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Abstract: In this contribution we report the synthesis and full characterization, via a combination of
different spectroscopies (e.g., 1H NMR, UV-vis, fluorescence, MALDI), of a new family of fluores-
cent zinc complexes with extended π-conjugated systems, with the final aim of setting up higher
performance H2S sensing devices. Immobilization of the systems into a polymeric matrix for use in a
solid-state portable device was also explored. The results provided proof-of-principle that the title
complexes could be successfully implemented in a fast, simple and cost-effective H2S sensing device.
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1. Introduction

The discovery that in addition to its traditional toxic role, hydrogen sulfide (H2S) [1]
is an endogenously produced molecule which is involved in a variety of key biological
processes within the human body [2,3], induced several research groups to try to address
hydrogen sulfide’s (bio) reactivity in more detail. The complex biological chemistry of H2S
involves numerous cellular targets in both physiological and pathological conditions and
the transition metals constitute logical targets of reactivity given their affinity for the Lewis-
basic sulfur atom of hydrogen sulfide. The role of H2S as a gaseous signaling molecule,
together with nitric oxide (NO) and carbon monoxide (CO), is by now commonly acknowl-
edged [4–6] and akin to NO and CO, H2S and its conjugate base, the hydrosulfide ion
(HS−), are willing to coordinate to transition metals, however, the coordination chemistry of
H2S/HS− has been much less studied. The relative scarcity of studies concerning the metal
complexes of H2S/HS− is mainly due to the difficulties associated with the reactivity of
the molecule, including its redox reactivity, and the different chemistry associated with the
specific protonation state. Notwithstanding this, the study of the bioinorganic chemistry of
hydrogen sulfide has been ongoing for some time [7–15] and still represents an active area
of study [16]. Studies demonstrating the signaling pathways involving the metalloproteins
together with the evidence implicating H2S/HS− in an increasing number of biological
processes inspired most of the recent studies on the metal-based chemistry of H2S. Both
natural and synthetic systems have been proposed as new examples of metal complexes
capable of coordinating H2S/HS− [17–32]. Considering the very flexible and attractive
optical properties of salen-based zinc complexes [33–38], and motivated by our interest in
the coordination of H2S to the transition metals, we focused on salen-based zinc systems
and studied their reactivity with H2S/HS− [39–43]. Our studies provide evidence that
the zinc-salen systems constitute a suitable platform of systems that are able to stabilize
hydrosulfide coordination at the zinc center and can act as very efficient HS− sensing
constructs via a ‘coordinative-based’ mechanism [44].

In the present study, we explored whether enhancing the size of the π-conjugated
system of the bridge between the zinc-chelating nitrogens and/or of the phenolate moieties
would affect the zinc hydrosulfide stabilization and additionally if the different ligand
structures would improve the fluorescence and colorimetric properties of the related
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complexes as HS− sensors. We also wanted to investigate whether increasing the rigidity of
the bridge between the two nitrogen donor atoms, by introducing a more conjugated spacer
(e.g., passing from a diaminomalonitrile (DAMN) [41] to a phthalonitrile bridge), would
tune the fluorescence responses in the presence of HS− and the overall photophysical
properties of the resulting complexes. To address this aim, we synthesized a new family of
salen-based zinc complexes, as shown in Scheme 1.
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In our long-term research concerning the implementation of higher performance sen-
sors for H2S determination, we explored the possibility of immobilizing the title complexes
into silica matrices aimed at setting-up more stable and portable sensors.

2. Experimental Section
2.1. Materials

Chemicals used for the synthetic work were obtained from Sigma-Aldrich or Strem
Chemicals and were of reagent grade. They were used without further purification. NaSH
(Alfa Aesar) in aqueous solution was used as HS− source to the end concentration specified
in the figure captions. Syntheses of complexes 1–4 were achieved by following literature
procedures [37,38].

