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Abstract: Lamb wave-based damage detection technology shows great potential for structural
integrity assessment. However, conventional damage features based damage detection methods and
data-driven intelligent damage detection methods highly rely on expert knowledge and sufficient
labeled data for training, for which collecting is usually expensive and time-consuming. Therefore,
this paper proposes an automated fatigue crack detection method using Lamb wave based on finite
element method (FEM) and adversarial domain adaptation. FEM-simulation was used to obtain
simulated response signals under various conditions to solve the problem of the insufficient labeled
data in practice. Due to the distribution discrepancy between simulated signals and experimental
signals, the detection performance of classifier just trained with simulated signals will drop sharply on
the experimental signals. Then, Domain-adversarial neural network (DANN) with maximum mean
discrepancy (MMD) was used to achieve discriminative and domain-invariant feature extraction
between simulation source domain and experiment target domain, and the unlabeled experimental
signals samples will be accurately classified. The proposed method is validated by fatigue tests
on center-hole metal specimens. The results show that the proposed method presents superior
detection ability compared to other methods and can be used as an effective tool for cross-domain
damage detection.

Keywords: fatigue crack detection; lamb waves; finite element method; domain-adversarial neural
network; maximum mean discrepancy; metal structures

1. Introduction

As a unique non-destructive evaluation (NDE) system, structural health monitoring
(SHM) has shown great potential in reducing maintenance cost, extending service life, and
ensuring structural integrity [1,2]. Several SHM techniques have been implemented for
damage detection in the past few years, such as strain-based SHM [3], electromechanical
impedance-based SHM [4], smart coating-based SHM [5], Lamb waves-based SHM [6], etc.
Due to the long-distance propagation and small attenuation of Lamb waves in structures,
Lamb waves-based damage detection technology has received extensive concerns.

However, the complexities involved with Lamb wave due to its multi-modal and
dispersive nature make the signals analysis quite strenuous [7], and its physics modeling
to predict the output and identifying the damage [8,9] is a difficult and prohibitive task.
Conventional Lamb wave-based damage detection methods are to extract predesigned
damage features of Lamb wave in time and frequency domain and identify structural
damages by comparing damage features with their thresholds [10,11]. Due to the effect of
structures geometry on Lamb wave, the damage feature threshold needs to be adjusted
according to different structures, which often presents a less robustness and poor knowl-
edge generalization performance in real life structures with complicated geometry. These
methods also need a reasonable selection of damage features, which highly rely on expert
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experience. To circumvent these limitations, many damage detection methods based on
machine learning have been developed for automatic damage detection without a specific
threshold. Atashipour et al. [12] proposed an automatic damage identification approach for
steel beams based on Lamb wave and artificial neural network (ANN). Damage character
points based on continuous wavelet transform were extracted first, then a multilayer ANN
supervised by error-back propagation algorithm was trained to automatic detect damage.
Li et al. [13] used Hilbert transform, power spectral density, fast Fourier transform, and
wavelet fractal dimension to extract multi-features from time domain, frequency domain,
and fractal dimension of Lamb wave. Following that, a machine learning method based
on support vector machine (SVM) was used to fuse multi-features and further identify
damage. Yang et al. [14] developed an integrated damage identification method based on
least margin, which integrates multiple machine-learning models and outputs the fused
damage identification result by polling all models’ decisions. Twelve damage features
and seven machine learning methods, including k-nearest neighbor (KNN), radial basis
function support vector machine (RBF-SVM), Gaussian process (GP), decision tree (DTree),
neural network (NN), Gaussian naive Bayes (GNB) and quadratic discriminant analysis
(QDA), were applied to predict the damage identification results.

Instead of manual feature extraction for machine learning, various damage detection
methods based on deep learning have been developed to automatically feature extraction
and damage detection. Lee et al. [15] adopted a deep autoencoder (DAE) to capture hidden
representation and effective tracking of signal variations, and the reconstruction error was
used to diagnosis fatigue damage in composites structures. Chen et al. [16] and Wu et al. [17]
converted the Lamb wave signals into a two-dimensional time-frequency spectrogram
with the continuous wavelet transform, then input them into a 2D convolutional neural
network (CNN) to classify damage. To minimize loss of information in conversion of time
signals to image, Pandey et al. [7] used 1D CNN to detect damage directly using original
Lamb wave signals of an aluminum plate, in which Lamb wave response signals obtained
with FEM simulations were used as training samples and experimental data were used
for testing. Sampath et al. [18] incorporated the long short-term memory (LSTM) with
trispectrum-based higher-order spectral analysis to propose a novel hybrid method for
reliable fatigue crack detection under noisy environments. The DL model based on LSTM
was used to eliminate the random noise by reconstructing the original Lamb wave signals,
and trispectrum-based higher-order spectral analysis method was adopted to extract the
nonlinear components considered as an indication of fatigue cracks. Yang et al. [19] used
the temporal distributed conventional neural network (TDCNN) to extract less expertise-
dependent features, in which the long short-term memory (LSTM) was used to associate
features of data fragments.

However, these data-driven intelligent damage detection methods require sufficient
labeled data to train the intelligent model for good performance, and the training and
testing data must follow the same distribution. In industrial scenarios, collecting sufficient
labeled data for training is usually expensive and impractical, and usually just a large
amount of unlabeled data can be obtained. Meanwhile, many available training data are
obtained by simulations or from simple structure forms, which may not follow the same
distribution with data from the practical complex conditions. When the training data are
non-labeled or the distributions are mismatched, the performance of data-driven intelligent
damage detection methods may drop sharply.

