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Abstract: Electric Vehicle (EV) charging demand and charging station availability forecasting is
one of the challenges in the intelligent transportation system. With accurate EV station availability
prediction, suitable charging behaviors can be scheduled in advance to relieve range anxiety. Many
existing deep learning methods have been proposed to address this issue; however, due to the
complex road network structure and complex external factors, such as points of interest (POIs) and
weather effects, many commonly used algorithms can only extract the historical usage information
and do not consider the comprehensive influence of external factors. To enhance the prediction
accuracy and interpretability, the Attribute-Augmented Spatiotemporal Graph Informer (AST-GIN)
structure is proposed in this study by combining the Graph Convolutional Network (GCN) layer
and the Informer layer to extract both the external and internal spatiotemporal dependence of
relevant transportation data. The external factors are modeled as dynamic attributes by the attribute-
augmented encoder for training. The AST-GIN model was tested on the data collected in Dundee
City, and the experimental results showed the effectiveness of our model considering external factors’
influence on various horizon settings compared with other baselines.

Keywords: deep learning; attribute-augmented; prediction; weather; spatiotemporal

1. Introduction

Traffic information forecasting plays an important role in smart city management.
Generally speaking, traffic information contains the link speed, traffic flow, vehicle density,
traveling time, facility usage condition, and so on [1]. With the rapid development of
EV technologies, the proportion of EVs is growing annually [2], and Figure 1 shows the
worldwide EV sales statistics. However, limited endurance and charging stations and a
much longer charging time compared with the short refueling time of petrol cars cause
serious mileage anxiety for EV drivers [3]. As one of the most-significant infrastructures of
the EV system, EV charging stations have attracted more attention recently. Some studies
have shown that EV charging behavior has obvious periodicity [4], thereby an accurate EV
charging station usage condition forecasting system can effectively alleviate range anxiety
and improve road efficiency [5].

Benefiting from the huge number of smart sensors, real-time station-level monitoring
has been realized [6]. Most canonical facility usage condition prediction methods are
dependent on past traffic features to make predictions. However, EV charging station
availability is much more complex than other time series forecasting issues because the
future availability not only depends on the historical values, but is also influenced by
the topological relationship and complex external influences [7]. For example, within the
campus or Central Business District (CBD) road section, the usage of the charging station
will be highly affected by the commute time. An obvious rise of availability can be observed
around the off-duty time, which is the reverse inside the residential area, even though the
two road structures are similar [8]. Another example is that bad weather, such as heavy
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rain, can increaseand delay people’s commute and further affect charging station usage [9].
It is quite a challenge to take into consideration the randomness caused by these external
factors [10].

(a) (b)
Figure 1. EV sales statistics and EV charging station example. Global EV sales increased 108% from a
4.2% market share in 2020 to a 8.3% market share in 2021 [2]. (a) Global EV sales; (b) electric vehicle
charging hubs open in Dundee.

With the development of deep learning technologies, several forecasting methods have
been proposed to solve this issue [11], such as the Auto-Regressive and Integrated Moving
Average (ARIMA) method [12], the Convolutional Neural Network (CNN) method, the
Long Short-Term Memory (LSTM) method, the GCN method [13], and the Transformer-
based method [14]. Each algorithm has its own strengths and limitations. However, most
of the models do not have the capability to obtain the augmented attributes during the data
processing. Correspondingly, the perception of external factors is poor. In the next section,
a detailed introduction to the related work is given.

Compared to the recent related works, we built a novel neural network extracting
both spatiotemporal information and external influences to predict the charging station
usage condition. The contributions can be summarized as follows:

• As far as we know, our study is one of the few research works on the deep learning
approaches for the EV charging station availability forecasting problem.

• The AST-GIN’s structure is firstly proposed to deal with the EV charging station avail-
ability forecasting problem by combining the Attribute Augmentation Unit (A2Unit),
the GCN, and the Informer network.

• The proposed AST-GIN model was verified and tested on real-world data. The
comparison results showed that the AST-GIN has better prediction capability over
different horizons and metrics.