2.2. General

HR MALDI and ESI mass spectra were registered by using a Bruker solariX XR Fourier
transform ion cyclotron resonance (FT-ICR) mass spectrometer (Bruker Daltonik GmbH,
Bremen, Germany) equipped with a 7 T refrigerated actively-shielded superconducting
magnet (Bruker Biospin, Wissembourg, France). The samples were ionized in positive
ion mode using either the MALDI ion or the ESI ion source. The mass range was set to
m/z 150–2000. The laser power was 15% and 15 laser shots were used for each scan. Mass
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spectra were calibrated externally using a mix of peptide clusters in MALDI ionization
positive (or negative) ion mode. A linear calibration was applied.

NMR spectra were registered on a Bruker AVANCE 400 NMR instrument (1H NMR,
400.13 MHz; 13C NMR, 100.62 MHz) or on a 600 MHz spectrometer [600 (1H NMR) and
150 MHz (13C NMR)] using 5 mm o.d. NMR tubes. The chemical shifts were reported in δ

(ppm) referenced to SiMe4. Typically, 5 mg of the complex in 0.5 mL of the solvent were
used for each experiment.

Synthesis of complexes 1 and 2. A mixture of the appropriate aldehyde (2 mmol) and
4,5-diaminophthtalonitrile (0.158 g, 1 mmol) in 50 mL of absolute ethanol was left under
stirring for 1 h at room temperature. Then 1 eq of Zn(CH3COO)2*2H2O (0.219 g, 1 mmol)
in 150 mL of absolute ethanol was added and the reaction vessel was left under stirring
and at reflux overnight.

Synthesis of complexes 3 and 4. A mixture of 2 eq of 2-hydroxy-1-naphthaldehyde
(0.344 g, 2 mmol) and 1 eq of Zn(CH3COO)2*2H2O (0.219 g, 1 mmol) in N,N-dimethylformamide
(DMF) was left under stirring for 30 min at room temperature. Then diamine (1 mmol) was
added and the mixture was left under stirring overnight at room temperature.

Characterization of complex 1. A golden-sheet-like solid was recovered by filtration
on common filter paper and dried under vacuum (0.345 g, yield 75 %). 1H NMR [400 MHz,
DMSO-d6]: δ = 10.11 (s, 2H, OH), 8.93 (s, 2H, H phthalonitrile), 8.48 (s, 2H, CH=N), 7.20 (d,
J = 8.7 Hz, 4H, H aromatic), 6.11 (d, 2H, J = 8.6 Hz, H aromatic), 6.04 (s, 2H, H aromatic).
MS (MALDI CH3CN with 1% DMSO): m/z (%) 461.02 (100) [complex 1 H]+.

Characterization of complex 2. A dark-orange precipitate was recovered by filtration
washed with cold methanol and dried under vacuum (0.285 g, yield 50%). 1H NMR
[300 MHz, DMSO-d6]: δ = 8.78 (s, 2H, H phthalonitrile), 8.36 (s, 2H, CH=N), 7.14 (d, 2H,
J = 9.2 Hz, H aromatic), 6.19 (d, 2H, J = 9.2 Hz, H aromatic), 5.81 (s, 2H, H aromatic), 3.38
(m, 8H, N(CH2CH3)2; 1.15 (m, 12H, N(CH2CH3)2). MS (MALDI CH3OH): m/z (%) 471.17
(100) [complex 2 H]+.

Characterization of complex 3. An orange-brown solid was recovered by filtration on
common filter paper, this was then washed with cold methanol and dried under vacuum
(0.396g, yield 75 %). 1H NMR [300 MHz, DMSO-d6]: δ = 9.83 (s, 2H, CH=N), 8.95 (s, 2H,
H phthalonitrile), 8.59 (d, 2H, J = 8.2 Hz, H naphthaldehyde), 7.87 (d, J = 8.7 Hz, 2H, H
naphthaldehyde), 7.72 (d, 2H, J = 7.6 Hz, H naphthaldehyde), 7.52 (t, 2H, J = 8.1 Hz, H
naphthaldehyde), 7.29 (t, 2H, J = 7.6 Hz, H naphthaldehyde), 6.99 (d, 2H, J = 9.3 Hz, H
naphthaldehyde). MS (MALDI THF): m/z (%) 567.01 [complex 3 K]+; 551.04 [complex 3
Na]+; 529.06 [complex 3 H]+.

