are carried out on images and videos recorded under realistic
conditions to evaluate the performance of the proposed system. The results show a
promising performance both in terms of accuracy and inference speed, after optimizing
the detection and classification models using TensorRT to run them on edge devices.

The paper is organized as follows: Section 2 will examine the research works that
targeted the same problem in the literature. Then, Section 3 is dedicated to presenting the
theoretical methodology of the different algorithms designed in the system. After that,
in Section 4, the ANPR system is tested, and the experimental details are generated and
discussed. Finally, in Section 5, the paper is concluded alongside the main limitations to
solve and the possible extensions to address in future works.

2. Related Works

In recent years, vehicle identification and license plate recognition have gained signifi-
cant interest as they represent the core technologies of intelligent transportation systems.
Several works in the literature have used deep-learning-based techniques to achieve this
task. Wang et al. [5] presented a comprehensive review of different types of DL-based
techniques for vehicle re-identification. The authors organized these techniques into five
categories: local features, representation learning, metric learning, unsupervised learning,
and attention mechanism. Wang et al. compared these techniques and explored the chal-
lenges and potential research prospects for vehicle re-identification. In [6], Boukerche and
Ma conducted a review of DL-based models for vision-based automated vehicle recognition
(VAVR). The authors presented different vehicle recognition datasets used in VAVR, dis-
cussed the significant challenges and research trends, and summarized the characteristics
of VAVR methods. Llorca et al. [7] proposed a VAVR approach based on the modeling of
the geometry and appearance of car emblems from rear view images. They used HOG
features and a linear SVM classifier. They reached an accuracy of 93.75% on a small dataset
of 1.342 images containing 52 different car models and generations. Lee et al. [8] used a
variant of the SqueezeNet architecture with bypass connections to recognize car makes
and models from frontal views. They reached an accuracy of 96.3% with an inference time
of 108.8 ms. For the same aim, Manzoor et al. [9] used classical random forest and SVM
classifiers to obtain a maximum accuracy of 97.89% and a maximum inference speed of 35.7
images per second. The performance achieved by these models is remarkable, but none of
them took advantage of the temporal redundancies in video streaming as we propose to do
in this work.

On the other hand, Shashirangana et al. [10] explored the methods used in automated
license plate recognition (ALPR). The authors presented recent techniques and identified the
open challenges faced by the research and development community. Shashirangana et al.
categorized the DL-based methods used in ALPR into two families, single-stage DL-based
methods and multi-stage object detection DL-based methods. Several recent works were
conducted in license plate recognition and vehicle identification. Liu et al. [11] proposed a
DL-based approach to progressive vehicle re-identification called “PROVID”. The authors
adopted two progressive search processes. A coarse-to-fine search is used to extract
the appearance attributes using a CNN model and a near-to-distant search is used to
perform a Siamese neural network-based license plate verification. Liu et al. built a
dataset named VeRi-776 from urban surveillance videos. In [12], Selmi et al. developed a
system for LP detection and recognition based on the DL approach, including three steps:
detection, segmentation, and character recognition. Several morphological operations,
such as adaptive thresholding, fine contours, and geometric filtering, are applied before
applying the three previous steps. The LP detection is based on the CNN model, and the
detected objects are classified into plate/no plate classes. Then, characters in upper case
format (A–Z) and digits (0–9) are recognized using another CNN model with 37 classes.
Kessentini et al. [13] focused on the problem of multilingual LP detection and recognition.
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The proposed system is based on two DL stages: (1) LP detection on raw images using
YOLOv2 [14] and (2) recognition of LP on cropped images. The authors compared two
recognition engines: a convolutional recurrent neural network for the whole LP recognition
without prior segmentation and a joint recognition approach at the plate component level.
The application of the Kessentini et al. approach was in used the Tunisian LP context.
Hendry et al. [15] addressed the problem of car LP detection using YOLO [16]. The
authors tweaked the original YOLO to develop a single-class detector with 36 models.
The detection process is based on a sliding window for all classes in each image to avoid
problems with small object detection. Their approach was applied in Taiwan’s car LP
context. The proposed system was tested under different conditions, such as rain, darkness,
and various visual colors and saturation.

The first work that targeted the case of the automatic recognition of Saudi License
Plates (SLP) was introduced in 2003 by Sarfraz et al. [17,18]. They constructed a dataset
of 610 vehicles under different illumination conditions. First, the SLP is detected using
vertical edge detection, filtering, and matching. Then, the characters are extracted by
counting the number of black pixels in every pixel column to extract each character apart.
Finally, every character is normalized before being recognized using template matching.
The association of the character to its class is based on the Hamming distance. The method
is now significantly outdated now. Moreover, the license plate format used is not the
standard version to consider in the current style of SLP.

In 2008, Zidouri et al. [19] proposed another pipeline. The SLP is detected using
vertical edge detection by the intermediate of the Sobel filter. The detection is enhanced later
by adding a thickening mask and a list of predefined conditions related to the SLP position
in the image. The character segmentation is based on pixel counting for every column.
Finally, neural networks (multilayer perceptrons) are used to recognize the segmented
characters. They tested their method on 61 plates and successfully recognized 97% of
them. More recently, some new research works focused on SLP using DL-based techniques.
Khan et al. [20] presented a system for automatic LP recognition based on DL in an
unconstrained environment. The authors captured real traffic videos using a mobile phone
to generate their dataset of static images. YOLOv5 is used to detect the LP and a CNN
model to recognize the detected alphanumerics. In order to be able to apply their method
to other datasets, Khan et al. did not consider Arabic characters in the LP and only
focused on English text. Consequently, they did not exploit all the information available in
SLPs. Driss et al. [21] proposed a DL-based approach for Saudi Arabian LP detection and
recognition. The authors developed a faster region-based convolutional neural networks
(Faster-RCNN) model for detecting LP and a CNN for LP recognition. Experiments were
conducted using 1150 Saudi Arabian car images that were collected under various lighting
and weather conditions. The proposed system achieved a precision of 92% for LP detection
and 98% for LP recognition. Table 1 compares the most recent works related to the present
paper. Nevertheless, none of them directly worked on video streaming or used an object
tracker in their solution.

Table 1. Comparison of DL-based approaches for LP recognition.