The rest of the work is arranged as follows: The second section describes the related
research on deep learning approaches for traffic facility usage forecasting and external
factors’ influence during the time series prediction. The third section illustrates the problem
statement and proposed model structure. The fourth section shows the detailed experi-
ments with an analysis. The final section summarizes the contributions and possible future
plans.

2. Related Research
2.1. EV Charging Issue

Recent research has shown that charging is a challenge for the operation of a fleet
of EVs, since frequent charging sessions are needed [15]. Alleviating charging station
congestion has become significant to improve the efficiency of charging infrastructure
management [16,17]. Two main research directions for the EV charging problem have been
studied recently. One direction focuses on modeling individual EV charging loads and
charging stations. The objective is to predict the parameters of the charging load profiles
for a smart charging management system [18]. Existing studies mainly apply statistical
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models [19], such as Gaussian mixture models [18], and deep learning approaches [20],
such as a hybrid LSTM neural network [21,22], to forecast charging loads at EV charging
stations. In [23], the authors reviewed the most-popular techniques for EV load modeling,
including deterministic and probabilistic methods. From short-term to long-term perspec-
tive, researchers have proposed several forecasting methods. Utilizing the advantages of
the Internet of Things (IoT) technology, the real-time interactional view of charging stations
and the server-based forecasting application have been realized [24]. In [25], the authors
proposed a daily joint adversarial generation interval-forecasting method for EV charging
load distribution by considering the influence of the spatial correlation and characterizing
the randomness. Some researchers even presented a mid- and long-term systematic method
to predict the additional loads of EV charging by considering the EV charging profiles
and future EV ownership [26]. The other direction analyzes modeling and predicting the
charging occupancy profile at the chargers, which is quite similar to the parking avail-
ability prediction problem [27,28]. The purpose is to design the scheduling algorithm to
allocate EVs among eligible chargers to realize the global or local optimal charging waiting
plan [29,30].

2.2. Canonical Forecasting Model

For the traffic forecasting issue, the approaches have undergone several stages, and
the methods can generally be divided into two types: canonical models and deep-learning-
based models [31]. Canonical forecasting models usually build mathematical models and
treat traffic behavior as the conditional process. There are many famous models, such as
the Historical Average (HA) model, the K-nearest neighbor model, the ARIMA model, and
Support Vector Regression (SVR) model [32]. Most of them consider the trend of the data
and make the strong assumption that time series data are stable, which makes it difficult
for them to respond to the rapid change of the inputs [33].

2.3. Deep Learning Forecasting Model

Recently, deep-learning-based forecasting methods have been widely applied to solve
time series prediction problems [34]. Benefiting from their capability to extract nonlinear
relationships across an input sequence, the Recurrent Neural Network (RNN) model,
the Stacked Autoencoding Neural Network (SAE), the Gated Recurrent Unit (GRU) [35],
LSTM [36], Transformer [37], and their variants have been verified to be much more efficient
at extracting temporal information than canonical forecasting models. To adaptively predict
comprehensive traffic conditions, some works have been performed to improve the results,
such as integrating a GCN to extract the spatial dependencies [13,38].

2.4. External Factors in Forecasting

As mentioned above, external factors have an influence on the future usage conditions
of EV stations. To integrate the information of a variety of external inputs, such as sur-
rounding POIs [39] and weather conditions [40], previous studies have demonstrated great
efforts, leveraging multi-source data to specifically design the model structure. In [41], the
authors proposed an LSTM-based structure integrating an encoder to aggregate external in-
formation and treat multi-source data as the sequential inputs. In [35], the authors applied
the feature fusion technology to process the input weather data for traffic prediction.

In conclusion, existing methods can be further improved by considering external
information’s influence. Therefore, motivated by the related works and the challenges,
the AST-GIN network for EV charging station availability forecasting, which integrates
both spatiotemporal and external factors as the input to enhance the model’s perception
capability during predicting, is proposed. In the next section, the architecture and principles
of the proposed model are illustrated.
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3. Methodology
3.1. Definition of EV Charging Station Availability

In this section, we first give the mathematical definition of EV charging station avail-
ability. Availability represents the occupancy status of EV charging facilities, such as
charging connectors. If all connectors in a charging station are occupied for charging, the
availability is regarded as 0. On the other hand, if all connectors are in the unused status,
the availability is regarded as 1.