Transfer learning is an effective knowledge generalization tool and can transfer the
knowledge learned from an abundant labeled source domain into a new but related tar-
get domain [20]. By combining the hidden features of learning ability and deep learn-
ing and knowledge transfer ability of transfer learning, deep transfer learning has been
widely studied. Nowadays, deep domain adaptation has a dominant position in deep
transfer learning, which can be summarized into three categories: discrepancy-based, ad-
versarial discrimination-based, and adversarial generation-based deep domain adaptation
methods [21]. The main idea of discrepancy-based deep domain adaptation methods
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is to minimize the distribution discrepancy between source domain and target domain
to get domain-invariant features, in which MMD [22–24], Kullback–Leibler (KL) diver-
gence [25–27], and Wasserstein distance [28,29], et al., can be used as the metrics of inter-
domain distribution divergence. Deep domain confusion (DDC) [23] and deep adaptation
network (DAN) [24] are the classical discrepancy-based deep domain adaptation meth-
ods. Adversarial discrimination-based deep domain adaptation methods aim to extract
fault-discriminative and domain-invariant features through adversarial training with the
gradient reversal layer (GRL) [30]. DANN [31] is a classical adversarial discrimination-
based deep domain adaptation method of feed-forward architectures, combining domain
adaptation and deep feature learning within one training process. Adversarial generation-
based deep domain adaptation methods aim to minimize the discrepancy between the
source data and target data with the adversarial training. The widely used adversarial
generation-based deep domain adaptation models include generation adversarial network
(GAN) [32], Wasserstein-GAN (WGAN) [33], Wasserstein-GAN with gradient penalty
(WGAN-GP) [34], et al. Many deep domain adaptation models for structural health mon-
itoring using Lamb wave have been developed. Alguri et al. [35] proposed a transfer
learning framework for Lamb waves’ full wave field reconstruction, in which autoencoder
was used to learn the general propagation of signals, then the learned knowledge was
combined with sparse spatial measurements to reconstruct full wavefield. Zhang et al. [36]
applied the joint distribution adaptation (JDA) to adapt both the marginal distribution and
conditional distribution of the Lamb waves from aluminum plate and composite plate,
then used the LSTM network to learn the damage indexes for damage probability imaging.
Zhang et al. [37] proposed a muti-task deep transfer learning methods by transferring
the high-level shared features of damage level detection task to damage location task.
Wang et al. [38] used the MMD-based deep adaptation network for learning transferable
features to make the classifier trained on the labeled source data achieve comparable perfor-
mance on the unlabeled target data. Even though several deep transfer learning methods
have been developed for Lamb wave-based damage monitoring, fatigue crack detection
with deep transfer learning model for Lamb wave has not yet been fully studied.

In order to automatically detect fatigue crack and further improve the detection
accuracy, in this paper, a deep domain adaptation method based on FEM simulation and
MMD-DANN was proposed for damage detection using Lamb wave. FEM simulations are
employed to obtain the simulated response signals under different conditions. Therefore,
the insufficient labeled data of real-world can be possibly solved. However, the variabilities
of real response signals during the fatigue crack growth have not been represented in the
simulated response signals. For engineering structures, the real response signals are affected
by complex uncertainties, like structure manufacturing procedure, environmental variables,
crack geometries, multi-sensors performance, and the sensor installation process. Thus,
the classifier model of simulated signals cannot be directly applied to the real structures.
By fusing the distribution discrepancy metric and the adversarial discrimination training
to minimize the domain disparity of the simulated source data and experimental target
data, the MMD-DANN model was developed to learn damage-discriminative and domain-
invariant feature representations. Then, the classifier model of simulated signals can be
directly transferred to experimental signals with comparative ability.

The outline of this paper is as follows. The details of the proposed fatigue crack
detection method are specified in Section 2, including the network architecture of MMD-
DANN model, training of MMD-DANN model, and detection procedure of target domain.
In Section 3, the proposed method is demonstrated through fatigue test data of center-hole
metal specimens. Conclusions are drawn in Section 4.

2. Proposed MMD-DANN-Based Fatigue Crack Detection Method

By combining the distribution discrepancy metric of MMD and the adversarial dis-
crimination training of DANN model, an unsupervised deep domain adaption method
based on MMD-DANN model was proposed to detect fatigue crack in this paper, which
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bridges the source and target domains in an isomorphic latent feature space and performs
a superior diagnosis performance on the unlabeled target data.

In the proposed method, the simulated Lamb wave response signals obtained from the
undamaged case and multiple damaged cases are assigned as the labeled source domain
data. The experimental Lamb wave response signals obtained from the fatigue test are
assigned as unlabeled target domain data. Assume that the source and target domain data
are Ds = {xi

s, yi
s}m

i=1 and Dt ={xj
t}n

j=1, in which Ds are the m labeled source samples and Dt

are the n unlabeled target samples. xs, ys ∈ {1, . . . , K} are the simulated response signals
and the corresponding labels for K types of damage categories in the source domain.xt are
the unlabeled experimental response signals in the target domain.

2.1. Network Architecture of MMD-DANN Model

The architecture of the proposed MMD-DANN model is illustrated in Figure 1, with
all hyperparameters used in the paper given besides the layers. It consists of a deep feature
extractor Gf, a deep label predictor Gy, and a domain classifier Gd. As shown in Figure 1,
the labeled source and unlabeled target Lamb wave signals are first input into the feature
extractor Gf to extract the multi-dimensional features vector. The label predictor Gy takes
the extracted features of the labeled source data as input and predicts the class labels. The
domain classifier Gd takes the extracted features of the source and target data as input
and predicts the domain labels. The distribution discrepancy of the extracted features is
reduced by multi-layer domain adaptation and the adversarial training between the feature
extractor and domain classifier.
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Figure 1. The architecture of the proposed MMD-DNN model.