Ref. Type of LP Dataset Technique Accuracy Limitations

[12] Tunisia: Arabic
characters and digits

(1) AOLP dataset:
2049 car images;

(2) PKU dataset: 3977
car images; (3)

Caltech dataset: 126
car images; and (4)

Tunisian dataset: 740
car images

LP detection and
recognition: Mask

RCNN

(1) ALOP dataset: 99.
3%; (2) PKU dataset:

99.4%; (3) Caltech
dataset: 98.9%; and (4)

Tunisian dataset:
97.9%

(1) Working under
specific lighting and
weather conditions;
and (2) speed of the

system
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Table 1. Cont.

Ref. Type of LP Dataset Technique Accuracy Limitations

[13] Tunisia: Arabic
characters and digits GAP-LP: 9175 images LP detection and

recognition: YOLOv2

(1) GAP-LP: 97.67%;
and (2) Radar dataset:

91.46%

Working under
specific lighting and
weather conditions

[15] Taiwan: Latin
characters and digits

AOLP dataset: 2049
car images

Modified YOLO for
LP detection and

recognition

LP detection: 98.22%
and LP recognition:

78%

(1) Use of a single
class classifier will

greatly affect
computation time;
and (2) working
under specific

lighting and weather
conditions.

[22] India: Latin
characters and digits 500 images OCR 85%

(1) Videos not
considered; and (2)

relatively low
accuracy

[23] Pakistan: Latin
characters and digits

(1) Caltech car dataset;
(2) Medialab LPR

dataset; and (3) own
dataset

HOG and geometric
features + SVM 99.3–99.8%

(1) Videos not
considered; and (2)
not tested on real

conditions

[20] Saudi Arabia

Own dataset: Static
images extracted from

20 videos at 30 FPS
using a mobile phone

LP detection:
YOLOv5 and LP

recognition: CNN
LP recognition: 92.8%

(1) Arabic characters
are not considered;

and (2) working
under specific

lighting and weather
conditions.

[21] Saudi Arabia Own dataset: 1150 car
images

LP detection:
Faster-RCNN and LP

recognition: CNN

LP detection: 92% and
LP recognition: 98%

(1) Real-time videos
not considered; and
(2) working under

specific lighting and
weather conditions.

[24] Saudi Arabia
Tested on 470 images
captured in outdoor

environment

Mahalanobis distance
+ MLP-NN classifier

94.9% for character
recognition, with 1.4%

rejection rate
Videos not considered

[25] Saudi Arabia Tested on 173 images
Character

segmentation +
template matching

81%

(1) Videos not
considered; (2) low

accuracy; and (3) lack
of robustness

[26] Saudi Arabia 350 images
Learning Vector

Quantization Neural
Network

94% Videos not considered

[27] Saudi Arabia 22 training images Statistical features +
MLP 92%

(1) Videos not
considered; and (2)

small dataset

[28] Saudi Arabia Not described KNN 90.6%

(1) Videos not
considered; (2)

dataset not described;
and (3) recognition of
Latin characters and

Western Arabic digits
only

[29] Saudi Arabia 50 images Canny filter + OCR 92.4–96.0%
(1) Videos not

considered; and (2)
small dataset
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According to most related research, working under unconstrained conditions is a
major challenge for LP detection and recognition. Performances will dramatically decrease
when changing the view angle, the distance between the camera and the license plate, and
the light and weather conditions. The present study proposes a complete system for Saudi
LP detection and recognition. Two different techniques are proposed (single character
and double characters) to benefit from the redundant information in letters and digits. In
addition, two YOLOv4 object detectors for cars and LP and for license characters are used.
The proposed system can classify car models (196 classes) using a customized Xception.
Finally, a customized version of the DeepSort multi-object tracker is developed, allowing
one to send unique images of detected cars and LP to a cloud server and maximize the
accuracy of the object detector and image classifier using weighted voting.

3. Materials and Methods

This section explains how each stage of the vehicle identification system was designed
and separately assessed on validation and testing datasets in a constrained environment,
and how the different models were integrated together. Subsequently, Section 4 will
present the results when testing our complete system in real cases within an unconstrained
environment.

3.1. Car and License Plate Detection

The first stage consists of detecting cars and license plates in each frame. For this aim,
a dataset of 203 images of cars and license plates in a Saudi Arabian context was built, by
collecting images from the Internet and photos captured by mobile phones, then manually
labeling them. The images contain 819 cars and 246 license plates. In fact, license plates are
often hidden by other cars, obstacles, or the car is captured from a side view. This dataset
is subdivided into 90% for training and 10% for validation. Table 2 shows the number of
images and instances in each set.

We trained a YOLOv4 [30] model with an input size 416 × 416 on this dataset.
The choice of YOLOv4 is justified by its good trade-off between precision and inference
speed [31,32], compared to other object detectors such as YOLOv3 [33], Faster R-CNN [34],
or EfficientDet [35]. We used transfer learning from the COCO dataset [36] (pre-trained
for 500,000 steps), a batch size of 64 images, and a learning rate of 1 × 10−3. After 18,900
additional steps, the model reached an average precision (AP) of 67.6% and 80.7% for the
car and license plate classes, respectively, and a mean average precision (mAP) of 74.1%.
All AP and mAP values presented in this paper are calculated for an Intersection over
Union (IoU) threshold of 0.5 between the ground truth and the predicted bounding boxes.

Table 2. Number of images and instances in the training and validation datasets for car and license
plate detection.

Training Set Validation Set Total

Number of images 183 20 203
Number of car instances 740 79 819
Number of LP instances 227 19 246

3.2. Car Model Recognition

To classify car models, a dataset of 41,521 images was built by collecting images from
the Internet and photos captured by mobile phones, then manually labeling them following
the pattern: make–model–generation. This dataset was split into training, validation,
and testing sets. For this car model classification problem, as well as for the other object
detection and classification problems described below, we opted for one random train–
validation–test split, since we use relatively large datasets. Whereas k-fold cross-validation
approaches are preferable when dealing with small datasets [37]. Moreover, we are using
the validation and testing image datasets only for an indicative evaluation of the models’
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accuracy, while the final evaluation will be conducted on videos, as will be described
in Section 4, since the paper’s main objective is to deal with the problem of the video
streaming processing.