Characterization of complex 4. A purple solid was recovered by filtration on common
filter paper, this was then washed with cold methanol and dried under vacuum (0.359 g,
yield 75 %). 1H NMR [300 MHz, DMSO-d6]: δ = 9.30 (s, 2H, CH=N), 8.09 (d, 2H, J = 8.4
Hz, H naphthaldehyde), 7.93 (d, 2H, J = 9.4 Hz H naphthaldehyde),7.75 (d, 2H, J = 7.8 Hz,
H naphthaldehyde), 7.56 (t, 2H, J = 7.6 Hz, H naphthaldehyde), 7.32 (t, 2H, J = 7.3 Hz, H
naphthaldehyde), 7.00 (d, 2H, J = 9.4 Hz, H naphthaldehyde). MS (MALDI THF): m/z (%)
478.04 (100) [complex 4]+; 501.03 [complex 4 Na]+.

Complexes encapsulation in tetramethoxysilicate (TMOS) sol gel. The preparation
of silica gels and the encapsulation of complexes were undertaken with pure TMOS [45].
TMOS (15.22 g) was mixed with milliQ water (3.38 g) in a 1:2 molar ratio followed by
the addition of 20 µL of 10 mM HCl. The reaction mixture was sonicated for 20 min.
Then roughly 1 mL of complex solution in DMSO (end conc. of complex: 5–10 µM) was
added to the mixture. Before gelation 150 µL of the sol solution was quickly poured onto
a home-made device (8 × 30 mm2 quartz slide Heraeus 3 quality with a 1 mm thickness)
yielding a roughly 0.6 mm thick sol–gel layer on top of the quartz slide. Activation of
quartz slides with “Piranha solution” (30% H2O2 and concentrated H2SO4 in a 1:3 volume
ratio) was performed before pouring the sol solution on top. [Caution: “Piranha solution”
is highly corrosive and should be handled with extreme care]. After drying, the sol-gels
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were analyzed under an ultraviolet lamp (Spectroline ENF-240C/FE) working at 365 nm
wavelength irradiation.

Absorbance and fluorescence measurements. A Cary-50 Spectrophotometer with a 1
cm quartz cuvette (Hellma Benelux bv, Rijswijk, The Netherlands) and a slit-width equiv-
alent to a bandwidth of 5 nm was used for the absorption spectra. Fluorescence spectra
were measured on a Cary Eclipse Spectrophotometer in a 10 × 10mm2 airtight quartz
fluorescence cuvette (Hellma Benelux bv, Rijswijk, The Netherlands) with an emission
band-pass of 10 nm and an excitation band-pass of 5 nm. Both absorption and fluores-
cence measurements were performed in DMSO solutions at 25 ◦C. Fluorescence emission
spectra were registered by exciting the samples at a specific wavelength (as stated in the
figure captions).

Fluorescence quantum yield (ΦF) values were determined in optically diluted solutions
of the samples by using as standards the commercial dye Cy3 NHS (ΦF = 0.15 in MilliQ
water) for complex 1 and Cy5 NHS (ΦF = 0.28 in MilliQ water) in the case of complex 4,
according to the equation [46]:

ΦF
s = ΦF

r (Is/Ir)(Ar/As)(ηs/ηr)2 (1)

where indexes s and r denote the sample and reference, respectively. I stands for the
integrated emission intensity, A is the absorbance at the excitation wavelength, and η is the
refractive index of the solvent. The optical density of complexes 1 and 4 and standards was
kept below 0.1. The uncertainty in the determination of ΦF is ±15%.

NMR characterization of the complexes 1–4 upon addition of HS−. NMR samples
were prepared by charging the tubes with the free complexes solutions in DMSO-d6 then
NaSH solid or in solution (to the end concentrations specified in the figure captions) was
added and the spectra registered.

