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Abstract: Seismic design of structures taking into account the soil-structure interaction (SSI) methods
is considered to be more efficient, cost effective, and safer then fixed-base designs, in most cases.
Finite element methods that use direct equations to solve SSI problems are very popular, but the prices
of the software are very high, and the analysis time is very long. Even though some low-cost and
efficient software are available, the structures are mostly analyzed for the superstructure only, without
using the geotechnical properties of the ground and its interaction effects. The reason is that a limited
number of researchers have the knowledge of both geotechnical and structural engineering to model
accurately the coupled soil-structure system. However, a cost-effective, less time-consuming and
easy-to-implement technique is to analyze the structure along with ground properties using machine
learning methods. The database techniques using machine learning are robust and provide reliable
results. Thus, in this study, machine learning techniques, such as artificial neural networks and
support vector machines are used to investigate the effect of soil-structure interactions on the seismic
response of structures for different earthquake scenarios. Four frame structures are investigated by
varying the soil and seismic properties. In addition, varying sample sizes and different optimization
algorithms are used to obtain the best machine learning framework. The input parameters contain
both soil and seismic properties, while the outputs consist of three engineering demand parameters.
The network is trained using three and five-story buildings and tested on a three-story building with
mass irregularity and a four-story building. Furthermore, the proposed method is compared with the
dynamic responses obtained using fixed-base and ASCE 7-16 SSI methods. The proposed machine
learning method showed better results compared with fixed-base and ASCE 7-16 methods with the
nonlinear time history analysis results as a reference.

Keywords: soil-structure interaction; engineering demand parameters; finite element analysis;
Machine Learning; Support Vector Machine; ASCE 7-16

1. Introduction

Soil-structure interaction (SSI) is a very important phenomenon as it affects the time
period and response of structures like the base shear, acceleration, and drift. The Mexico
City and the Puebla earthquakes are evidence of this complex relationship [1]. Thus, the
response of structures without considering soil domain may be misleading and may cause
failure of the structure, depending on the site conditions [2,3]. Studies have shown that
SSI can have a significant impact on the responses of structures to seismic excitations,
amplifying story drifts, and accelerations [4–6]. Therefore, buildings may experience higher
seismic demands when SSI is taken into account.

The inclusion of soil-structure interaction (SSI) in the analysis of structures on soft soils
is crucial for accurate seismic assessment [7,8]. Additionally, the structures with extreme
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configurations are affected significantly by considering SSI. For example, a study on nuclear
reactors showed that the soil properties had a very high impact on the seismic response
of the reactor [9]. Fatahi et al. showed that, when SSI was considered, the performance
level of structures was changed to near collapse from life safety [2]. Furthermore, another
study showed that the design procedures without SSI considerations were not safe for
structures on soil types De and Ee, which comprise stiff soils and soft clays [10]. Soil-
structure interaction also increased the inter-story drifts for stiff soils and soft clays, making
SSI investigation necessary for such soils [11,12]. Additionally, it was also shown that the
damping of soil and structure had a great impact on the overall damping of the structure.
The shear wave velocity and soil damping for soft soils have also been shown to have a
significant effect on the maximum lateral displacement [13]. Past research also stressed that
the variation of soil shear wave velocity, shear wave degradation ratio, structure-to-soil
stiffness ratio, and structural aspect ratio, combined with the system stiffness, are the key
parameters of a structural response [14]. Studies also showed that the SSI parameters have
a key place in estimating the fragility of the foundations of a bridge and its abutment
components like shear keys, span unseating, and bearings [15]. Other research showed that
the cracking pattern of walls was mainly influenced by the soil-structure interaction [16].
On the other hand, the structures on some soil types showed smaller base shears for SSI
designs compared with fixed-base designs. For instance, a study pointed out that there
was no effect on the base shear of structures built on firm soils [17]. Similarly, the SSI
effect decreased with the increase in the shear wave velocity of the soil [18]. Other research
showed that the pile soil-structure interaction decreased the elastic-plastic inter-story drift
compared with shear force and acceleration [19]. Therefore, to be on the safe side, the effect
of SSI should be included in the analysis of the structures and then its inclusion or exclusion
be decided for the final assessment.