The feature extractor Gf is composed of three 1-D convolutional layers (CLs) and
one flattened layer. The features of the input response signals are extracted through three
layers of convolutional computation, and the resulted features map is compressed down to
multi-dimensional features vector through a flattened layer. The rectified linear unit (ReLU)
was used as an activation function of every CL to improve computational efficiency [39],
and a batch normalization (BN) layer was used after every CL to normalize the data and
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reduce the internal covariate shift [40]. The weights of Gf of the source and target domain
are shared.

The label predictor Gy is made up of three fully connected layers (FCLs). The high-
dimensional features vector of the source domain extracted by Gf is input to Gy and further
compressed through two FCLs with ReLU activation function. The sigmoid activation
function is used in the third FCL to predict the class label. The weights of Gy of the source
and target domain are also shared.

The domain classifier Gd is composed of two FCLs. The high-dimensional features
vector of the source and target domain extracted by Gf are used as input and further
compressed through one FCL with ReLU activation function. The softmax function is used
in the second FCL to predict the domain label. The weights of Gd of the source and target
domain are also shared.

2.2. Training of MMD-DANN Model

According to the three outputs of MMD-DANN model, three losses are constructed,
including the label prediction loss Ly based on the outputs of the label predictor Gy, the
domain classification loss Ld based on the outputs of domain classifier Gd, and the domain
adaptation loss LMMD based on the outputs of the feature extractor Gf, as illustrated in
Figure 1. Three losses are detailed as follows:

The label predictor Gy takes the extracted features of the labeled source data as input
and outputs the predicted labels. During the training stage, for the good performance
of the label predictor, the label predictor Gy aims to minimize the label prediction loss
between the predicted label and the actual label for the training source data in a supervised
way. The parameters θf, θy of both the feature extractor Gf and the label predictor Gy are
optimized at the same time. The label prediction loss Ly of the label predictor Gy based on
the cross-entropy loss function is defined as:

Ly(Ds) = −E(xs ,ys)∼Ds

K

∑
k=1

1[k=ys ] log
(

Gy

(
G f (xs)

))
(1)

where E(xs, ys)~Ds means calculates the expectation of the samples from Ds. 1[K = ys] is an
indicator function, if K = ys, its value equals 1, else it equals 0.

Simultaneously, the domain classifier Gd takes the extracted features of the source
and target domain data as input and outputs the predicted domain labels. During the
training stage, for the good performance of the domain classifier, the domain classifier Gd
aims to minimize the domain classification loss of two domains in a supervised way. The
domain label of the source domain data is assigned as 0, and the domain label of the target
domain data is assigned as 1. The parameters θf, θd of both the feature extractor Gf and the
domain classifier Gd are optimized at the same time. The domain classification loss Ld of
the domain classifier Gd based on the cross-entropy loss function is defined as:

Ld(Ds,Dt) = −Exs∼Ds

[
log
(

Gd

(
G f (xs)

))]
− Ext∼Dt

[
log
(

1−Gd

(
G f (xt)

))]
(2)

To further reduce the distribution discrepancy between the two domains and improve
the domain adaptation of the feature extractor, the distribution discrepancy of the output
features vector between two domains is measured and incorporated into the model training,
which is defined as the domain adaptation loss LMMD. MMD is a common distance metric
in deep domain adaptation to measure the distribution discrepancy between two datasets.
MMD of Ds and Dt after the feature extractor Gf can be expressed as:

LMMD(Ds,Dt) = sup
G f∈F

(EDs [G f (xs)]− EDt [G f (xt)]) (3)
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where F represents the reproducing kernel Hilbert space (RKHS). sup(·) is the supremum
of the input. By replacing the population expectations with empirical expectations, a biased
empirical estimate of MMD can be obtained and written as:

LMMD(Ds,Dt) = sup
G f∈F

(
1
m

m

∑
i=1

G f

(
xi

s

)
− 1

n

n

∑
j=1

G f

(
xj

t

))
(4)

By means of the kernel mean embedding of distribution, RKHS is induced by the
characteristic kernels, such as Gaussian and Laplace kernels [38]. The empirical estimate of
the squared MMD is defined as:

LMMD
2(Ds,Dt) =

1
m2

m

∑
i,j=1

k
(

xi
s, xj

s

)
− 2

mn

m,n

∑
i,j=1

k
(

xi
s, xj

t

)
+

1
n2

n

∑
i,j=1

k
(

xi
t, xj

t

)
(5)

where k(.,.) is the characteristic kernel. In order to avoid the difficulty of selecting the kernel
function, MK-MMD assumes that the optimal kernel can be obtained linearly from multiple
kernels. The characteristic kernel associated with the feature map f, k(xi

s, xj
t) = <f (xi

s), f (xj
t)>,

is defined as the convex combination of N kernels {ku}:

K ,

{
k =

N

∑
u=1

βuku :
N

∑
u=1

βu = 1, βu ≥ 0, ∀u

}
(6)

where {βu} are the constraints on coefficients and are imposed to guarantee that the derived
multi-kernel k is characteristic [39]. Multiple Gaussian kernels with different radial basis
function (RBF) bandwidths are widely used as a nonparametric method.

In the forward-training process, the training of Gf can make the features discriminative.
However, in order to make the extracted features domain-invariant, Gf should furthermore
maximize the domain classification loss, which is run in the opposite direction to the
training of Gd. In order to implement the adversarial training between Gf and Gd, GRL is
inserted between the feature extractor and the domain classifier. In the forward propagation-
based training, GRL acts as an identity transformer. However, during the back propagation-
based training, the GRL multiplies the gradient by a certain negative constant −λ, leading
the domain classification loss negative feedback to Gf. A detailed discussion of GRL can be
found in Ref. [30].