Computational details. All electronic computations were carried out at the density
functional level of theory using the range separated hybrid functional CAM-B3LYP with
TZVP basis set as implemented in the Gaussian package (G16) [47]. This combination of
functional and basis set was chosen because it results in accurate predictions, as discussed in
previous works [48]. Time dependent DFT (TD-DFT) was employed for treating all excited
states. Spin-orbit coupling elements were computed by PySOC code [49,50]. Effects due to
solvent polarization [51] were included by the polarizable continuum model (PCM) [52].

Cell culture and cell-conditioned media preparation. HepG2 cells (Human hepa-
tocellular liver carcinoma cell line) were grown in Minimum Essential Medium (MEM)
supplemented with 10% fetal bovine serum (FBS), 2 mM Glutamine, 1 mM non-essential
amino acids, and 1% antibiotics (penicillin/streptomycin, 100 U/mL). Cells were main-
tained in a humidified incubator at 37 ◦C in 5% CO2/95% air. To prepare cell-conditioned
HBSS media, approximately 5 × 105 cells were seeded in each well of a 6-well plate and
cultured with 1 mL of HBSS for 24 h. To induce endogenous production of HS−, cells
were treated with 800 µM of H2O2 for 1 h. After the incubation, conditioned media were
collected and used for testing sol-gel devices as described above.

3. Results and Discussion

Complexes 1–4 were easily prepared in a one-step procedure by reacting the appropri-
ate salicylaldehyde and the corresponding diamine in a 2:1 ratio with one equivalent of zinc
acetate dihydrate, by following the literature procedures [37,38,53]. The 1H NMR and high-
resolution MALDI Fourier transform ion cyclotron resonance mass (HR MALDI-FT-ICR)
experiments assessed the purity of the complexes under investigation (see Figures S1–S8).
The protonic spectra exhibited sharp and narrow signals with a highly symmetric pattern,
confirming the proposed structures (Figures S1–S4). In the MALDI spectra (Figures S5–S8)
the major peaks at 461.021 m/z units for complex 1, at 571.176 m/z units for complex 2, at
529.063 m/z units for complex 3 and at 478.040 m/z units for complex 4 corresponded to
the monomeric species: no peaks ascribable to the dimeric species were found.
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After characterization of complexes 1–4 we commenced screening of the optical prop-
erties, to assess their potential use in the colorimetric and fluorometric recognition of HS−.
Figure 1 displays the UV-vis spectra of the title complexes before and after the treatment
with an excess of HS−.
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Figure 1. Electronic absorption spectra of complexes 1–4 with and without the addition of 50 µM of
NaSH. Spectra were recorded in DMSO at room temperature. [complexes] = 10 µM.

As clearly visible from Figure 1, all the complexes under investigation absorbed in
the blue-green section of the electromagnetic spectrum and exhibited a change of the
initial UV-visible spectrum upon interaction with HS− which suggests the formation of a
new species.

In the case of complex 4 a significant naked-eye color variation was also observed (see
Figure S9).

Subsequently, we tested the fluorescence responses in the presence of HS−. The
outcome of these experiments is shown in Figure 2. The most emissive complex of the
series was complex 4 which was also the complex exhibiting a more red-shifted emission
with respect to the others under investigation.

The addition of HS− resulted in a significant fluorescence switching for all of the
complexes under investigation. In particular, complex 1 experienced a turn-on of the initial
fluorescence intensity whereas complexes 2–4 harnessed a fluorescent quenching.

To further test the sensing abilities of the complexes under investigation for H2S visu-
alization/detection, we checked whether the binding of HS− was reversible, as observed
with probes which we and others had proposed in the past [22,25,28]: reversibility is a key
property for application in real measurements.
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Figure 2. Emission spectra of complexes 1−4 before and after the addition of 5 equiv of NaSH.
[Complexes 1−4] = 1 × 10−5 M; [NaSH] = 5 × 10−5 M. All spectra were measured in DMSO with
λexc = 481 nm for complex 1; λexc = 513 nm for complex 2; λexc = 516 nm for complex 3; λexc = 598 nm
for complex 4.