The SSI designs are easily implemented using the finite element method (FEM) in
commercial software. However, these are time consuming and complicated as they need
more calculations and the software packages are also expensive. Additionally, a limited
number of engineers have adequate knowledge of both structural and geotechnical designs.
These challenges demand a low-cost, reliable, and easy-to-implement method. Recent
studies have demonstrated the potential of machine learning (ML) in predicting structural
response, including some that consider soil-structure interaction (SSI) [20–22]. An artificial
neural network (ANN) is one of the ML techniques that is trained with past data and
trends, so that afterwards it can predict the future responses [23–26]. Studies showed that
the responses of bridges and buildings subjected to earthquakes were successfully and
accurately predicted by the neural network approach [27–31]. It was also mentioned in
some case studies that the ML methods were better in performance compared with conven-
tional methods [32–37]. For example, the roof displacement, base shear and base bending
moments were precisely predicted by the ANN model when compared with the finite
element analysis (FEA) results [38]. Khatibinia et al. used a wavelet-weighted least squares
support vector machine for seismic reliability assessment of reinforced concrete structures
including SSI [11]. Farfani et al. used data-based methods to produce more experimental
data for the seismic analysis of soil-pile-structure systems, and Mirhosseini used support
vector regression to predict the seismic response of building systems considering SSI ef-
fects [21,22]. Other studies also attempted to predict building response without considering
SSI using different machine learning techniques such as supervised and unsupervised
learning algorithms, ANN, and convolutional neural networks [39–41]. Therefore, the
machine learning techniques are accurate in predicting the structural responses and use
less computational effort.

Researchers have investigated the seismic demands of structures considering SSI using
conventional methods; however, they tend to rely on a single performance metric such as
maximum inter-story drift or base shear, without considering multiple performance mea-
sures that are required for both serviceability and safety aspects [2,10]. Most studies focus
on structural safety, with few considering the serviceability aspect, which is important for
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facilities such as hospitals and data centers [42]. Floor acceleration is commonly used as the
representative engineering demand parameter for serviceability [43]. Another commonly
overlooked aspect is the increase in seismic base shear demands on foundations due to
global retrofitting [44–46]. Thus, the performance-based seismic design requires multiple
engineering demand parameters for making the seismic fragility groups required for the
assessment and design of buildings [47,48]. Furthermore, the recent seismic evaluation and
retrofit standards require consideration of different limit states in the seismic assessment
process and the prediction of the type of seismic enhancement required to meet a given
performance level [49]. Therefore, there is a need for ML frameworks that consider both
safety (maximum inter-story drift ratio, D, and base shear, V) and serviceability (floor
acceleration, A) aspects in the seismic performance assessment.

Based on the previous discussion, it is clear that there is a need for comprehensive
studies on the seismic performance assessment that considers different input variables
related to the structure, soil-structure interaction, and earthquake events. The current
research aims to address the lack of a seismic assessment ML framework that considers
different engineering demand parameters (EDPs) and multiple limit states criteria, such
as life safety and collapse prevention, while taking into account soil-structure interaction.
The study develops a framework based on machine learning techniques for predicting the
seismic performance of low-to-mid-rise frame structures considering SSI. The framework
takes into account both safety (maximum inter-story drift ratio, D, and base shear, V) and
serviceability (floor acceleration, A) aspects in the seismic performance assessment. The
proposed framework is then compared to conventional methods that consider SSI, for
example the ASCE 7-16, and verified using nonlinear time-history analysis. The proposed
procedure provides an expert opinion on the structural seismic performance considering the
variability in SSI, structural characteristics, and ground motion input, filling an important
gap in the research area and providing a valuable insight for seismic assessment and design.

2. Methodology

The soil and structure are modeled concurrently using OpenSees, an open-source
finite element software [50,51]. After making the main model in OpenSees with the
help of TCL language, MATLAB is used for multiple runs [52,53]. The MATLAB is pro-
grammed to open the OpenSees software multiple times, and each time the input parame-
ters are selected from a pre-defined matrix. Thus, the time-consuming database-making
process is simplified.