Therefore, by incorporating the MK-MMD loss into the adversarial training, the
discriminative and domain-invariant features can be learned by the feature extractor. The
total loss function of the feature extractor Gf is expressed as:

L f (Ds,Dt) = Ly(Ds)− λLd(Ds,Dt) + αLMMD(Ds,Dt) (7)

where α is the trade-off hyperparameter of MK-MMD loss.
Based on the above loss function of Gf, Gy, and Gd, the training is performed. The

corresponding parameters θf, θy, θd of Gf, Gy, and Gd are updated as follows:

θ f ← θ f − µ
∂L f

∂θ f
(8)

θy ← θy − µ
∂Ly

∂θy
(9)

θd ← θd − µ
∂Ld
∂θd

(10)

where µ is the learning rate. In this paper, the stochastic gradient descent (SGD) algo-
rithm with 0.9 momentum and an annealing learning rate is used to optimize the model
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parameters [30]. The pseudo code of the proposed MMD-DANN model is presented in
Appendix A.

2.3. Detection Procedure of Target Domain

When the training is complete, the unlabeled target domain data can be classified using
the trained feature extractor and the trained label predictor. The target data are first input
into the feature extractor to extract features vector, then fed forward into the label predictor,
and the sigmoid activation function predicts the class labels. The detection procedure of
the proposed MMD-DANN model is presented in Figure 2 and can be described as follows:
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Figure 2. Flowchart of the proposed fatigue crack detection method based on MMD-DANN model.

First, the Lamb wave response signals of center-hole metal structures are obtained
by FEM simulations and fatigue tests. The simulated response signals under different
conditions are considered as the labeled source domain data, and the experimental response
signals are considered as the unlabeled target domain data.

Then, in the step of model training, the labeled source domain data and unlabeled
target domain data are fed forward into the MMD-DANN model. The extracted features
vector, the predicted class labels, and the predicted domain labels are obtained. Three loss
functions are calculated and propagated backward to update the model parameters until
the training of the proposed MMD-DANN model is finished.

Finally, the unlabeled target domain data are used as testing samples to input to the
trained model, and the damage detection results are obtained.

3. Experimental Validation

The proposed unsupervised domain adaptation method is validated on the fatigue
crack detections of a center-hole metal structure. We aimed to detect the fatigue crack of the
metal structures by transferring the learning knowledge from the abundant labeled source
domain into an unlabeled target domain, in which the source domain data are assumed as
the simulated response signals under different conditions and the target domain data are
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assumed as the experimental response signals under uncertain conditions. The simulated
and experimental dataset are used to demonstrate the transfer results of the proposed
MMD-DANN model and the detection accuracy of the experimental dataset.

3.1. Simulated Dataset and Data Preprocessing

The dataset consists of Lamb wave response signals of metal structures manufactured
using 7050 aluminum of 3 mm thickness with a center-hole 25 mm diameter from simulation
and experiment. Material properties of the center-hole metal specimen are shown in Table 1.
Four PZT sensors P51 were installed on every specimen to monitor the healthy conditions
of both sides of the center-hole. Two sensing paths, A1-S1 and A2-S2, were formed, in
which A1 and A2 serve as actuators and S1 and S2 serve as sensors. The dimensions of
PZT sensors are 8 mm in diameter and 0.45 mm in thickness. In order to demonstrate
the detection performance on small fatigue cracks of the proposed method, only fatigue
cracks under 8 mm are studied. Specimen geometry and PZT sensors placement are shown
in Figure 3. The material and structure form considered as specimen are common in the
aircraft. The FE model and the physical fatigue test are built with the same specimen
geometrical dimensions and PZT sensors placement.

Table 1. Material properties of center-hole metal specimens.

ρ/(kg/m3) E/GPa ν

2700 70 0.33
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Considering the symmetries of structure geometry and sensors placement, FEM simu-
lations are performed to acquire the response Lamb wave signals of only A1-S1 sensing
path. The PZT sensor is modeled by an electromechanical coupling plate element, and the
positive and negative piezo-conductive effects of actuators and sensors can be realized [41].
In order to simulate the uncertainty of the actual crack morphology, fatigue crack is mod-
eled with a notch of 0.05 mm width, different length, and different orientations. Hanning
window tone burst signals with a five-cycle frequency of 230 kHz is used as excitation
signals. The central frequency is referred to the experiment. A fixed time increment of
0.1 µs is consistent with sampling rate of the experiment, which is sufficient to capture the
interested time period of signals. The output time of field results for sensors is set as 4 ms
to ensure that the number of the output data point is consistent with the experiment. The
global element size is 1 mm, and the local encrypted element size of crack and hole are
0.5 mm.

The availability of the FE model is validated by comparing the simulated group
velocity and the analytical group velocity for the same frequency. The simulated group
velocity of S0 mode is estimated as 5381 m/s, and the simulated group velocity of A0
mode is estimated as 2955 m/s. The respective errors for group velocity of S0 and A0
mode are about 1.93% and 2.96%. In this paper, the response signals of S0 mode are
used to analyze. A two-dimensional FE model of the center-hole specimen with 5 mm
fatigue crack and 90◦ orientation is created in ABAQUS/Explicit with one edge fixed and
another edge loaded with 3 kN, as shown in Figure 4. The holding load is the same as the
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experiment. To illustrate the effect of crack on the wave propagation process, a screenshot
of the simulated wave propagation of the center-hole specimen with 5 mm fatigue crack
and 90◦ orientation is shown in Figure 5. The displacement at 85 µs can indicates the
wave reflections by the damage and the top boundary, which further demonstrates the
availability of the simulations.
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Simulation was performed for an undamaged case followed by multiple damaged
cases. Damaged cases are induced at sixteen different crack lengths (from 0.5 mm to 8 mm
at a step of 0.5 mm) with five different orientations (80◦, 85◦, 90◦, 95◦, 100◦). Simulation
was performed for one damage case at a time. Considering that direct wave packet
contains the most effective structural information in the response signals, a fixed-length
rectangular window [60 µs 105 µs] was employed to extract a direct wave packet for S0
mode. Consequently, 81 simulated samples were 80 samples from damaged cases and the
remaining 1 sample is undamaged, with each sample consisting of 451 data points which
corresponded to the time instances of the extracted direct wave packet. Figure 6 shows
the simulated Lamb wave response signals of different crack lengths for the A1-S1 sensing
path. Significant phase right-shifting and amplitude decreasing can be observed with the
undamaged and damaged conditions, which means that the simulated signals can reflect
the variations of structural conditions.