Based on the definition, the availability of the charging station can be calculated as:

xit = 1−
Mi,usedconnector

Mi,allconnector
(1)

where Mi,usedconnector is the number of charging connectors being used at station i at time t;
Mi,allconnector is the total number of charging connectors at station i at time t. Herein, the
ultimate target variable is x, where xit is the availability of the charging station i at time t.
Note that the value of xit ∈ [0, 1].

Before introducing the model for predicting the availability of the EV charging stations,
we subsequently describe the attributes that exert an impact on the our target variable x,
i.e., the charging station availability.

3.2. Incorporating the Attributes
3.2.1. Weather Condition Attribute

The purpose of this study was to predict future EV stations’ usage condition based
on historical states and associated information. Based on the prior knowledge introduced,
the demand of EVs has a strong periodicity, and external factors have a high correlation
with the usage of EVs. As shown in Figure 2, the weather is classified into 5 types: sunny,
cloudy, foggy, light rain, and heavy rain, which are labeled 1 to 5. To better present the
relationship, the weather data were normalized in the range of 0 to 1. Therefore, the Y-axis
for the availability data refers to the availability of the chargers in Figure 3. At the same
time, the Y-axis for the weather data refers to the different kinds of weather. The higher the
value, the worse the weather. The graph shows a general pattern by which the availability
becomes higher when the weather becomes better and vice versa. Meanwhile, the time
index in the figure refers to the recording time. In this work, the weather factor is organized
as a matrix W, where Wit ∈ [0, 1] is the weather condition of location i at time t.

3.2.2. Road Network and POI Attributes

In this paper, the road network was treated as a weighted undirected graph G = {V, E}.
EV stations work as nodes inside the graph, which are denoted by |V| = N, where N is the
number of stations and E represents the graph edge set representing stations’ connectivity.
The corresponding adjacency matrix A ∈ RN×N can be constructed based on node and
edge information. With the road map, based on the latitude and longitude of the charging
points, the road distance between EV stations can be estimated. The adjacency matrix
elements are calculated using the Gaussian kernel weighting function [42]:

Aab =

 exp(− dist(va ,vb)
2

σ2 ), dist(va, vb) ≤ κ

0, otherwise
(2)

where dist(va, vb) represents the distance between station va and station vb; σ is the standard
deviation of dist(va, vb); κ is the filter removing small distances.
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Figure 2. AST-GIN. architecture.

Figure 3. Weather and EV charging station availability.

Besides, we also integrated the POIs’ distribution information as an external factor,
which is denoted as

[poi1, poi2, . . . , poin] (3)

where poii is the POI category score for location i. Assume we have k POI categories, then
we have poii ∈ {1, 2, . . . , k}.

3.3. Problem Formulation

At time t, the EV charging station availability matrix, Xt ∈ RN×C, contains the
high-dimensional information of EV station availability, where C is the hyperparame-
ter, which manually defined. Thus, the known L steps’ historical usage data are defined
as X = [Xt−L, Xt−L+1, ..., Xt] and used as partial inputs to predict the next M steps’ states[
Ŷt+1, ..., Ŷt+M

]
.
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Further, the influence of external factors is regarded as the affiliated attributes matrix F.
These factors construct an attribute matrix [F1, F2, ..., Fl ], where l is the dimension of the at-
tribute information. At time t, the set of j-th affiliated information is Fj = [jt−L, jt−L+1, ..., jt].

In conclusion, the issue of EV charging station availability forecasting considering
external factors is refined to finding the relationship function f based on the historical
usage data X, attribute matrix F, and road graphic structure G, to achieve the future usage
values Ŷ: [

Ŷt+1, ..., Ŷt+M
]
= f (G, X, F) (4)

where Ŷt+m means the estimated value of Xt+m at the future time t + M, m = 1, 2, . . . , M,
and M is the prediction horizon.