2.1. Modeling the Superstructure (Building)

The top view and front elevation of the structures are shown in Figure 1. For simplicity,
one of the outer frames in the short direction is used for analysis (ASCE-41 2017). Based on
AISC-360 2016, the frames are designed for gravity loads of 4.1 kN/m2 and 2.5 kN/m2 of
dead and live loads, respectively. The steel is assumed to have a nominal yield strength of
345 MPa and an elastic modulus of 200 GPa, with 0.3 poison ratio and 7850 kg/m3 density.
Columns and beams are modeled as beam–column elements using an element library. The
connection of columns and beams is carried out with the help of zero-length elements. The
modified Ibarra–Krawinkler deterioration model is used for a nonlinear force–deformation
relationship with the help of rotational springs [54]. The rotational springs connected to
the elastic beam–column elements induce crack properties in the structure. The models are
shown in Figure 2 for three-story, four-story, five-story and three-story mass irregularity
(MI) structures, respectively. The time periods are 0.66 s, 0.75 s and 0.89 s for the SSI models,
respectively. All the structures comprise three bays. The standard sections used for beams
and columns are shown in Table 1.
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Figure 1. Top view of the structure.
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Figure 2. The frame structure models with the soil domain and ground motion. (a) Model of the
three-story structure. (b) Model of the four-story structure. (c) Model of the five-story structure
(d) Model of the three-story mass irregularity structure.
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Table 1. Details of the cross-sections of the structures.

Elements Model Standard Section

Beams 3, 4, 5 story W33 × 118

Columns

3 story (0–3 story) W14 × 257

4 story (0–2 story) W14 × 311
(2–4 story) W14 × 257

5 story (0–2 story) W14 × 311
(2–5 story) W14 × 257

2.2. Modeling the Substructure (Soil)

The direct method is used to model the massless soil domain in which the FEM model
is developed and boundary conditions are enforced upon it. The width of the soil domain
is taken as three times the width of the building, and depth is taken as equal to the height of
the building. For a satisfactory analysis, the width of the soil model should be three times
the length of the structure [55]. The soil mesh is created in such a way that the desired
aspects of the propagating waves are captured in the analysis. The minimum vertical
element size in the soil column is set by the horizontal size of the elements. The number of
elements is determined by the thickness of the soil deposit. Thus, for n total elements there
will be 2n + 2 total nodes. The bottom portion is fixed to behave as a rock and the sides are
free. Isoperimetric four-node quadrilateral finite elements having two degrees of freedom
per node are used to model the soil region. The plane strain condition is considered using
the elastic-isotropic material model in OpenSees. Equal DOF command is used in both
horizontal and vertical directions to connect the structure with the soil. Common nodes
and suitable constraints are used to achieve equal displacements for the two domains.
Lysmer–Kushlmeyer dashpots are introduced for the radiation damping and prevention of
reflection of outward-propagating dilatational and shear waves back to the structure [56].
The mentioned dashpots are enough to satisfy the radiation damping conditions. A 5%
damping ratio is applied as the typical soil damping conditions are in the range of 3% to
10% [57]. The range of elastic modulus is 478 to 210,000 kN/m2 and the range of Poisson’s
ratio is 0.2 to 0.45.

2.3. Modeling of the Earthquakes

There are three important characteristics of the input ground motions that must be
considered for earthquake modeling. First, the ground motions should be simple enough
and readily available to the engineer to use them for design purposes. Second, the damage
caused by the earthquakes must be a very close representation of the actual seismic events.
Thirdly, they should portray the profile and intensity of the real earthquake. The intended
framework of earthquakes in this study ensures these peculiarities. For instance, the inputs
used in the current research are response spectra (frequency contents), and Peak ground
acceleration (PGAs). These input data are considered to be a suitable representation of the
earthquakes [33,41]. Another benefit is that the response spectra have the most influence
on the nonlinear behavior of the ground excitations [33]. Thus, the machine learning
techniques (ANNs and SVMs) will be robust in performance and excellent in predicting
the nonlinear behavior, as the database considers important nonlinear properties in the
input. In the present study a short version of the response spectrum extracted from the
full versions is used. In this version, the controlling points at the natural periods of 0.01,
0.02, 0.05, 1, 1.5, 1.0 and 2.0 s are used as inputs to the machine learning framework. The
earthquakes investigated are selected from the database of PEER [58] considering the
actual ground motions records. The variability in PGA, magnitude (Mw), site to source
distance, source-fault mechanism, lowest useable frequency, and shear velocity (Vs30) can
be seen in Table 2. To introduce diversity in the input seismic events, 1000 ground motions
records of magnitude range 3.5 to 8.5 have been picked from PEER. A total of 90% of the
earthquakes had very little PGAs while only 10% of these had a very huge PGA. In this
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regard, a total of 100 earthquakes having a PGA range of 0.02 g to 1.79 g were selected,
and a scale factor of 4 was used for these ground accelerations. For the range of 0.3 g to
0.6 g, being the practical range of seismic building design, a greater number of samples
were used. The characteristics of the ground motion records used are listed in Table 2 with
four sample earthquakes. The variability of the input ground motions over the expected
range of occurrence is guaranteed from this selection. The EQs were applied at the bottom
of the soil layer as a total base acceleration. Figure 3 is the representation of the response
spectra and the histogram of the PGA range of the 100 earthquakes used as inputs. It also
illustrates the time history of two sample EQs used in the NLTHA.