In order to consider the effect of dispersions of specimens and sensors performance
on the signals, data augment technology was used to introduce the fluctuations of am-
plitude and phase into the signals to expand the simulated samples. Firstly, the signals
are converted into the analytical signals with Hilbert transform. Then, the amplitude and
phase of the analytical signals are multiplied by a scaling coefficient to generate the virtual
simulated samples. For the undamaged sample, the scaling coefficient for the amplitude
varies from 0.82 to 1.20 at a step of 0.02, and the scaling coefficient for the phase varies
from 0.82 to 1.21 at a step of 0.03. The scaling of the amplitude and phase are cyclic pre-
ceded. For the damaged samples, the scaling coefficient for the amplitude varies from
0.80 to 1.25 at a step of 0.15, and the scaling coefficient for the phase varies from 0.80 to
1.25 at a step of 0.15. The scaling of the amplitude and phase are meanwhile preceded.
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That is, a total of 600 simulated samples are obtained with 280 undamaged samples and
320 damaged samples.
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3.2. Experimental Dataset and Data Preprocessing

Fatigue tests on eight center-hole metal specimens were performed to obtain the
experimental response signals, labeled from T1–T8. The experimental setup is shown in
Figure 7. For a constant amplitude axial tensile cyclic load with load ratio R = 0.1, the
maximum load of 40 kN and loading frequency of 8 Hz was applied to the specimens
using a hydraulic MTS machine to introduce fatigue cracks in the specimens. The initiation
and growth of fatigue cracks were measured offline with a charge-coupled device (CCD)
camera. Crack lengths are measured from optical microscopic images of CCD camera.
Representative examples of actual fatigue crack through the microscopic are shown in
Figure 8. At the early stages of the fatigue test, only one crack initialized and grew. At the
medium stage of the fatigue test, two cracks grew simultaneously.
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An integrated structural health monitoring system was utilized to generate and acquire
online Lamb waves. During the fatigue test, Lamb waves were periodically acquired when
the load was held at 3 kN. The load holding was to ensure the identical boundary condition
for every signal acquisition. The temperature variation at the laboratory was maintained
below 1 ◦C to minimize temperature effects on acquired Lamb waves [42]. The excitation
signal is a five-cycle tone burst modulated by a Hanning window with the sampling rate
set to 10 MHz and the sampling length set to 4000.
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Figure 8. Cracks observed from the microscope of specimen T1 at: (a) 59,673 load cycles and
(b) 70,766 load cycles.

By analyzing the waveform envelope and the arrival wave packet overlap under
150 kHz: 20 kHz: 270 kHz excitation frequencies, typical response signals of A1-S1 sensing
path under 230 kHz are given in Figure 9. The separated first arrival wave packet can be
observed without overlapping with the crosstalk signals and boundary refection signals,
and the experimental group velocity of S0 mode is approximately estimated as 5106 m/s.
Therefore, the central frequency of excitation signal was confirmed as 230 kHz to obtain
separated direct wave packet. A fixed-length rectangular window [82 µs 127 µs] was
employed to extract the direct wave packet. The non-coupling of A1-S1 and A2-S2 sensing
paths is demonstrated by comparing the response signals of A2-S2 sensing path only with
one side crack and that with two sides cracks. Thus, the response signals of each sensing
path are regarded as one independent sample. Figure 10 plots the experimental Lamb
wave response signals of different length for specimens T1–T3. Due to the dispersions of
specimens, sensor performance, and installation process, the response signals amplitude
and damage sensitivities for different specimens are different, and are manifested as
different changes in amplitude and phases under the same crack length growth. Further
comparison of the simulated and experimental response signals shows that the direct wave
packet can be extracted earlier in simulated data, and the simulated data have higher
damage sensitivity.
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The experimental dataset of eight center-hole metal specimens consists of one hundred
and forty undamaged samples and eighty damaged samples, with each sample consisting of
451 data points, in which the undamaged and damaged samples are extremely unbalanced.
In order to balance the undamaged and damaged samples to further improve the model
performance, data augment technology is also applied to introduce the fluctuations of
amplitude and phase into the response signals to expand the experimental samples. For
the undamaged samples, the scaling coefficient for the amplitude varies at (0.90, 1.20), and
the scaling coefficient for the phase varies at (0.90, 1.20). Meanwhile, the scaling of the
amplitude and phase are preceded. For the damaged samples, the scaling coefficient for
the amplitude varies from 0.80 to 1.25 at a step of 0.15, and the scaling coefficient for the
phase varies from 0.80 to 1.25 at a step of 0.15. The scaling of the amplitude and phase
are meanwhile preceded. That is, a total of 600 experimental samples are obtained with
280 undamaged samples and 320 damaged samples.

Descriptions of the simulated and experimental dataset are shown in Table 2. The
dataset is randomly divided as training and testing datasets at a ratio of 4:3. Out of 600 cases
of simulated data and experimental data, 210 undamaged cases and 240 damaged cases
are used for training while 70 undamaged cases and 80 damage cases are used for testing.
In addition, max-min normalization is a necessary step to convert the different scales of
the simulated and experimental dataset into a common scale, which enables the unbiased
contribution from the output of every response signal.