3.4. AST-GIN Architecture

In this subsection, the principle of the AST-GIN model is introduced in detail. The
AST-GIN model contains three layers: A2Unit, which can integrate the external information,
the GCN layer, and the Informer layer. The historical time series data and external data are
firstly fed into the A2Unit for attribute augmentation. Then, the processed information is
fed into the GCN layer for spatial information extraction. Finally, the Informer layer will
take the outputs from the GCN layer to extract the temporal dependencies. The overview
of the architecture of the AST-GIN is illustrated in Figure 4.

Figure 4. GCN layer architecture.

3.4.1. A2Unit

As mentioned, both historical data and external factors affect the EV charging con-
ditions. Thus, different from traditional time series deep learning forecasting model,
additional structure aggregating external factors are needed [41]. To comprehensively take
external factors’ influence into consideration, dynamic attributes and static attributes are
selected, respectively, for the objective region. EV stations’ historical availability tensor X,
road structure G, and two types of attribute matrices are integrated into the A2Unit for
augmentation.

We use α ∈ RN×p to represent the static attribute matrix containing p categories’
attributes, and α is time-invariant. Similarly, β ∈ RN×(w∗t) represents w different dynamic
attributes with cumulative effects, which change over time. To aggregate the cumulative
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influence of dynamic attributes, the L length historical window is selected. Thus, the final
augmented matrix processed by A2Unit at time t is stated as:

Et =
[

Xt, α, βt−L, βt−L+1, ..., βt
]

(5)

where Et ∈ RN×(p+1+w∗(L+1)), and the same processing procedure is applied for every
time stamp inside traffic feature matrix X.

3.4.2. GCN Layer

The distance between the vehicle location and the target charging station obviously
influences the decision of the drivers [43]. To enhance the understanding of the EV charg-
ing behavior pattern, the spatial dependencies among charging stations were taken into
consideration. Some related works have proposed CNN-based neural networks to deal
with the spatial prediction issue [44,45]. However, the distribution of EV charging stations
connected by the non-Euclidean road network cannot be processed well by a CNN. Thus,
here, the GCN was selected to extract the spatial dependencies of the input data, which
still retains the convolutional functionality [46]. The framework of the GCN is shown in
Figure 5.

Figure 5. Temporal Informer layer structure.

In principle, graph convolution neural network perform the convolution over the
nodes of the graph to capture the spatial information, which is similar to image processing
by convolution neural networks.

The general convolution theorem in the spatial domain states that

f ∗ g = F−1{F{ f } · F{g}} (6)

where g is the kernel operated on function f .
When performing the convolution in the spectral domain, the graph convolution

formula can be expressed as

gθ ∗ x = UgθUTx = Ugθ′(Λ)UTx (7)

where gθ is the graph convolutional kernel, U is the eigenvector matrix, and Λ is the
diagonal matrix of eigenvalues.
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To simplify the computation, people usually perform the first-order Chebyshev ap-
proximation [46]. The graph convolution formula now is reorganized as

gθ ∗ x = θ(In + D−
1
2 AD−

1
2 )x = θ(D̃−

1
2 ÃD̃−

1
2 )x (8)

where D is the diagonal degree matrix, Dii = ∑j Aij; Ã = A + In; D̃ii = ∑j Ãij.
Furthermore, the GCN convolutional formula can be rewritten as:

Hl+1 = γ(D̃−
1
2 ÃD̃−

1
2 HlW l) (9)

where γ is the activation function; Hl+1 is the l-th layer output.

3.4.3. Informer Layer

It is significant to obtain the global temporal dependency while forecasting. With
the rapid development of Transformer-like neural networks, which employ an encoder–
decoder architecture, the time series prediction ability has been improved greatly based on
the attention mechanism compared to some canonical deep learning methods [47], such
as the GRU and LSTM. Thus, one of the latest variants of Transformer, Informer [48], was
applied here as the temporal extraction layer to understand the global sequence. The
structure of Informer is shown as Figure 6.