Table 3 shows the number and percentage of images in each set. Furthermore, Figure 1
depicts a few sample images of the dataset. It contains 24 different makes (e.g., Audi,
Toyota, Hyundai, . . .), 90 different models (e.g., Audi Q7, Toyota Camry, Hyundai Accent,
. . .), and 196 different generations (e.g., Audi Q7 generation 2009–2015, Toyota Camry
generation 2012–2017, Hyundai Accent generation 2006–2011, . . .) which are considered
as the final classes. We tried to keep the dataset as balanced as possible, but the way the
dataset was collected caused some discrepancies, with an average of 189 images per class in
the training dataset, a minimum of 73, a maximum of 384, and a standard deviation of 48.

A custom network with the Xception [38] model (pre-trained on ImageNet [39]) was
used as a feature extractor. Inspired by previous tests on similar datasets, we replaced the
last fully connected layer in the Xception network with an average pooling (4 × 4) and then
a series of three fully connected layers followed by dropouts, and finally a softmax layer
containing 196 output neurons corresponding to the 196 car model and generation classes.
Figure 2 illustrates the architecture of the obtained network. The hyperparameters used for
training the model are shown in Table 4.

Table 5 shows the results obtained on the testing dataset. After training for 800 epochs,
the model reached a precision of 97.5% and a recall, F1-score, and accuracy of 97.3%. As
an ablation test, we retrained the model after removing two fully connected layers and
their subsequent dropout (at least one fully connected layer is needed to link the average
pooling layer to the output layer). The accuracy decreased to 91.1%, which empirically
justifies our model architecture choice.

The training took approximately 17 h on a server equipped with 8 RTX8000 GPUs.
Nevertheless, the training is was only performed once, and the authors will show in
Section 4 that this model along with the other detection and classification models described
below runs in real-time in the inference phase.

Table 3. Number and percentage of images in the training, validation, and testing sets of our car
model classification dataset.

Training Set Validation Set Testing Set Total

Number of images 36,953 2284 2284 41,521
Percentage 89% 5.5% 5.5% 100%

Table 4. Hyperparameters used for the training of the car model classifier.

Training Hyperparameter Value

Image input size 224 × 224
Batch size 1024

Learning rate 1 × 10−4

Optimizer Adam
Loss function Categorical cross entropy

Nb epochs 800

Table 5. Evaluation results of the car model classification model on the testing set.

Precision Recall F1-Score

Macro average 97.5% 97.3% 97.3%
Weighted average 97.5% 97.3% 97.3%

Accuracy 97.3%
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Figure 1. Sample images of the dataset used for car model classification (input size of 224 × 224). The
labels below each image show the car’s make, model, and generation.

Figure 2. Architecture of the custom network used for car model classification.

3.3. License Character Recognition

After detecting the license plate, the aim was to recognize all the characters it con-
tains in the correct order. For this purpose, two different approaches were tested that
will be described in this section after a brief introduction to the characteristics of Saudi
license plates.

The two approaches that will be presented here are both based on deep-learning object
detectors in their initial step. In opposition to several previous works in the literature, we
did not use classical the optical character recognition (OCR) techniques for recognizing
license plate characters. In fact, the preliminary tests of existing OCR tools revealed that they
were highly inaccurate for Arabic characters in license plates, especially when operating in
unconstrained environments. This was also confirmed in the work of Khan et al. [20] who
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state that “OCR could not read the number plates in any given frame”. Additionally, there
is no simple way to take advantage of the redundant information in the LP if one opts for
classical OCR techniques.

3.3.1. Characteristics of Saudi License Plates

Saudi license plates are divided into four blocks: Eastern Arabic (EA) numbers—
used in Eastern Arabic countries (Egypt, Gulf countries, Levant, Iraq) where they are
simply called “Arabic numerals”—on the top left; the corresponding Western Arabic (WA)
numbers—used in the Maghreb and a large part of the world, where they are also called
“Arabic numerals” as opposed to “Hindi numerals”—on the bottom left; Arabic letters on
the top right; and the corresponding Latin characters on the bottom right. In recognition
of the significant historical controversy between Eastern and Western Arabic countries on
which numerals are the original Arabic ones, the terminology was chosen here to avoid this
controversy. The correspondence between EA and WA digits is known and straightforward.
However, the correspondence between Arabic and Latin letters is specific to Saudi license
plates and is not always based on phonetic similarity. Figure 3 presents this correspondence.
While all ten digits can appear on Saudi license plates, this is not the case for letters. Only
17 out of 28 Arabic letters are allowed. The remaining letters were discarded by the Saudi
traffic authorities because of their high similarity to the included letters. This makes a total
of 54 possible characters. The one-to-one correspondence between characters on the first
and second lines of Saudi license plates offers redundant information that will be exploited
in the proposed license character recognition system. Latin letters and WA digits are always
placed exactly under their corresponding Arabic letters and EA digits on SLPs, even though
the Arabic language is normally written from right to left.

Figure 3. Correspondence between Arabic and Latin letters, and between Eastern Arabic (EA) and
Western Arabic (WA) digits in Saudi license plates. Letters that are not allowed on Saudi license
plates are shown on a gray background.

On the other hand, there are complicating factors for the automatic recognition of
Saudi license plates. First, the number of characters is variable. The plate always contains
three letters, but the number of digits (for EA and WA numerals each) ranges from 1 to 4
(Figure 4), which means that the total number of characters on an SLP can be 8, 10, 12, or
14. Second, there are two different shapes of Saudi license plates still in use today, each
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using a different font and different space size between characters (Figure 5). One shape has
a horizontal and a vertical line delimiting the four blocks of characters, while the other has
only a horizontal line. Therefore, these edges cannot be reliably used to segment SLPs.

Figure 4. Example showing the possible number of characters on Saudi license plates. There are
always three letters, but the number of digits varies from 1 to 4. Each letter is written in both Arabic
(first line) and Latin (second line) characters, and each digit is written in Eastern Arabic (first line)
and Western Arabic (second line) numerals. For later use, each character is marked with an index
(CharID) representing its order from left to right and top to bottom.

Figure 5. Sample images from the dataset used for single-character detection showing images
of different quality and angle views and two different aspect ratios of Saudi license plates using
different fonts. We intentionally kept low resolution images, considering that this is the type of
resolution expected in real deployment.

3.3.2. First Approach: Single-Character Detection

The first approach that is implemented here consists of applying an object detector
to extract each character separately (character segmentation, Figure 6), then applying an
image classifier to recognize the character. Finally, a matching procedure is used to enforce
that the two lines of characters are consistent and to leverage the redundant information
they contain.