Table 2. Introduction to datasets.

Dataset Healthy Conditions Number of Samples

Simulation
Undamaged 280

Damaged 320

Experiment Undamaged 320
Damaged 280

3.3. Transfer Results of MMD-DANN Model

In the proposed MMD-DANN model, λ, and α are important trade-off parameters
which seriously affect the transfer performance of the model. Thus, the studies of the trade-
off parameters are implemented first. The classification accuracy is related to distribution
divergence between two domains. Thus, MMD of the extracted features output by the sec-
ond fully connected layer of the label predictor is used to evaluate the transfer performance
with different trade-off parameters, which is the highest-level feature before classification.
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In order to suppress noisy signals from the domain classifier at the early stages of the
training procedure [31], the parameter λ gradually changed from 0 to 1 using the formula
2/(1 + e−10p) − 1 instead of a fixed value, in which p is the training progress linearly
changing from 0 to 1. With the training process progressing, the trade-off parameter λ
gradually increases. The parameter α is selected from {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50}. In
order to improve the optimization of SGD during the training, an annealing learning rate is
adopted using the formula µ = η0/(1 + 10p)0.75, in which η0 is the initialized learning rate.
The SGD method with an initialized learning rate 1 × 10−3 and mini-batch 64 was used to
train the model. Every training is carried out for five trails and the average us obtained to
reduce the effect of randomness. All training is performed using python on the Inter(R)
Xeon(R) Gold 6462R CPU.

Figure 11a shows MMD of the extracted features with different trade-off parameter α.
The classification accuracy of different parameter α on the experimental dataset is given
in Figure 11b. It can be seen that MMD of the extracted features and the corresponding
classification accuracy have a nonmonotonic trend with the parameter α, but the smaller
MMD corresponds to the higher classification accuracy. MMD takes the minimum value
when α is set as 5 and 50, and the classification accuracy takes the maximum value when
α is set as 5, and the corresponding classification accuracy of the experimental dataset is
98.12%. Therefore, MMD-DANN model with the trade-off parameter α of 5 is trained to
detect fatigue cracks.
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To further demonstrate the superiority of the progressing strategy for trade-off pa-
rameter λ, the transfer results of the model with a fixed parameter λ are compared. The
parameter λ is selected from {0.1, 0.5, 1, 5, 10}. Figure 12 shows MMD of the extracted
features and classification accuracy with different parameter λ when α is set to 5. The
parameter λ has an obvious effect on the transfer results of the model. Once the parameter
λ is set as a large value, such as being larger than 1, the classification accuracy of the model
sharply drops to a poor level. A safe way is to select a small parameter λ to balance the
domain classification loss and the domain adaptation loss in the loss function. Especially,
the classification accuracy takes the maximum value when λ is set as 1 and α is set as 5,
and the corresponding classification accuracy of the experimental dataset is 94.33%, which
is still lower than when λ is set as a changing value and α is set as 5. The progressive
training strategy of the trade-off parameter λ significantly improves the classification per-
formance and simplifies the parameter-selecting. Finally, the MMD-DANN model, with a
changing trade-off parameter λ and a fixed trade-off parameter α of 5, was trained to detect
fatigue cracks.
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3.4. Comparisons with Other Methods

To further validate the transfer results and transfer performances of the proposed
method, we compared our method with other methods, including 1D-CNN, WGAN-GP,
DDC, DAN, and DANN.

For comparison, 1D-CNN consists of a feature extractor and a label predictor, in which
the architectures of the feature extractor and the label predictor are the same as MMD-
DANN model. A 1D-CNN model trained on the labeled simulated data was used to classify
the unlabeled domain data without domain adaptation knowledge. The architecture of
CNN classifier in WGAN-GP model is the same as the 1D-CNN model. WGAN-GP is
a classical adversarial generation-based deep domain adaptation method made up of a
generator, a discriminator, and the gradient penalty. By the adversarial training between
the generator and the discriminator, a CNN classifier trained on the synthetic domain
can be directly transferred to the target domain. The architecture of CNN classifier in
WGAN-GP model is the same as a 1D-CNN model. DDC is a common unsupervised
domain adaptation method made up of a fixed CNN, an adaptation layer, and MMD,
whose architecture analogous MMD-DANN model is without a domain classifier. The
position to place the adaptation layer in is decided by comparing every condition. By
introducing more adaptation layers and MK-MMD, DAN is developed, which is made
up of a feature extractor, a label predictor, and MK-MMD. The trade-off parameter α of
MK-MMD in the loss function for DAN model is searched from {0.1, 0.5, 1, 5, 10, 50}. The
optimal transfer result of DAN model is calculated as 0.5. DANN model is the simplified
version of MMD-DANN model, without MK-MMD in the loss function. The training
dataset of 1D-CNN, WGAN-GP, DDC, DAN, DANN, and the proposed model are 70%
of the labeled simulated domain data and 70% of the unlabeled target domain data. The
testing dataset of 1D-CNN, WGAN-GP, DDC, DAN, DANN, and the proposed model
are the experimental domain data. Every model carried out six trainings. The network
architecture of 1D-CNN, WGAN-GP, DDC, DAN, and DANN with all hyperparameters
used in the paper is shown in Appendix B.

To observe the transfer results specifically, Table 3 denotes MMD for six models,
in which MMD for CNN model is calculated from the source and target data, equal to
initial MMD without domain adaptation. Based on the domain adaptation mechanisms
of other five models, the transfer result for WGAN-GP model can be expressed as MMD
of the synthetic and target data, and the transfer results for DDC, DAN, DANN, and the
proposed model can be expressed as MMD of the extracted features vector output by the
feature extractor. Compared with six models, the MMD of raw data is the highest, and the
MMD of five deep domain adaptation methods is smaller, indicating that the deep domain
adaptation methods are effective tools to reduce the distribution discrepancy. The proposed
method has the smallest MMD, implying that the proposed method has the best learning
ability of domain adaptation.
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Table 3. Transfer results of six models.