Figure 6. Locations of EV charging points. Charging points distribution in Dundee City is shown in
the figure.

3.4.4. Loss Function

During the model training, the objective was to eliminate the gap between the ground
truth and predicted value. Thus, the loss function can be written as

loss = ‖Yt − Ŷt‖+ λLreg (10)

Yt and Ŷt represent the recorded value and the predicted value, respectively. λLreg [49]
is the L2 regularization term to avoid overfitting during training.

4. Empirical Analysis

To evaluate the AST-GIN model’s performance, the necessary experiments were
performed on the EV charging station availability dataset. We chose five efficient time
series forecasting baseline models for comparison. During the experiment, the performance



Sensors 2023, 23, 1975 9 of 15

of the AST-GIN model with a static external factor only, the model with a dynamic external
factor only, and the model with both static and dynamic factors were evaluated separately.

4.1. Dataset and Preprocessing
4.1.1. EV Charging Station Data

Dundee EV charging dataset: This dataset is a record of the EV charging behaviors in
Dundee, Scotland, available at https://data.dundeecity.gov.uk/dataset/ev-charging-data
(accessed on 10 October 2022). There are 57 charging points in Dundee, which can be di-
vided into three types: slow chargers, fast chargers, and rapid chargers. In total, three valid
datasets recorded during three different time periods, 01/09/17 to 01/12/17, 02/12/17 to
02/03/18, and 05/03/18 to 05/06/18, are accessible. Meanwhile, the geographical locations
of all the charging points are also provided, and they are shown in Figure 7.

Figure 7. Accuracy statistics of all models.

In the present study, the dataset we used was recorded during 05/03/18 to 05/06/18.
There were 16773 charging sessions recorded in total, and each of the charging session
records contains the charging point ID, charging connector ID, starting and ending charging
time, total consumed electric power, geographical location, and type of charging point.
There were 40 slow chargers with 5894 charging sessions recorded, 8 fast chargers with
1416 charging sessions recorded, and 9 rapid chargers with 9463 charging sessions recorded.

Moreover, Dundee’s weather data are available, which is the weather record in Dundee
City. The weather is recorded every hour, and each record includes the general description
of the weather, temperature, wind, humidity, and barometric pressure.

4.1.2. Static External Factors

We classified the surroundings of the charging points into eight types: transportation
services, catering services, shopping services, education services, accommodation, medical
services, living services, and other. The category of the surroundings with the largest
proportion was labeled as the POI value of a charging point based on its geographical
location.

4.1.3. Dynamic External Factors

The weather for Dundee was divided into five types: sunny, cloudy, foggy, light rain,
and heavy rain, with different labels from 1 to 5. Since the time interval of the weather data
from the source dataset was 1 h, the weather in the covered period was regarded as the
same, which means that, if the weather at 17:50 is recorded as sunny, the weather at 18:20
would be labeled as sunny.

https://data.dundeecity.gov.uk/dataset/ev-charging-data
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4.2. Settings
4.2.1. Evaluation Metrics

In this study, five commonly used metrics were selected to evaluate the model’s
forecasting performance, including the Root-Mean-Squared Error (RMSE), the Mean Abso-
lute Error (MAE), the Accuracy, the Coefficient of Determination (R2), and the Explained
Variance Score (EVS). Each of the metrics is defined as follows:

RMSE =

√√√√ 1
MN

M

∑
j=1

N

∑
i=1

(yij − ŷij)2 (11)

MAE =
1

MN

M

∑
j=1

N

∑
i=1
|yij − ŷi,| (12)

R2 = 1−
∑M

j=1 ∑N
i=1 (yij − ŷij)

2

∑M
j=1 ∑N

i=1 (y
j
i − Ȳ)

2 (13)

Accuracy = 1− ‖Y− Ŷ‖2
‖Y‖2

(14)

EVS = 1− Var{Y− Ŷ}
Var{Y} (15)

where yij and ŷij represent the ground truth availability and the predicted one for the i− th
charging station at time j. M is the time instant number; N is the charging station number;
Y and Ŷ are the set of yij and ŷij, respectively; Ȳ is the average of Y.