More precisely, to assess the reversibility of HS− binding, we first prepared the com-
plex/HS species in situ by adding 5 equivalents of NaSH to the complex and subsequently
added an excess of acetic acid. The best response (in terms of number of cycles possible)
was observed for complex 1: the initial fluorescence intensity, which enhanced upon the ad-
dition of HS− and was quenched when acetic acid was added, thus suggesting reversibility
of the sensing construct. Figure 3 shows a typical time trace of a solution containing 10 µM
of complex 1 when excited at 481 nm.
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From the first screening experiments, complex 1 appeared as the most promising in
the determination of HS−, thus for the next experiments we focused on this complex.

To assess whether there was a dependence between the fluorescence intensity of
complex 1 and the HS− concentration we performed an experiment where we added
increasing amounts of HS− (in the range 10–50 µM) to the complex in DMSO. Figure 4
displays the outcome of this experiment: as visible, a linear correlation was found when
plotting the maximum of the fluorescence emission against the HS− concentration, which
functioned as calibration of the system.
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[Complex 1] = 1 × 10−5 M; end concentration of NaSH varied in the range (1−5) × 10−5 M. (Right)
The fluorescence intensity values of complex 1 at 565 nm have been plotted as a function of the
HS− concentration.

With the aim of implementing a more stable and above all easily portable device, we
immobilized complex 1 on a sol-gel based matrix and checked its fluorescence response
to HS− upon immobilization. The fluorescence enhancement observed in solution in the
presence of HS− was also retained in the solid state (Figure S10).

Following on from these results, to assess the detection capability of complex 1 in more
physiological conditions and to explore the possibility of implementing sol-gel dipping
devices for H2S visualization, we used ddH2O (doubly distilled water) and HBSS buffer
where we dissolved HS− at different concentrations, namely 17.8, 178, and 1780 µM,
falling into a physiological range [2,54]. Moreover, we tested the sol-gel devices to reveal
endogenous HS− produced by the human hepatic HepG2 cell line after 24 h incubation
with HBSS media.

To optimize the experimental conditions and also for comparative purposes we ran
several trial experiments with the complex in Figure 5, which we had reported in the
past [41].

As observed by experiments reported in Figure 6, preliminary tests indicated that both
the complexes loaded in the sol-gel matrices were able to detect different HS− concentra-
tions in ddH2O. In fact, an evident color change was visible upon UV irradiation for the
model complex (Figure 6a) and complex 1 (Figure 6b).

Of greater interest, the sol-gel matrices detected lower and physiological HS− concen-
trations in the HBSS buffer as well, with a chemical composition closer to the biological
fluids (Figure 7a,b).
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complex 1 (b) loaded in sol-gel matrices after adding increasing amounts of HS− dissolved in H2O
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In order to assess the capability of the sol-gel devices to reveal levels of endogenous
HS−, we used the HBSS media previously incubated with the HepG2 cells for 24 h in
the absence and the presence of H2O2 (as a stimulus to increase HS− production by the
cells) [55]. The different chromatic variations of matrices loaded with both complexes were
observed (Figure 8a,b). In particular, the matrices in contact with the media conditioned
by the cells assumed a color more similar to the samples treated with concentrations of
HS− comprised between 178 and 1780 µM (Figure 7). Conversely, the matrices treated
with the non-conditioned media showed a less significant color change (Figure 8a,b).
Furthermore, one hour treatment of the cells with 800 µM H2O2 induced a well-evidenced
variation of color for both the complexes (Figure 8a,b) which is most likely attributable
to an increment in HS− production. As a control, samples treated with non-conditioned
medium +800 µM H2O2 showed a slight color change suggesting no interference by H2O2
itself. Taken altogether these results demonstrate the great potential of complex 1 and the
model complex-loaded sol-gel devices to detect HS− in a biological fluid.
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complex 1 (b) loaded in sol-gel matrices after adding cell-conditioned HBSS media. Matrices treated
with non-conditioned HBSS (HBSS); non-conditioned medium +800 µM H2O2 (HBSS+ H2O2); cell-
conditioned HBSS (Cond. HBSS); and cell-conditioned HBSS after 1 h treatment of the HepG2 cells
with 800 µM H2O2 (Cond. HBSS+ H2O2).