Models Data MMD

1D-CNN Raw source data and target data 0.008052
WGAN-GP Synthetic data and target data 0.003773

DDC Extracted features vector of source data and target data 0.003083
DAN Extracted features vector of source data and target data 0.002932

DANN Extracted features vector of source data and target data 0.001397
Proposed Extracted features vector of source data and target data 0.0001998

To evaluate the performance of models comprehensively, false alarm rate and missing
alarm rate were introduced to enrich the evaluation of the classification accuracy of the
proposed MMD-DANN and other methods. The false alarm rate is defined as the propor-
tion of undamaged samples predicted as damaged samples in total predicted damaged
samples. The missing alarm rate is defined as the proportion of damaged samples predicted
as undamaged samples in total damaged samples.

The average classification accuracy, false alarm rate, and missing alarm rate on the
experimental dataset are detailed in Table 4. The classification accuracy of five trails in
every method is shown in Figure 13. The average classification accuracy of the proposed
MMD-DANN model on the experimental dataset is 98.12%, which is the highest among
six methods. The average false alarm rate and missing alarm rate of the proposed MMD-
DANN model are 3.08% and 1.56%, which are also the smallest among the six methods.

Table 4. Detection results for experimental dataset with multiple methods.

Methods Accuracy (%) False Alarm Rate (%) Missing Alarm Rate (%)

1D-CNN 58.53 30.69 33.33

WGAN-GP 66.93 23.88 30.28

DDC 75.62 28.34 15.87

DAN 80.00 26.83 6.25

DANN 84.73 15.14 13.96

Proposed 98.12 3.08 1.56
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From the results shown in Table 4, due to the lack of domain adaptation procedure,
the average classification accuracy of 1D-CNN model is just 58.53%, which is the smallest
among all the methods. The average false alarm rate and missing alarm rate of 1D-CNN
model are 30.69% and 33.33%, which are the highest among six methods. The detection
results of 1D-CNN model further demonstrate that the mismatched distributions of the
source and target domain data cause reduced performance in the target domain.
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As shown in Table 4, the average classification accuracy of WGAN-GP model is
66.93%, which is the smallest in five deep domain adaptation methods but only higher than
1D-CNN. The average false alarm rate and missing alarm rate of WGAN-GP model are
23.88% and 30.28%, which is the highest among five deep domain adaptation methods.
Due to the dispersions of specimens, sensor performance, and the installation process, the
experimental signals of different specimens still have an obvious distinction (as shown in
Figure 10), which deteriorates the synthetic data quality. Therefore, the large distribution
discrepancy between the synthetic data and the target data leads the classifier trained on the
synthetic data to show a poor classification performance on the target data. It can be inferred
that the complexity of the target domain data has an important effect on the adversarial
generation results of WGAN-GP model. Further, by comparing the detection results of
1D-CNN with WGAN-GP model, the classifier of WGAN-GP model presents a better
classification performance because of the smaller distribution discrepancy between the
synthetic and target data compared to that between the simulated and experimental data.

According to the detection results in Table 4, the average classification accuracy of
DDC model and DAN model are 75.62% and 80.00%, which identifies the better domain
adaptation performance of multiple adaptation layers and MK-MMD for the DAN model
than that of the single adaptation layer and MMD for the DDC model. Based on the
comparison results in Table 4, the average classification accuracy of DAN model and
DANN model are 80.00% and 84.73%, which are close to each other, meaning that for
the fatigue crack detection scenarios, the domain adaptation performance of minimizing
MMD is equal to the adversarial training. The average classification accuracy of DAN
model and DANN model are higher than WGAN-GP model, because the distribution
discrepancy between the high-dimensional features vector for DAN and DANN model
are much smaller than that between the synthetic and target data. Specially, the average
classification accuracy of DAN and DANN model are smaller than MMD-DANN model,
because DAN model reduces the distribution discrepancy just by minimizing MMD and
DANN model reduces the distribution discrepancy just by adversarial training, but MMD-
DANN model reduces the distribution discrepancy by combing MMD and adversarial
training. The comparison results further verify the effectiveness of domain adaptation and
adversarial training of the proposed MMD-DANN model.

A confusion matrix for the first training trail of the proposed model on the experi-
mental dataset is shown in Figure 14. For 280 undamaged and 320 damaged experimental
data, 3.57% of undamaged samples were misclassified as damaged conditions. All dam-
aged samples are all classified accurately. It can be inferred that the proposed model can
accurately classify undamaged and damaged conditions.
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In order to visually validate the transfer learning effectiveness of the proposed method,
the t-distributed stochastic neighbor embedding (t-SNE) [43] technique was used to map the
high-dimensional features vector into a two-dimensional space. The mapped transferrable
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features for six models are shown in Figure 15. From the result shown in Figure 15, the
transferable learning features of the undamaged source data have an obvious gathering
cluster because the undamaged source data are obtained with one undamaged model, and
the transferable learning features of the damaged source data have multiple gathering
clusters because of the damaged source data corresponding to different crack lengths. For
the experimental target data, the undamaged and damaged data are scatter-distributed
because of the dispersions among specimens.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 23 
 

 

MMD-DANN model outperforms the other methods and presents the best transfer per-
formance. The proposed MMD-DANN model can be used as an effective domain adapta-
tion tool to accurately detect fatigue crack for the unlabeled experimental samples. 

  
(a)                        (b) 

  
(c)                        (d) 

  
(e)                        (f) 

Figure 15. The visualization of the mapped features on the source and target domain: (a) 1D-CNN, 
(b) WGAN-GP, (c) DDC, (d) DAN, (e) DANN, and (f) MMD-DANN. 