4.2.2. Baseline Settings

As far as we know, there is no directly published model for this specific problem;
hence, typical models were selected for comparison. Comparing the proposed model with
the typical sequence models of the GRU, LSTM, Transformer, and Informer involved in our
model, we can testify to the importance of incorporating the spatial dependencies captured
by the GCN. As expected, when we compared the proposed model with Informer, the
significance of the GCN in the architecture can be verified. The baselines are described
as follows:

• GRU: The commonly used time series model, which has been proven effective in
traffic prediction problems and can alleviate the problem of gradient explosion and
vanishing.

• LSTM: Together with the GRU, they are two popular variants of the RNN. LSTM has
a more complex structure than the GRU.

• Transformer: The classic Transformer model with the self-attention mechanism [37].
• Informer: A new Transformer variant proposed to process the long-sequence predic-

tion issue without spatial dependencies’ extraction.
• STTN: A new proposed framework utilizing two Transformer blocks to capture both

spatial and long-range bidirectional temporal dependencies across multiple time
steps [50].

4.2.3. Hyperparameters

In this study, a three-layer GCN structure was used. For each Informer block, the
number of encoder layers was 2, while the number of decoder layers is 3. During the
experiment, the data were randomly divided into 50% for training, 33% for the evaluation,
and the remaining 17% for testing. The network was optimized using the Adam optimizer.
The dropout rate was set to 0.05. The learning rate started from e−4 and decayed by 10 times
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every two epochs. The total number of epochs was 50 with an early stopping criterion. The
batch size was chosen as 32, and the whole network was trained on a GPU RTX3060.

4.3. Experimental Results

We used five state-of-the-art baselines to compare the performance of our proposed
AST-GIN model, including the GRU, LSTM, Transformer, Informer, and STTN. Based on the
30-minute time interval of the EV charging availability dataset, we deployed the selected
models to predict the availability in the next 30 min, 60 min, 90 min, and 120 min horizons.
The numerical results are shown in Table 1.

Table 1. Forecasting results of the AST-GIN and baseline models.