Character detection: For single-character detection, we built a dataset of 373 cropped
images of Saudi license plates with variable image quality, resolution, and inclinations. A
small sample of these images is presented in Figure 5. These images were manually labeled
by defining an accurate bounding box delimiting every single character in the license plates.
The dataset is subdivided into training (90%) and validation (10%) sets. Table 6 shows the
number of images and character instances in these two sets. The number of characters
per license plate varies from 8 to 14, as explained in Section 3.3.1, but license plates with



Sensors 2023, 23, 2120 11 of 27

14 characters are largely the most common. This explains why the average number of
characters per license plate in our dataset is 13.9.

We trained a YOLOv3 model (pre-trained on the COCO dataset) on our dataset, with
an input size of 320 × 320, a batch size of 64, and a learning rate of 1 × 10−3. The choice
of YOLOv3 (instead of YOLOv4) with a reduced input size is justified by the necessity for
a lightweight and faster object detector since it will have to detect up to 14 characters on
each license plate. After 39,000 steps of training, the model reached an mAP of 99.8% on
the validation set. This level of accuracy shows that it is needless to use a more complex
object detector for this task, at least on the current dataset.

Figure 6. Example of single-character detection on a license plate.

Table 6. Number of images and instances in the single-license-character detection dataset.

Training Set Validation Set Total

Number of images 336 37 373
Number of character instances 4678 515 5193

Character classification: After detecting and extracting every single character in the
license plate, they are fed to an image classifier to recognize them. Since up to 14 characters
need to be recognized for each license plate, we opted for MobileNetV2 [40], which is
a lightweight CNN with 3.5 M parameters, as a feature extractor that is pre-trained on
ImageNet. We adopted an architecture similar to the one we used for car model classifi-
cation (Figure 2) by replacing the last fully connected layer in the MobileNetV2 network
by an average pooling (4 × 4) followed by a series of 3 fully connected layers followed by
dropouts, and finally, a softmax layer containing 54 output neurons corresponding to the
54 character classes.

We collected a dataset of license plate characters by extracting cropped character im-
ages from the above-described license plate dataset (Table 6), to which we added thousands
of other cropped characters obtained by running the character detector on images and the
videos of cars. Then, we manually labeled all the extracted characters. The total number of
characters thus obtained is 18,422, which was subdivided into a training set (95%) and a
validation set (5%). All character images were resized to 128 × 128, to be processed by the
custom MobileNetV2-based CNN network described above. After training for 400 epochs,
the model reached a validation accuracy of 99.4%.

Matching procedure: After detecting each license character separately, a matching
procedure is applied to enforce that the two lines of characters are consistent with each
other, and to take advantage of the redundant information that they contain. Figure 7
illustrates the post-processing procedure for ordering license plate characters and selecting
them based on the maximum confidence yielded by the character classifier, subject to the
constraints of the position of letters and digits on Saudi license plates (as can be seen in
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Section 3.3.1). The character bounding boxes are first sorted with respect to ymin, which
corresponds to the vertical position of the top of the bounding box in the frame. Based
on this order, the set of characters is divided into two lines. Then, the characters of each
line are sorted with respect to xmin, which corresponds to the horizontal position of the
bounding box’s right side. The characters thus ordered from top to bottom and from left to
right are assigned an index called charID ranging from 0 to nb_chars − 1, where nb_chars
is the number of detected characters (as can be seen in Figure 4).

Characters in each
License plate

Sort by ymin

Divide into:
line1, line 2

Sort each line by
xmin

Sort characters from left to
right and top to bottom, with

index CharID from 0 to
nb_chars-1

CharID

Select
confidence
scores for
EA digits

Select
confidence
scores for

Arabic
letters

Select
confidence
scores for
WA digits

Select
confidence
scores for

Latin letters

Prediction arrays

Calculate weighted sum between the two
arrays of confidence scores

Select the argmax for each column

Character type identification

Figure 7. License plate character identification for each frame, in the case of single-character detection.
EA stands for Eastern Arabic, while WA stands for Western Arabic.

The output of the character classifier is a vector of length 54 (number of character
classes) containing the confidence score of each class. From the value of charID, the system
infers the type of character (Western Arabic digit, Eastern Arabic digit, Latin letter, Arabic
letter), and only keeps the classes corresponding to the inferred type, with their associated
confidence scores (Figure 8). Then, for each character position, we apply a weighted average
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between the array of confidence scores in the first line and the array of confidence scores in
the second line.

We noticed a higher rate of confusion between the characters of the first line (Arabic
letters and Easter Arabic digits) than between the second line of characters (Latin letters
and Western Arabic digits). This is due to greater shape similarities between the characters
of the first type. Based on preliminary results, we empirically fixed a weight of 1

3 for the
first line’s confidence scores and 2

3 for the second line’s confidence scores. Then, for each
two-character column in the license plate, the pair of characters that corresponds to the
maximum weighted average of confidence scores was selected. This will be the selected
pair of characters for the given frame. Ultimately, voting will be applied on a series of
frames to select the final characters for the given license plate, as described in Section 3.6.

Figure 8. Post-processing of the character classifier output in the single-character detection approach.

3.3.3. Second Approach: Double-Character Detection

The second approach that we tested for character recognition consists of training an
object detector to recognize the double characters (one character on the first line and the
corresponding character on the second line), as depicted in Figure 9. The advantage of
using this approach is to increase the distance between class features, making them more
discernible and eliminating the need for complex post-processing matching. Additionally,
instead of using a one-class character detection followed by image classification as in the
first approach, this second approach opts for a one-stage 27-class character detection. For
this aim, we collected a dataset of 593 license plate images that we divided into training
(95%) and validation (5%) sets. Table 7 shows the number of images and instances in each
set. The dataset was not exactly balanced, since some characters appear more frequently on
Saudi LPs. The average number of images per class is 142, the standard deviation is 84, the
minimum is 37 (for character ‘U’), and the maximum is 276 (for number ‘7’). The number
of double characters per license plate ranges from 4 to 7 (see Section 3.3.1). However,
since Saudi license plates with seven double characters are the most common, the average
number of double characters per license plate in our dataset is 6.5.