Table 2. Characteristics of the samples from 100 EQs used in NLTHA.

Limit/EQ Name PGA (g) Magnitude
(Mw)

Source to Site
Distance (km) Vs30 (m/s) Lowest Useable

Frequency (Hz) Source-Fault Mechanism

Limits of
parameters

Upper 1.800 7.62 218.13 1428.14 3.750 Normal; Reverse: Reverse
Oblique; Strike SlipLower 0.017 4.20 0.56 169.84 0.025

Earthquake
samples

“Ancona-06_Italy” 0.740 4.30 11.18 448.77 1.125 Normal
“Golden Gate Park” 0.340 5.28 11.02 874.72 0.875 Reverse

“Yorba Linda” 0.320 4.26 16.19 384.44 0.390 Strike Slip
“Santa Barbara” 0.287 5.92 27.42 465.51 0.250 Reverse Oblique
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Figure 3. The earthquakes considered as input. (a) The response spectra of 100 input earthquakes.
(b) The histogram of PGA ranges of the EQs. (c) The time history of Imperial Valley EQ. (d) The time
history of Northern California EQ.

2.4. Database for Machine Learning Methods

In this section, the database used for the machine learning is discussed. After running
around 1200 simulations for each structure type, the database containing inputs as spectral
response, number of stories, Young’s modulus and Poisson’s ratio and a single output as
base shear (V), maximum inter-story drift ratio (D), or acceleration (A) is developed with
the help of a MATLAB script that automatically saves them in different files. These files are
then combined in a single Excel sheet, which is then normalized to be used in the machine
learning methods for training of ANNs and SVMs. Figure 4 shows the distribution of the
normalized data over the number of simulations in the case of the base shear.
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2.5. Implementing the Machine Learning Techniques

The methodology used to apply the machine learning techniques is discussed in this
chapter. Figure 5 shows a flow chart of the complete process. First, the machine learning
method is decided then the database is established, which is obtained from FEM analysis to
train the network, and then it is tested to predict the output. Before training, outliers were
removed and the data were trimmed to be reasonable. Afterwards, different algorithms
are used for training. A total of 70% of the data is used for training, 15% is used for
cross validation, and 15% is used to test the data. The type of the algorithm, the number
of layers, the number of neurons, and the type of the function are varied to achieve the
best ANN architecture based on the mean square error (MSE) and the linear correlation
coefficient (R) values. The selection criteria for MSE are less than or equal to 0.01 and for
the R are greater than or equal to 0.95. Then, the trained network is tested with the help
of 22 earthquakes considering maximum considered earthquake (MCE) and design-based
earthquake (DBE). The ANN is trained on a three- and a five-story structure and tested on
a four-story and a three-story mass irregularity structure.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 5. Flow chart of procedure adopted for machine learning. 

3. Application of the Machine Learning techniques 
3.1. Training and Test of the ANNs 

The ANNs were trained with different algorithms; such as the scaled conjugate gra-
dient (TrainSCG), Levenberg–Marquardt (TrainLM) and Bayesian regularization 
(TrainBR) backpropagations, number of neurons, and number of layers and functions. 
Then, the effect of number of layers in the neural networks was analyzed. Afterwards, the 
effect of the number of neurons on the response of structures was determined. In the end, 
a comparison between the types of functions such as the log-sigmoid transfer (LOGSIG) 
function, pure linear transfer function (PURELIN), and hyperbolic tangent sigmoid trans-
fer function (TANSIG), which are used for the training of the ANN, was performed. Fig-
ure 6 shows the results of the variation of parameters of the ANN. From the R values it is 
evident that TrainSCG has poor results compared with TrainBR and TrainLM. However, 
the latter two have almost the same results and in this study only TrainLM is used for 
future trainings. As far as the effect of the number of layers is concerned, for each of V, A 
and D, the trainings showed that a network with two hidden layers is the best for predict-
ing the responses. The R values of the network with fewer than or greater than two hidden 
layers were poor in performance compared with those with two hidden layers. Finally, it 
is noted that 10 neurons were the optimum amount for accurate prediction, while increas-
ing or decreasing the number of neurons is not recommended as this demonstrated poor 
results considering all V, A and D. As far as the type of the function is concerned, TANSIG 
performed better for predicting the structural dynamic responses while PURELIN had the 
lowest performance. 