Investigations into the recognition mechanism of HS− by complexes 1–4. The pro-
ton NMR experiments pointed to the binding of HS− to the zinc centres for all of the
complexes under investigation; this was evidenced by the appearance of the high-field SH
resonance (visible in all the registered spectra) together with the shift of the signals pattern
(see Figures S11–S14) [22,25,39,41–43,56]. Similar results, corroborating the binding of HS−

to the zinc ions in complexes 1–4, could be drawn by high-resolution MALDI experiments
(Figures S15–S18). In addition, MS spectrometry clearly indicated the formation of 1:1 HS−
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adducts for complexes 1–4. The reversibility of HS− binding in the presence of acetic acid
with the concomitant modulation of the fluorescence response (see Figure 3) represented a
further confirmation that ‘a coordinative mechanism’ of recognition was operative.

Computational study. As we were willing to rationalize the photophysical properties
of this new family of complexes, we focused on complexes 1 and 4 and performed a
computational analysis at the time dependent density functional theory (TD-DFT) level.
The minimum energy geometries of complex 1, complex 4 and of their HS– adducts (and
also considering the possibility of multiple adducts) were computed both for the ground
state and for the first excited singlet states. The computed ground state optimum geometries
of complex 1 and its HS– complexes are shown in Figure 9 (a similar geometry has been
also found for complex 4 and its HS– complex, Figure S19).
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Complexes 1 and 4 deviate from the square planar nuclear configuration observed for
salen-analogues [41,42], with the metal atom in the plane of the ligand (see Figure 9). The
formation of the single adduct is predicted to be exergonic (∆E = −0.86 eV for complex 1,
∆E = −0.92 eV for complex 4), whereas the double adduct is not predicted to be a stable
species, as confirmed by the DFT computation where the second HS– was moved away
from the metal centre during the geometry optimization.

The emission from S1 was predicted to be electric dipole allowed for both complex 1 and
complex 4 and for their HS− adducts. The computed vertical and adiabatic excitation energies
are reported in Table 1, together with the oscillator strengths for the S1← S0 transitions.

Table 1. Computed vertical and adiabatic excitation energies (eV) and oscillator strength for the
S1 ← S0 transitions.

Vertical Adiabatic Oscillator Strength

1 3.22 2.64 0.57

1 + HS− 3.13 2.67 0.42

4 2.61 2.21 0.96

4 + HS− 2.42 2.11 0.80

For complex 1, three electric dipole transitions were predicted at approximately 307,
349 and 384 nm; in fair agreement with the experimental absorption spectra (see Figure 1).
However, a meaningful comparison between the predicted and the observed absorption
spectra would require a band-shape simulation, with the computations of Franck-Condon
integrals [57] which was far beyond the qualitative purposes of the present computa-
tional analysis.

Since emission from S1 are electric dipole allowed transitionsfor all the species under
study, the different behaviour observed for complex 1 and complex 4 and for their HS–

complexes had to be related with the possible existence of non-radiative decay paths. We
have thus investigated the energy location of the lowest triplet states, which could be



Sensors 2023, 23, 2023 11 of 14

responsible for the different fluorescence quantum yields of complex 1 and complex 4 and
their HS– adducts (Table S1).