A Yolov4 model was trained on this dataset, with an input size 416 × 416, pre-trained
on the COCO dataset. We opted for YOLOv4, compared to YOLOv3 that we used for
the first approach, and a larger input size because the task of distinguishing between
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27 classes is more complex than the mere detection of a character. Additionally, the number
of characters to be detected per license plate is 7 (in most cases) compared to 14 for the
first approach. Moreover, this second approach eliminates the need for an image classifier
since character detection and classification are now merged into one model. For all these
reasons, there is more room for using a more sophisticated model and a larger number of
network parameters.

After only 5000 training steps, the model reached an mAP of 99.0% on the validation
dataset, with an AP per class ranging from 91.7% (for the letter H) to 100% (for 21 out
of 27 classes). Once double characters are separately detected and recognized in a given
license plate, in order to obtain the correct order of characters, the system only needs to
sort their bounding boxes according to their position on the x axis, instead of the complex
matching procedure that was used in the first approach.

Figure 9. Example of double-character detection on a test image.

Table 7. Number of images and instances in the double-character detection dataset.

Training Set Validation Set Total

Number of images 561 32 593
Number of character instances 3628 199 3827

3.4. Tracking

Since our objective is to recognize car models and license plates from a video stream,
not from a single image, the system needs to know whether the object detected in a given
frame is the same as the object detected in previous or subsequent frames so that the
recognized car model and plate are sent to the server only once. To this aim, we integrated
a tracker with the system. We opted for DeepSORT [41] which is a real-time multi-object
tracker that extends simple online and real-time tracking (SORT) [42] by adding a pre-
trained deep association metric that incorporates object appearance information.

To minimize computations, the DeepSORT tracker is only applied to license plates,
not to cars. The corresponding car is inferred from the relative position of the car and
license plate bounding boxes. To be able to integrate the DeepSort tracker with our system,
we customized it by adding several attributes of the detected car and its license plate to
DeepSORT’s track class, as shown in the UML diagram in Figure 10:

• plate_bbox: a list containing the detected LP bounding box coordinates on the image.
• selected_chars: a dictionary containing a list of selected characters for each license

plate position. The length of the list corresponds to the number of frames in which the
character was detected.

• sur f _plate: surface of the detected license plate, in pixels (width × height).
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• car_model_bu f f er: a list containing the car model yielded by the classifier for each
frame in which the car was detected.

• car_model_con f idence: a list containing the car model’s confidence score for each
frame in which the car was detected.

• recognized_car_model: name of the currently selected car model, after voting on the
series of frames in which the car was detected. This name is visualized in real-time,
but the definitive name will only be sent to the server with the conditions defined in
Figure 11.

• sent_to_cloud: Boolean variable indicating whether the information of the track was
already sent to the server or not.

• nb_detected_chars: number of detected characters in the license plate for the cur-
rent frame.

• plate_image: license plate image saved as a Numpy array. When the same license plate
(same track_id) is detected in a series of frames, only the image having the maximum
surface is saved.

• car_image: car image saved as a Numpy array. When the same car is detected in a
series of frames, only the image having the maximum surface is saved.

The way these attributes are used will be explained in more detail in Section 3.7.

Figure 10. UML diagram of the Track class. The original DeepSort attributes and methods are shown
in black, while the attributes that we added to integrate the tracker with our system are shown in blue.

3.5. Model Optimization

The original object detection and classification models that we designed in our system
cannot be run together on edge devices with limited memory and computing capacities,
such as Jetson boards. Therefore, to be able to run the system on a Jeston Xavier AGX
edge device, all these models have to be optimized using NVIDIA TensorRT framework.
TensorRT applies various optimization operations specifically dedicated to the target
device. This includes quantization, which consists of reducing the precision of weight
values and activation functions with minimum accuracy loss. It also performs layer and
tensor fusion by fusing different nodes to optimize memory and bandwidth GPU usages.
Previous works [43] have shown that TensorRT-optimized deep learning models provide
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the fastest execution on a wide range of cloud and edge devices compared to other types of
optimization such as TFLite, with a difference in inference speed that reaches 62%.

3.6. Edge-Cloud Communication

Our system is coupled with an end-user full-stack web interface installed on a cloud
server that enables the manipulation of the collected data and search of vehicles based on
their features and license plates. Basically, for each detected and tracked car, a message is
sent from the edge to the cloud server only once, when one of the two following conditions
are fulfilled:

• The car quits the camera field of view for a predefined number of successive frames
(min_update);

• The car has been tracked for a predefined number of successive frames (max_age).

After the data are sent, the car model recognizer and the license character detector
are no longer applied to the identified object (which is still in the camera field of view or
quit and then reappeared with the same tracking ID). However, the tracker is still applied
since the system needs to know whether the detected object is a car whose information
has already been sent to the server or a car that is detected for the first time. The detailed
conditions for sending the car information to the server will be detailed in Section 3.7 and
Figure 11.

For each tracked car, the recognition results of car models and series of license charac-
ters in each frame are kept in a list. When the information is ready to be sent to the server,
a weighted vote is applied on each list to select the best guess. Based on preliminary tests,
we set the weights as the confidence scores for car models, while for license plates, we set
them as the license plate surface in each frame. This is because, in most cases, the larger
the license plate (i.e., the closer to the camera), the better the detection and recognition of
license characters. Whereas for car models, the authors noticed that this is not the case.
This is likely due to the aspect of the cars in the training dataset.

Each message sent to the server contains the following information:

• The car cropped image (in base 64).
• The license plate cropped image (in base 64).
• The predicted car model.
• The car model confidence (averaged on a series of frames).
• The predicted license plate.
• The license plate confidence (averaged on a series of frames).
• The timestamp.
• The camera ID and location.

When the server receives the message, it is stored in the dataset and displayed in
real-time on the web interface. Figure 12 shows a sample screenshot of the web interface
installed on the server.

3.7. Description of the Complete Multi-Stage Process

Figure 11 shows the flowchart of the complete process of the proposed multi-stage car
and license plate recognition system. For each new frame, the car and license plate YOLOv4
detector is first applied (step 1 in Figure 11). It yields a list of bounding boxes and confidence
scores for both cars and license plates (steps 2.1 and 2.2). A score threshold is applied (0.2 as
the default value) before the DeepSort tracker is fed with detected license plate bounding
boxes (step 3) to be matched with the existing tracks. The tracker returns pairs of matched
tracks and detections, a list of unmatched tracks, and a list of unmatched detections.