Horizon (min) Metric GRU LSTM Transformer Informer STTN
AST-GIN

POI Weather POI +
Weather

30

RMSE 0.1726 0.2431 0.2923 0.2112 0.171 0.1215 0.1224 0.1174

R2 0.7665 0.4918 0.4021 0.6583 0.7183 0.8778 0.8709 0.8803

EVS 0.7579 0.4879 0.3746 0.6511 0.7175 0.8787 0.8704 0.8801

MAE 0.1041 0.1683 0.2365 0.1556 0.1331 0.0784 0.0759 0.067

Accuracy 0.7531 0.6493 0.5589 0.7293 0.7521 0.8382 0.8322 0.8388

60

RMSE 0.1820 0.2321 0.2862 0.2326 0.2221 0.1446 0.1471 0.1438

R2 0.6851 0.5047 0.3952 0.5467 0.6248 0.8149 0.8174 0.8227

EVS 0.6789 0.4941 0.3782 0.5376 0.6276 0.8149 0.8174 0.8225

MAE 0.1168 0.1735 0.2385 0.1870 0.1679 0.0827 0.0864 0.0757

Accuracy 0.7138 0.6424 0.5534 0.6798 0.6728 0.8020 0.7994 0.8037

90

RMSE 0.2269 0.2336 0.2848 0.2613 0.2118 0.1682 0.1674 0.1687

R2 0.5362 0.496 0.3335 0.4806 0.5718 0.7652 0.7653 0.7605

EVS 0.5085 0.485 0.3662 0.4695 0.5634 0.7641 0.7652 0.7604

MAE 0.1548 0.1741 0.2377 0.1976 0.1683 0.0957 0.0982 0.1017

Accuracy 0.6508 0.6406 0.5491 0.6581 0.693 0.7713 0.7731 0.7713

120

RMSE 0.2372 0.2354 0.2896 0.2882 0.3264 0.1834 0.1852 0.1851

R2 0.5114 0.4743 0.3237 0.4553 0.5581 0.7162 0.7138 0.7134

EVS 0.4823 0.4675 0.3624 0.3934 0.5524 0.7154 0.7131 0.7131

MAE 0.1565 0.1769 0.2369 0.2128 0.1643 0.1134 0.1106 0.1123

Accuracy 0.6481 0.6329 0.5473 0.6238 0.6839 0.7517 0.7496 0.7496

For both short-term (30 and 60 min) and long-term (90 and 120 min) EV charging
station availability forecasting, the AST-GIN model effectively captured the temporal
dependance of the data and outperformed the baseline models, as measured by all the
metrics. In the 30 min forecasting, AST-GIN model with the dynamic external factor
achieved an accuracy of 0.8388, while the best model, the STTN, among the baseline models
achieved an accuracy of 0.7521. The AST-GIN outperformed the STTN in the 90 min
horizon with a 11.54% higher accuracy. In the long-term forecasting, 120 min for example,
the AST-GIN still had the best performance with the highest accuracy compared to the
other baseline models. The accuracy of the AST-GIN, 0.7517, was 8.97% higher than the
best model, the STTN, among the baseline models.

Among the three kinds of external factors used, which were the static factors only, dy-
namic factors only, and the combination of both of the factors, the use of the external factors’
combination led to a better performance in general for the prediction horizons of 30 min and
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60 min. The combination of both static and dynamic factors led to higher prediction ac-
curacy in the relatively short-term horizon. The difference among static the factors only,
dynamic factors only, and the combination became negligible in the relatively long-term
horizon.

For a better comparison, we plot the prediction accuracy of all models in terms of
all prediction horizons in Figure 7. Measured by the explicitly interpretable accuracy
metric, it can be observed that the overall forecasting capability of the proposed model
was better than the baselines over all prediction horizons. For the prediction horizons of
90 min and 120 min, the proposed AST-GIN performed better by incorporating either the
POI feature or the weather feature than when incorporating both factors. The external fac-
tors’ combination should be considered extensively for short-term prediction. Such results
showed that we could distinguish the attribute inputsin terms of short-term prediction or
long-term prediction.

4.4. Results’ Analysis

To analyze the prediction results of the proposed model and the benchmarks, we plot
the cumulative distribution function of the absolute prediction errors in Figure 8, where the
absolute error was calculated as |yij − ŷij|. Note that, as shown in Table 1, the prediction
results of Informer were always better than that of Transformer; hence, in this part, we
excluded the results of Transformer in Figure 8.
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Figure 8. Cumulative distribution function of the absolute error by each model.

From the CDF of the errors, we can find that the absolute error of the proposed
AST-GIN model occurred earlier and faster than the three baselines when the prediction
horizons were 90 min and 120 min. This means that the long-term prediction performance
is of great significance for the EV charging station availability estimation, which is because
the drivers can know in advance with an adequate time to head to the available station.

In addition, inevitably, noise during the data collection, such as sensor error and system
delay, may undermine the model’s forecasting capability. To verify the noise immunity of
the AST-GIN model, the model’s robustness was tested via perturbation experiments. The
normalized random noise, which obeys a Gaussian distribution, was added to the data to
check the robustness. The resultant fluctuation was small.

5. Conclusions

In this paper, a deep learning model, the AST-GIN, was proposed and verified for EV
charging station availability forecasting considering external factors’ influence. The model
contained an A2Unit layer, GCN layer, and Informer layer to augment time series traffic fea-
tures and extract the spatiotemporal dependencies of EV charging station usage conditions.
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The AST-GIN and the baselines were tested on the data collected in Dundee City. The ex-
periments showed that the AST-GIN has better forecasting capability over various horizons
and metrics. To summarize, the AST-GIN can effectively comprehensively consider the
external attribute influences and predict the EV charging station usage condition. Future
plans regarding the robustness are ongoing to further improve the prediction system.
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