Figure 5. Flow chart of procedure adopted for machine learning.



Sensors 2023, 23, 2047 8 of 19

3. Application of the Machine Learning techniques
3.1. Training and Test of the ANNs

The ANNs were trained with different algorithms; such as the scaled conjugate gradi-
ent (TrainSCG), Levenberg–Marquardt (TrainLM) and Bayesian regularization (TrainBR)
backpropagations, number of neurons, and number of layers and functions. Then, the effect
of number of layers in the neural networks was analyzed. Afterwards, the effect of the
number of neurons on the response of structures was determined. In the end, a comparison
between the types of functions such as the log-sigmoid transfer (LOGSIG) function, pure
linear transfer function (PURELIN), and hyperbolic tangent sigmoid transfer function
(TANSIG), which are used for the training of the ANN, was performed. Figure 6 shows
the results of the variation of parameters of the ANN. From the R values it is evident that
TrainSCG has poor results compared with TrainBR and TrainLM. However, the latter two
have almost the same results and in this study only TrainLM is used for future trainings. As
far as the effect of the number of layers is concerned, for each of V, A and D, the trainings
showed that a network with two hidden layers is the best for predicting the responses. The
R values of the network with fewer than or greater than two hidden layers were poor in per-
formance compared with those with two hidden layers. Finally, it is noted that 10 neurons
were the optimum amount for accurate prediction, while increasing or decreasing the
number of neurons is not recommended as this demonstrated poor results considering all
V, A and D. As far as the type of the function is concerned, TANSIG performed better for
predicting the structural dynamic responses while PURELIN had the lowest performance.
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(b) Effect of the number of layers. (c) Effect of number of neurons. (d) Effect of the type of function.

To conclude, a combination with the best results was selected and used for further
comparisons and calculations. ANN with two hidden layers, 10 neurons each, TrainLM
algorithm and TANSIG function showed the most accurate results. To demonstrate this
statement further, the R values for each of Training, Validation, Test and All are shown in
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Figures 7–9. The R value is greater than 96% in the case of base shear, 90% for acceleration,
and 94% for drift predictions.
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3.2. Training and Test of the Support Vector Machines (SVMs)

SVMs are trained after normalizing the data, as in the case of ANNs. Even though
many SVM techniques were used for training, only three techniques with better results
are mentioned here. These are fine tree, SVM cubic, and bagged tree. Figure 10 shows the
comparison of the accuracies of these methods. It is observed that the bagged tree had the
highest accuracy and the best prediction result of around 99.5%. Fine tree showed 99.4%
accuracy whereas SVM cubic showed the least accuracy of about 98.9%.
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3.3. Comparison of the Performance of the ML Techniques

After completing the training, validation and testing of the different machine learning
techniques, the best of the best is selected as the proposed ML method. The comparison
of these methods is shown in Figure 11. The root mean square error (RMSE) for base
shear, acceleration, and MIDR is shown for each of fine tree, SVM cubic, bagged tree and
ANN. It is seen that the ANN with around 0.01 value has the minimum RMSE for all the
three responses of the structure. Thus, ANN is selected as the best method for predicting
the dynamic response of structures coupled with soil.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 22 
 

 

Figure 10. Accuracy of the different SVM models. 

3.3. Comparison of the Performance of the ML Techniques 

After completing the training, validation and testing of the different machine learn-

ing techniques, the best of the best is selected as the proposed ML method. The compari-

son of these methods is shown in Figure 11. The root mean square error (RMSE) for base 

shear, acceleration, and MIDR is shown for each of fine tree, SVM cubic, bagged tree and 

ANN. It is seen that the ANN with around 0.01 value has the minimum RMSE for all the 

three responses of the structure. Thus, ANN is selected as the best method for predicting 

the dynamic response of structures coupled with soil. 

 

Figure 11. Comparison of RMSE values of SVMs and ANN. 