Subsequently, each track is examined to determine whether to send its data to the
server, process them further, or discard them. If the track has not been updated with new
detected bounding boxes for a number of frames higher than a fixed threshold (default
value: 10), this indicates that the object has presumably left the field of view of the camera.
The system checks (6) whether the tracking age (number of frames in which the same object
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has been observed) is in the desired interval [min_age, max_age] (fixed by default to (2,50)).
A low value (<min_age) means that the results of the detection and recognition of the
object cannot be sufficiently trusted enough, while a large value (>max_age) means that the
object properties have already been sent to the server. Even when the tracking age is in the
desired interval, the object could have been sent to the server in case it disappeared from
the field of view and then returned shortly. This is why this condition is checked in step
6.1. If it has never been sent, the voting procedure for car models and license characters is
applied, and then the results are sent to the server, as explained in Section 3.6.

In all cases, the system checks whether the track is confirmed (step 6.2). A track is
considered confirmed when enough evidence has been collected that it is an active track
observed in a minimum number of consecutive frames (3 by default) and that it has not
been deleted due to repeated misses. If the track is not confirmed or has not been updated
(i.e., matched with detected bounding boxes) for at least two frames, no further track
processing is needed, so the system moves on to the processing of the next track. On the
other hand, if the track is confirmed and has been updated in the current or previous
frames, the system checks its tracking age (step 8.2). If it is larger than or equal to max_age,
its attributes are sent to the server (after applying voting) if it has not been sent yet. Then,
the license plate is visualized (10.2) using the current attributes of the track instance (see
Figure 10). This step is optional and it is the last step in the processing of any confirmed
and updated track. If the tracking age is still less than max_age, the system checks the
license plate surface in pixels (9.1). If it is too small, it is just displayed without further
processing since the character recognition is expected to perform poorly in such a case.
The surface threshold is a parameter to be fixed depending on the camera position and the
image resolution. If the license plate surface is larger than the threshold, the more elaborate
processing of the track begins.

First, a rotation is applied to the image of the detected license plate (10.1). This may be
needed when the camera view angle is tilted. Otherwise, the rotation angle α is fixed to 0.
Then, the system searches for the car corresponding to the detected license plate (11.1). If
there are no false-positive detections, and the camera is placed so as to capture only front or
rear car views, there should be only one car bounding box containing the considered license
plate bounding box. If it is found, it is associated with the license plate (12.1), then we
apply the car model classifier (13.1) and append the result to the car model buffer (14.1) in
the attributes of the license plate instance (as can be seen in Figure 10). If no corresponding
car is found until the final result is about to be sent to the server, a default bounding box is
cropped around the license plate to approximate the car bounding box.

In parallel, the character detection model is applied to the license plate image (11.2).
Due to detection errors (false positives or—more commonly—false negatives), the number
of detected characters may vary for the same license plate. Since the system only checks the
relative character positions, any change in this number would conflate neighbor characters.
An alternative would be to check the character positions relative to the license plate.
However, this approach is more error-prone since Saudi license plates have different
shapes and the space before, between, and after characters is variable (see Section 3.3.1
and Figure 5). Therefore, we decided that if the number of detected characters increases
for the same license plate, relative to the previous frame, we reinitialize the buffer of
characters on which voting will be applied, and then we process the characters further as
will be described. If the number of detected characters decreases, it is likely due to some
characters being missed in the current frame while they were detected in the previous
frame. Consequently, the system dismisses the result of the character detector for the
current frame, without reinitializing the buffer of characters, since the missed character(s)
may be detected again in the following frames. If the number of detected characters remains
the same as in the last frame and this number is in the acceptable range (between 8 and 14
if we deal with single characters, or between 4 and 7 if we deal with double characters),
the system increments the tracking age of the track instance (14.2) and orders the character
bounding boxes (step 15). In the case of single-character detection, this ordering follows the
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procedure in Figure 7. Whereas in the case of double-character detection, the system only
sorts the character bounding boxes from left to right, then checks the consistency of each
character (step 17) with respect to its position. The constraint is that the three rightmost
characters must be letters (as can be seen in Section 3.3.1). If the constraint is respected,
the character is appended to the character buffer (18), on which voting will be applied, as
explained in Section 3.6.
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Figure 11. Complete process of the car model classification and license plate recognition. Step
numbers are shown in blue.
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Figure 12. Screenshot of the vehicle web interface that displays car information received from the
edge device.

4. Results and Discussion

In Section 3, the authors presented the assessment results of each component separately
on the testing datasets of images that were randomly split from the same domain as the
training datasets. In the present section, the results of each stage are assessed and discussed,
as part of the integrated vehicle identification system, on realistic images and videos that
were captured while testing the system in different locations at PSU campus.

4.1. Evaluation Approach

We first evaluated our solution on a set of 100 images extracted from two videos
recorded at different locations inside PSU campus, then on the complete videos. The
authors manually labeled the videos by noting for each car the time it entered the camera
field of view, the time it left it, its model and generation, and its license plate. The two
videos have a total time of 32 min and 46 s, while the 100 images were extracted at fixed
intervals, and show cars at variable distances from the camera and various view angles,
both from the front and rear view. Figure 13 shows a sample of the images that were
extracted from the two videos. The evaluation on static images mainly aims to compare the
performance of the two character detection approaches presented in Sections 3.3.2 and 3.3.3
without including the tracker which is applied in the same manner in the two approaches.
The two types of evaluations will also assess the value-added of the tracker in terms of
recognition accuracy for both car models and license plates. We run the system online (by
connecting the edge device to the camera using RTSP stream) to ensure it runs in real-time
with no delays, then offline on the two recorded videos to test the different configurations.
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Figure 13. Sample images extracted from two videos for evaluating car model and license plate
recognition. The images at the top are from video 1, which was recorded at the employees’ parking
lot entrance, while the images at the bottom are from video 2, which was recorded at the main gate of
PSU campus. As can be observed in this sample, the license plate characters are hardly readable on
some frames.