The energies of the four lowest triplet states are reported in Figure 10; T5 lies always
above in energy than S1 and therefore it should not be involved in non-radiative decay
paths. T1 is significantly lower in energy than S1 for all the species and therefore, based on
the energy gap rule, the direct transition S1→ T1 and should not be an efficient decay path.
The triplet states closer in energy to S1 are T3 and T4 for complex 1 and T2 for complex 4.
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As concerns complex 1, the S1→ T4 transition was slightly exergonic (10 meV), but it
became endergonic (160meV) when the HS− was coordinated (Figure 10). This suggests
that quenching of fluorescence via S1→ T4 is possible in the isolated complex, whereas
fluorescence is recovered in the presence of HS− in solution, which is in line with the
experimental observations (see Figure 2).

On the contrary for complex 4, the S1→ T2 transition was exoergonic both before and
after coordination, however being more favoured after HS– coordination, as demonstrated
by the lower energy difference between the electronic states (Figure 10) and by the signifi-
cantly higher spin-orbit coupling for S1→ T2 (see Table 2). Thus, a strong quenching of
fluorescence is to be expected in the presence of HS–, as was indeed observed (see Figure 2).

Table 2. Spin-Orbit coupling elements (cm−1) for complex 1, complex 4 and their adducts.

SOC T2-S1 SOC T3-S1 SOC T4-S1

1 1.23 10.0 14.1

1 + HS− 45.0 29.2 10.5

4 16.59845 5.06933 2.80429

4 + HS− 95.8 240 71.5

4. Conclusions

A new family of salen-based zinc complexes with π-extended structures were prepared,
which can be used for direct fluorescence-based and colorimetric detection of HS−. The
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fluorescence modulation observed during the reaction of these complexes with HS− was
the result of the binding of the target molecule to the zinc centers as demonstrated by
the NMR and the MALDI experiments. This study further demonstrates the value of the
coordinative-based approach as a valid strategy for the development of HS− sensors. A
computational analysis at the time dependent density functional theory (TD-DFT) level
indicated that the different fluorescence responses observed for complex 1 and complex
4 in the presence of HS– had to be related with the possible existence of non-radiative
decay paths.

The successful immobilization of the title complexes in the sol-gel matrices paves
the way for the development of more stable and easy-portable dipping devices for H2S
visualization. In addition, our experiments demonstrated the great potential of complex 1
and the model complex-loaded sol-gel devices to detect HS− in a biological fluid.

To our knowledge this is the first study in which the sol gel methodology was used in
combination with the metal-based complexes to implement smart devices to be used in the
fast growing applications of the H2S sensing field.

Supplementary Materials: The following are available online at: https://www.mdpi.com/article/
10.3390/s23042023/s1, Figure S1: 1H NMR spectrum of complex 1 in DMSO-d6, Figure S2: 1H
NMR spectrum of complex 2 in DMSO-d6, Figure S3: 1H NMR spectrum of complex 3 in DMSO-d6,
Figure S4: 1H NMR spectrum of complex 4 in DMSO-d6, Figure S5: Enlargement of the MALDI
of complex 1, Figure S6: Enlargement of the MALDI of complex 2, Figure S7: Enlargement of the
MALDI of complex 3, Figure S8: Enlargement of the MALDI of complex 4, Figure S9: Real color
images of DMSO solutions of complexes 4, Figure S10: Fluorescence intensity time trace of complex 4
in SOL-GEL matrix, Figure S11: 1H NMR spectra of complex 1 in the presence of NaHS, Figure S12:
1H NMR spectrum of complex 2 in the presence of NaHS, Figure S13: 1H NMR spectrum of complex
3 in the presence of NaHS, Figure S14: 1H NMR spectrum of complex 4 in the presence of NaHS,
Figure S15: MALDI spectrum of complex 1 in the presence of NaHS, Figure S16: MALDI spectrum of
complex 2 in the presence of NaHS, Figure S17: MALDI spectrum of complex 3 in the presence of
NaHS, Figure S18: MALDI spectrum of complex 4 in the presence of NaHS, Figure S19: Optimized
geometries for complex 1 and its adduct with HS−, Table S1: Photophysical features of complexes 1
and 4.
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