4. ASCE 7-16 Methodology 

This section is about the approach adopted to obtain results from the ASCE method 

for the SSI analysis. The ASCE 7-16 is the latest version and very limited studies have been 

done. A recent study showed that both the ASCE 7-10 and ASCE 7-16 result in larger and 

similar structural responses compared with fixed-base design methods for structures with 

surface foundation. For structures on very soft soils, the new SSI provisions of ASCE 7-16 

showed conservative designs [59]. It is revealed that the practicing SSI provisions resulted 

in nearly the same, higher, or lower level of risk as that of fixed-base design structures, 

which were categorized as optimal, excessively conservative, or unsafe designs. For struc-

tures on Site Class D, the SSI provisions yielded either unsafe or uneconomic designs. For 

structures on Site Class E, practicing SSI provisions of ASCE 7-16, in lieu of fixed-base 

regulations, might result in overly conservative designs [12]. It was concluded that both 

the National Earthquake Hazards Reduction Program (NEHRP) and the current provi-

sions resulted in unsafe designs for structures with surface foundations on moderately 

soft soils. For structures on very soft soils, the method of NEHRP was more conservative 

[60]. Thus, there is a lot of room to criticize the current ASCE provision. The flow chart in 

Figure 12 is an illustration of the steps taken to obtain the responses from this method. In 

the ASCE fixed-base method, the soil effect is ignored whereas, in both the equivalent 

lateral force procedure and nonlinear procedure, the effect of soil is introduced with the 

help of different factors that depict the soil properties. 

Figure 11. Comparison of RMSE values of SVMs and ANN.

4. ASCE 7-16 Methodology

This section is about the approach adopted to obtain results from the ASCE method for
the SSI analysis. The ASCE 7-16 is the latest version and very limited studies have been done.
A recent study showed that both the ASCE 7-10 and ASCE 7-16 result in larger and similar
structural responses compared with fixed-base design methods for structures with surface
foundation. For structures on very soft soils, the new SSI provisions of ASCE 7-16 showed
conservative designs [59]. It is revealed that the practicing SSI provisions resulted in nearly
the same, higher, or lower level of risk as that of fixed-base design structures, which were
categorized as optimal, excessively conservative, or unsafe designs. For structures on Site
Class D, the SSI provisions yielded either unsafe or uneconomic designs. For structures
on Site Class E, practicing SSI provisions of ASCE 7-16, in lieu of fixed-base regulations,
might result in overly conservative designs [12]. It was concluded that both the National
Earthquake Hazards Reduction Program (NEHRP) and the current provisions resulted
in unsafe designs for structures with surface foundations on moderately soft soils. For
structures on very soft soils, the method of NEHRP was more conservative [60]. Thus,
there is a lot of room to criticize the current ASCE provision. The flow chart in Figure 12 is
an illustration of the steps taken to obtain the responses from this method. In the ASCE
fixed-base method, the soil effect is ignored whereas, in both the equivalent lateral force
procedure and nonlinear procedure, the effect of soil is introduced with the help of different
factors that depict the soil properties.
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5. Results and Discussion

This section reports the performance and accuracy of the proposed method. The
generalization potential of the proposed method was examined by introducing new EQs
to test the ANN framework. The characteristics of these EQs are given in Table 3. The
ML results are validated with the FEM simulation results. Figures 13–15 show the output
engineering demand parameters (base shear, acceleration, and maximum inter-story drift)
of a four-story structure predicted by the ANN, which was based on three- and five-story
structures. For the selected earthquakes, the ANN framework showed accurate results
when compared with the NLTHA.

Table 3. Characteristics EQs used to test a four-story building.

Limit/ EQ Name PGA (g) Magnitude
(Mw)

Source to Site
Distance (km) Vs30 (m/s) Lowest Useable

Frequency (Hz) Source-Fault Mechanism

Limits of
parameters

Upper 0.6447 6.61 63.34 529.09 0.625 Normal; Reverse: Reverse
Oblique; Strike SlipLower 0.3016 5.30 22.77 198.77 0.100

Earthquake
samples

“Northwest Calif-03” 0.3016 5.80 53.73 219.31 0.500 Strike Slip
“Central Calif-01” 0.3409 5.30 25.81 198.77 0.375 Strike Slip

“Parkfield” 0.3702 6.19 63.34 493.50 0.625 Strike Slip
“San Fernando” 0.5797 6.61 22.77 316.46 0.100 Reverse
“San Fernando” 0.6447 6.61 35.54 529.09 0.250 Reverse
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Figure 15. MIDR of a four-story structure obtained from ANN and NLTHA for five EQs.