4.2. Car Model Recognition

Table 8 shows the evaluation results of the car recognition model on the set of images
described above. Among the cars, 14% had models that the authors did not include in our
learning dataset, so they obviously could not be correctly recognized. Among the cars, 15%
were not detected by the car and license YOLOv4 detector on the considered frame. When
using the whole sequence of frames in the videos, this rate drops to 1.7% (Table 9). In fact,
it is sufficient to detect the car in some of the frames where it appears. This highlights the
importance of using a tracker in the system. Among the cars, 5% are both non-detected
and have unknown models, whilst 38% of car models (without considering generations)
and 34% of the car models and generations were correctly classified. If one discards missed
detections and non-included car models, these two rates rise to 50% and 45%, respectively.
When compared to the 97.3% accuracy obtained on the testing dataset (which was randomly
split from the same domain as the training dataset, as explained in Section 3.2), this confirms
that high accuracy on a particular domain under constrained conditions does not guarantee
a high accuracy on other domains with unconstrained conditions (different camera, various
lighting conditions, distance to the camera, view angles, occlusions, noise due to inaccurate
bounding boxes provided by the car detector, etc.). This is a well-known problem that is
a corollary of the no free lunch theorem in inductive reasoning [44]. This problem can be
mitigated using a much larger learning dataset, collecting a new dataset from the same
domain and conditions as for actual deployment, or using domain adaptation techniques
[45–47].

Table 8. Evaluation of the car recognition model on a set of images.

Criterion Value/Percentage

Number of images 100
Nonexistent car models (not included in the training dataset) 14%

Missed car detections 15%
Misclassified car models and generations 42%

Misclassified car models 38%
Correctly classified car models 38%

Correctly classified car models and generations 34%
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Table 9. Comparison of different algorithms tested for license plate character recognition, in terms of
the percentage of missed (non-detected) license plates, correctly classified characters (over detected
license plates), correctly recognized license plates (all characters recognized in correct order), and
processing speed in frames per second (FPS). The results were evaluated on 100 images showing cars
at various distances and view angles on a Jetson Xavier AGX.

Algorithm % Missed LPs
% Correct

Characters (Single
or Double)

% Correct LPs FPS

Model 1: 1-char detection
(YOLOv3 320 × 320, 1 class)
+ image classification
(MobileNetV2, 54 classes)

18% 86.7% 50% 4.8

Model 2a: 2-char detection
(YOLOv4 320 × 320, 27 classes) 19% 88.3% 44% 9.7

Model 2b: 2-char detection
(YOLOv4 416 × 416, 27 classes) 21% 92.5% 53% 9.5

4.3. License Plate Recognition

Table 9 compares the two license plate recognition approaches that were described in
Sections 3.3.2 and 3.3.3, by evaluating them on the set of images described in Section 4.1.
The first approach (Model 1) uses a YOLOv3 1-class single character detector (with an
input size 320 × 320) followed by a custom 54-class image classification network based
on MobileNetV2. Whereas the second approach (Model 2b) only uses a YOLOv4 27-class
character detector (with an input size 416 × 416). To measure the influence of the input
size on the accuracy and inference speed, the authors also tested the second approach with
an input size of 320 × 320 (Model 2a).

The total number of characters in the testing dataset is 1382. The percentage of missed
license plates is either due to a non-detection of the license plate itself or to a number of
detected characters in the license plate outside the fixed range of 8–14 characters (or 4–7
double characters for the second approach). The authors imposed this constraint to discard
false-positive license plates and characters, and to make only consistent predictions of full
LPs. The 1-char detection approach gives a slightly better percentage of missed LPs (18%).
This can be explained by the fact that when the LP is excessively tilted, it becomes more
challenging to delimit double characters in straight bounding boxes (and therefore harder
for YOLO to detect them) than to delimit single characters.

Model 2b yields the best accuracy for both the recognition of characters and the
recognition of full LPs. When we do not impose a minimum number of detected characters
per license plate, the percentage of missed LPs for Model 2b drops from 21% to 14%, but
the number of correctly recognized characters also decreases from 92.5% to 87.7%, and the
number of correctly recognized LPs expectedly stays unchanged at 53%. The accuracy of
full LP recognition is noticeably lower than the accuracy of character recognition because
the correct recognition of an LP requires the correct recognition of all the characters it
contains. Thus, theoretically, if the probability of correctly recognizing one double-character
is 92.5%, the probability of recognizing a seven-double-character LP is (0.925)7 = 0.579.
The discrepancy between character recognition accuracy and complete LP recognition
accuracy is lower for 1-char detection than for 2-char detection, which indicates that the
matching procedure defined in Section 3.3.2 is efficient and is able to compensate for the
lower accuracy in character recognition accuracy.

In terms of inference speed, the 2-char detection is approximately twice as fast as the
1-char detection since it consists of only one stage (no image classifier), has fewer outputs
(27 instead of 54), and requires fewer post-processing computations. Increasing the image
input size from 320 × 320 (Model 2a) to 416 × 416 (Model 2b) significantly improves the
accuracy of character and LP recognition with only a slight disadvantage in terms of speed.
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Therefore, we selected Model 2b as the best solution for character recognition, and we will
focus on the evaluation of this model when integrated with the other components of the
system, for the remaining time of this section.

After having evaluated the car model and license plate recognition on a set of static
images, we evaluated the whole system (including the multi-object tracker and the com-
munication with the cloud server) on two HD videos recorded in two different locations
on the PSU campus. Figure 14 shows a sample frame from the processing of video 2, and
Table 10 shows the characteristics of each video and the evaluation results. The results are
better on video 2 (main entrance) because we could place the camera in a suitable position
with a better view angle than in video 1. This stresses the importance of camera calibration
for real deployment. Over the total of the two videos, only 1.7% of cars and 2.5% of license
plates are non-detected. This is noticeably lower than the rates that were obtained on the
set of still images (Tables 8 and 9). This improvement highlights the benefit of including
a tracker in the system so that even if the car or license plate is missed in some frames,
they are detected in other frames. The percentage of correctly predicted characters over
the two videos is 88.6%, which is lower than what was obtained on still images (Table 9,
Model 2b), but the percentage of correct LPs jumps from 53% to 74% (40% relative increase)
due to the use of voting on the sequence of frames where the LP appears, as explained
in Sections 3.6 and 3.7. In order to more precisely quantify the influence of voting on the
recognition of LPs, we tested several values for the parameter max_age which corresponds
to the maximum number of frames used for voting. Figure 15 depicts the evolution of
LP recognition accuracy and the inference speed for different values of max_age when
tested on Video 1. The accuracy jumps from 29% when using a single frame to 69% when
using a maximum of 35 frames for each license plate. This highlights the importance of
the voting process that we introduced for enhancing LP recognition by taking advantage
of the temporal redundancies. The LP recognition accuracy stagnates for max_age higher
than 35, which indicates that there is no need for setting high values for the max_age
parameter. Additionally, the evolution of the inference speed shows that a reduced value
for max_age increases the system’s average speed, since the character detector model is
no longer applied when the number of frames reaches max_age (see Figure 11, step 8.2).
However, the inference speed also stagnates for large values of max_age. When moving
from 1 to 20 frames, the inference speed decreases by 18%, while from 20 to 50 frames, it
only decreases by 7%.