Similarly, the ANN model is also tested on a three-story mass irregularity structure.
The earthquakes, this time, consisted of design-based EQs (DBE) and maximum considered
EQs (MCE) to achieve meaningful results and to compare them with the results obtained
from other conventional methods. Table 4 lists the characteristics of these EQs. Figure 16
shows the design spectrum of these EQs.
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Table 4. Characteristics of design-based and maximum considered test EQs for a three-story mass
irregular structure.

Limit/EQ Name PGA (g) Scale Magnitude
(Mw)

Source to Site
Distance (km)

Vs30
(m/s)

Lowest Useable
Frequency (Hz)

Source-Fault
MechanismDBE MCE DBE MCE

Limits of
parameters

Upper 1.5506 2.107 4.9804 8.5508 7.36 114.62 527.92 0.375 Reverse,
Strike SlipLower 0.038 0.655 2.0934 1.3011 5.20 3.510 213.44 0.1

Earthquake
samples

“Imperial Valley-02” 0.5878 1.009 2.0933 3.5940 6.95 6.09 213.44 0.25 Strike Slip
“Kern County” 0.6078 1.043 3.8256 6.5682 7.36 114.62 316.46 0.125 Reverse

“Northern Calif-03” 0.3818 0.655 2.3369 4.0123 6.5 26.72 219.31 0.125 Strike Slip
“Parkfield” 1.2277 2.107 2.7664 4.7497 6.19 9.58 289.56 0.1625 Strike Slip
“Parkfield” 1.5506 0.890 4.3493 6.7153 6.19 15.96 527.92 0.1875 Strike Slip

“Borrego Mtn” 0.5189 0.993 3.9113 4.4218 6.63 45.12 213.44 0.1 Strike Slip
“San Fernando” 0.5788 1.289 2.5754 8.5169 6.61 22.77 316.46 0.1 Reverse
“San Fernando” 0.7511 1.586 4.9606 1.3011 6.61 22.23 425.34 0.15 Reverse
“San Fernando” 0.5580 0.958 4.9804 8.5507 6.61 24.16 452.86 0.1875 Reverse

“Managua_Nicaragua-01” 0.8867 1.522 2.3847 4.0944 6.24 3.51 288.77 0.375 Strike Slip
“Managua_Nicaragua-02” 0.7741 1.329 2.9452 5.0566 5.20 4.33 288.77 0.125 Strike Slip

Figures 17–19 are a comparison of the V, A and D of NLTHA and ANN obtained for
the three-story mass irregularity structure. The ANN achieved a good prediction for the
11 earthquakes of MCE and DBE levels. This shows the robustness of the proposed method.
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Figure 19. MIDR of a three-story mass irregularity structure obtained from ANN and NLTHA
considering DBE and MCE levels.

Then the results of the proposed method were compared with those of the conventional
methods for SSI seismic response. The FEM is again taken as reference for this comparison.
Figures 20 and 21 are the comparison of V and D values from ANN, SVM, and ASCE 7-16
methods. It is noted that ANN is the closest to the FEM (NLTHA) outputs compared with
other methods. Thus, ANN is the most reliable method among the techniques discussed.
Tables 5 and 6 show the quantitative results. ANN predicted approximately the same as
the FEM results, whereas the fixed-base method showed higher values compared with the
equivalent lateral force procedure (ELFP) and ML techniques. ELFP showed results close to
FEM compared with the bagged tree (SVM) method but the values were higher than the FEM
method. The error percentage for ANN was less than 2% for MCE and below 8% for DBE with
the FEM (NLTHA) as a reference. The proposed method is superior over the conventional
techniques. For example, Table 6 shows, in the case of MIDR, ELFP overestimated the results
by 10.94% and 4.54% for the DBE and MCE levels, respectively. In the fixed case, these values
increased to 15.63% and 9.09%, respectively, and in the NLP case they increased to 14.10%
and 8.68%, respectively. However, in the ANN case, the difference was reduced to 0.03% and
1.23% for the DBE and MCE levels, respectively. In the case of V, the ELFP overestimated the
results by 12.53% and 11.89%, respectively. Other ASCE methods showed more conservative
results than the ELFP. However, the differences in the case of the ANN were reduced to 7.75%
and 0.96% for the DBE and MCE levels, respectively. This shows that the proposed framework
provides a higher accuracy in predicting V and D compared with conventional ASCE methods.
It was found that the bagged tree technique underestimates the response values in general.
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Table 5. Values of the base shear obtained from different techniques for the three-story mass
irregularity structure.