On the other hand, the recognition of car models improves only slightly on the two
videos compared to Table 9: from 38% to 43% (13% increase) for models, and from 34% to
37% (9% increase) for models and generations. This can be explained by the greater number
of classes in the car model classifier (196 classes compared to 27 character classes), which
makes the voting procedure less efficient because a given car model prediction is less likely
to be repeated in different frames. Nevertheless, as already mentioned in Section 4.2, the
tracker helped reduce the miss rate for car detection from 15% on static images to 1.7%
on videos.

If one discards nonexistent car models, the percentage of correct classifications becomes
58% for models and 50% for models and generations. Furthermore, no false positives for
cars or license plates were sent to the server for either video. Actually, the car and license
plate detector produces some false positives, but cars that do not contain a license plate or
plates that do not contain a minimum number of license characters inside their bounding
boxes are later discarded in the processing.

In terms of speed, the average FPS on the two videos is 17.1, which is near real time.
It is higher than the value shown in Table 9 because frames that do not contain cars or
license plates in the videos are processed much faster. Additionally, the frames are read in
a separate thread and are automatically skipped when necessary to keep up with real-time
processing. Thus, no delay is accumulated, and the results are sent to the server in real
time.
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We also assessed the influence of video resolution by downgrading the resolution of
Video 2 from 1920 × 1080 (1080p) to 1280 × 720 (720p), then to 720 × 480 (480p). Table 11
shows the results obtained for each resolution. The detection and recognition rates decrease
moderately when passing to 720 p resolution, but markedly deteriorate when passing to
720 p resolution, down to 23% of correctly identified LPs. This highlights the importance of
image quality when dealing with video streams. On the other hand, the inference speed
only marginally increases by 6% when passing from 1080p to 720p, and by 9% when passing
from 720p to 480p, which does not compensate for the loss in accuracy.

Figure 14. Sample frame from the processing of video 2. This online visualization is only used for
checking and debugging purposes. Otherwise, it is disabled, because it significantly slows down the
program, as the instantaneous FPS value on the top right reveals.

Table 10. Evaluation of the car and license plate recognition system (using Model 2b for character
recognition) on two videos recorded under realistic conditions on the PSU campus.

Video 1 Video 2 Total

Duration 11 mn:18 s 21 mn:28 s 32 mn:46 s
Original FPS 25 30 –

Number of unique cars 58 61 119
Number of character pairs 403 420 823

Missed LP detections 5% 0% 2.5%
Correctly predicted characters 81.9% 95% 88.6%

Correctly predicted LPs 67% 80% 74%
Missed car detections 3% 0% 1.7%

Nonexistent car models (not included in the training dataset) 24% 28% 26%
Misclassified car models 41% 23% 32%

Misclassified car models and generations 43% 32% 38%
Correctly classified car models 33% 49% 43%

Correctly classified car models and generations 31% 45% 37%
Average processing speed (in FPS) 14.4 18.4 17.1
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Figure 15. Evolution of the percentage of correctly recognized license plates and inference speed (in
frames per second) in Video 1, with respect to the maximum number of frames used for voting.

Table 11. Car and license plate recognition results per different resolutions of Video 2.

Resolution 1920 × 1080 1280 × 720 720 × 480

Missed LP detections 0% 2% 20%
Correctly predicted characters 95% 91.2% 79.3%

Correctly predicted LPs 80% 72% 23%
Average processing speed (in FPS) 18.4 19.5 21.2

5. Conclusions

The authors designed and assessed a complete multi-stage vehicle identification and
license plate recognition ecosystem in the Saudi Arabian context. It takes advantage of the
recent progress achieved in deep-learning-based object detectors, classifiers, and trackers.
The object detection and image classification models were trained on carefully collected and
manually labeled datasets of vehicles, license plates, and license characters. The customized
multi-object tracker is used to enhance the recognition accuracy and to save each car’s
information only once. Even though the system involves four different deep-learning
models running concurrently and sending the results to the cloud, it is able to run in real-
time on edge devices with limited computing capabilities, such as Jetson boards. Under
realistic testing conditions, we have proven the efficiency of our multi-stage framework.

Nevertheless, there is still a significant gap between the accuracy achieved on valida-
tion datasets in a constrained environment and the accuracy obtained in realistic uncon-
strained environments. This gap highlights the limitations of a large part of related works in
the literature that only present results under constrained conditions. To bridge this gap, the
detection, classification, and tracking models all need to be enhanced by training them on
larger, more realistic datasets, along with hyperparameter optimization before the system
is deployed in an industrial context. Additionally, the car model recognition results could
be mapped with those of the license plate recognition to enhance them both, provided that
a dataset of vehicle information is available beforehand, such as when using the system for
automatic private parking entry. However, the authors did not include this assumption
in the present work. Moreover, three additional challenges need to be targeted in future
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extensions. The first is to enhance video streaming quality using recent automatic methods
(such as [48]) that address the problem of hazing due to the presence of dust, smoke, and
other particles in the atmosphere that often damage the image quality. Additionally, we
will assess the influence of image quality on recognition accuracy using objective video
quality assessment techniques [49,50], especially those dedicated to automatic license plate
recognition tasks [51–54]. This will help define the best configuration and video streaming
parameters to optimize the system accuracy, reliability, and robustness. The second is secur-
ing the identity and the privacy of license plates over multiple parts of the system [55–57].
The third is protecting the ANPR system from forgery. In fact, fake license plates could
be used for malicious purposes such as granting unauthorized access, hiding identity, or
falsely accusing innocent victims. The image forgery problem in the license plate case is
more complex than in other cases such as face images or fingerprint data, which makes it
challenging to solve.
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