10%/50 yr (DBE) 2%/50 yr (MCE)

Method Vbase (kN) Diff. from FEM % Error Vbase (kN) Diff. from FEM % Error

Fixed 1604.24 240.99 17.68 2864.2 416.477 17.01
ELFP 1534.00 170.75 12.53 2738.77 291.05 11.89
NLP 1585.65 222.40 16.31 2851.38 403.66 16.49

Bagged Tree 1222.73 140.52 10.31 2100.55 347.17 14.18
ANN * 1257.53 105.72 7.75 2424.01 23.71 0.96

FEM (reference) 1363.25 - - 2447.72 - -

* Best technique.

Table 6. Values of MIDR obtained from different techniques for the three-story mass
irregularity structure.

10%/50 yr (DBE) 2%/50 yr (MCE)

Method MIDR (%) Diff. from FEM % Error MIDR (%) Diff. from FEM % Error

Fixed 1.48 0.20 15.63 2.64 0.22 9.09
ELFP 1.42 0.14 10.94 2.53 0.11 4.54
NLP 1.46 0.18 14.10 2.63 0.21 8.68

Bagged Tree 0.70 0.58 45.31 1.33 1.09 45.04
ANN * 1.25 0.03 2.34 2.39 0.03 1.23

FEM (reference) 1.28 - - 2.42 - -

* Best technique.

In summary, the proposed method has various advantages over the conventional
techniques. For example, the proposed method considers multiple EDPs, which are essen-
tial for seismic assessment at multi hazard levels. The D, A and V values provide insight
for retrofitting. A higher D value means the structure should be stiffened. If V is high,
the material strength should be increased, and huge A values warn about the safety of
non-structural elements. Furthermore, this method is also applicable to complex structures
like mass-irregularity buildings. An interesting finding is that the ML-based methods
showed less conservative but more accurate results compared with ASCE methods with
NLTHA as a reference. One reason behind this is that the ML framework is trained on
the NLTHA data. The other reason is the practical limitations in the ASCE method, for
example, the conservative design approach for safety, simplified models, and assumptions
for SSI consideration.
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6. Conclusions

This study presented a machine-learning-based framework to predict the seismic re-
sponse of structures considering the effect of soil-structure interaction. The machine learning
inputs were prepared taking into account the soil, seismic, and structure properties. The
outputs consisted of multiple engineering demand parameters such as the base shear, acceler-
ation, and maximum inter-story drift. These are essential for probability-based seismic design,
which considers serviceability, strength, and safety of the structure. The database was trained
with a three- and a five-story structure and tested on a four-story and a three-story mass
irregularity structure. The soil domain was modeled as a continuum for better soil-structure
interaction effects. The results point out the artificial-neural-network-based model is the
most accurate, fast, reliable, and easy to implement method to obtain the seismic response of
structures. The main outcomes of the study are summarized as follows:

• The machine learning framework achieved more than 95% accuracy with two layers
having ten neurons each, TANSIG function and TrainLM algorithm.

• The soil-structure-interaction-based artificial neural network model results were in good
agreement with those of the nonlinear time history analysis compared with fixed-base,
support vector machine and ASCE 7-16 linear soil-structure interaction methods.

• The errors in artificial neural network predictions were less than 2% for the maximum
considered earthquake and below 8% for the design-based earthquake with nonlinear
time history analysis as a reference.

• One of the interesting finding is that the artificial neural network framework pro-
vided higher accuracy in predicting base shear and drift compared with conventional
ASCE methods.

• The proposed framework showed high generalization potential for the range of low-
to-mid-rise frame structures. It also successfully predicted the behavior of mass
irregularity structures.

For future research, an extensive database comprising complex structures with more
stories and especially high-rise buildings along with sophisticated soil models is to be made
and the machine learning framework be trained for even better and reliable results. In
addition, for ASCE 7-16 comparison, other nonlinear procedures will be considered that
are not included in this study. Different frame types and other structural variations will
also be added to extend the current study.
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