4. Conclusions 
In this paper, an automated fatigue crack detection method based on MMD-DANN 

model was proposed to accurately detect structural conditions for metal structures. To 
overcome the difficulty of time-consuming acquisitions of the labeled data in practice, 
FEM simulations were adopted to obtain simulated response Lamb wave signals with dif-
ferent healthy conditions, which are assigned as the labeled source domain data. Due to 
the distribution discrepancy between the simulated and experimental signals, the 

Figure 15. The visualization of the mapped features on the source and target domain: (a) 1D-CNN,
(b) WGAN-GP, (c) DDC, (d) DAN, (e) DANN, and (f) MMD-DANN.

From Figure 15a, the transferable features extracted by 1D-CNN model suffer from
poor distribution discrepancy. With the dash line plotted in Figure 15a, the source data
can be accurately classified, while many undamaged and damaged target domain data
are misclassified. Thus, 1D-CNN model trained on the source data cannot accurately
classify the unlabeled target data. From Figure 15b, the transferable features of the target
domain extracted by WGAN-GP model have a small among-class distance. The transferable
features cannot be effectively obtained using the WGAN-GP model. In addition, compared
with 1D-CNN model, with the dash line plotted in Figure 15b, less damaged source data
are misclassified. Consequently, the classification accuracy of WGAN-GP model is higher
than the 1D-CNN model. From Figure 15c–e, the transferable features learned by DAC,
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DAN, and DANN model have a smaller cross-domain discrepancy. As a result, DAC, DAN,
and DANN models showed higher classification accuracy on the unlabeled target data than
1D-CNN and WGAN-GP models. However, with the dash line plotted in Figure 15c–e,
some undamaged samples are falsely alerted, and some damaged experimental samples
are missing alerted. As shown in Figure 15f, the transferable features of two domains
under the same class are projected into the same region, and the different conditions data
are separated well. The result shows that the proposed MMD-DANN model not only
effectively reduces the inter-domain distance but also enlarges the among-class distance.
With the dash line plotted in Figure 15f, only a few damaged target data are misclassified.
The corresponding crack length of the misclassified damaged target samples are all 3 mm,
because the response signals with 3 mm crack length have a small variation compared to
the undamaged signals. Consequently, the classification accuracy of the proposed model
is the highest. The visualization results prove that the proposed MMD-DANN model
outperforms the other methods and presents the best transfer performance. The proposed
MMD-DANN model can be used as an effective domain adaptation tool to accurately detect
fatigue crack for the unlabeled experimental samples.

4. Conclusions

In this paper, an automated fatigue crack detection method based on MMD-DANN
model was proposed to accurately detect structural conditions for metal structures. To
overcome the difficulty of time-consuming acquisitions of the labeled data in practice, FEM
simulations were adopted to obtain simulated response Lamb wave signals with different
healthy conditions, which are assigned as the labeled source domain data. Due to the
distribution discrepancy between the simulated and experimental signals, the classifier
model trained on the simulated data cannot be directly applicable to the experimental
data. A novel unsupervised domain adaptation method based on MMD-DANN model
was developed. By integrating MMD with the adversarial training of DANN model, the
discriminative and domain-invariant features of the simulated source domain and the
experimental target domain can be extracted. Following that, the classification knowledge
of the labeled source domain can be generalized to the unlabeled target domain. Fatigue
tests on center-hole metal specimens are implemented to validate the proposed method.
Comparing with the data-driven intelligent method and other deep domain adaptation
methods, the detection results on the experimental data show that the proposed MMD-
DANN model presents higher classification accuracy and better transfer performance. The
average classification accuracy on the experimental data for MMD-DANN model is 98.12%,
and the false alarm rate and missing alarm rate are 3.08% and 1.56%, showing the domain
adaptation effectiveness of the proposed MMD-DANN model.

The proposed method is a regular binary classification method which only classifies
the undamaged and damaged conditions, and is unable to further classify damaged cases
with different crack length. Therefore, in our future research, an automated damage
quantification detection method for fatigue crack based on unsupervised deep domain
adaptation will be studied. Moreover, unsupervised domain adaptation detection methods
for complex multi-bolt joint specimens and lap specimens also need to be established.

Author Contributions: Conceptualization, L.W. and Y.Y.; methodology, L.W.; software, L.W., C.Z.
and G.L.; validation, L.W. and C.Z.; review, C.Z. and J.Q.; supervision, Y.Y.; funding acquisition, J.Q.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China (52175141 &
52235003 & 51921003), Natural Science Foundation of Jiangsu Province (BK20220133).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 1943 19 of 22

Appendix A

The pseudo code of the proposed MMD-DANN model is presented in the Algorithm A1.

Algorithm A1: MMD-DANN

Initialization: feature extractor G f , label predictor Gy, and domain classifier Gy with parameters of θ f , θy, θd; mini - batch

size M = 64; training step N = 20, 000; training progress p; learning rate; µ = η0/(1 + 10p)0.75, η0 = 1× 10−3;
trade− off parameter α = 5; trade− off parameter λ = 2/

(
1 + e−10p)− 1

for l = 1, . . . , N do
Input a batch from the labeled source data Ds =

{
xi

s, yi
s

}m

i=1
, unlabeled target data Dt =

{
xj

t

}n

j=1
Compute training progress : p = l/N
Compute learning rate µ, trade-off parameters α, λ

Calculate label prediction loss : Ly(Ds) = −E(xs ,ys)∼Ds

K
∑

k=1
1[k=ys ] log

(
Gy

(
G f (xs)

))
Calculate domain classification loss : Ld(Ds,Dt) = −Exs∼Ds

[
log
(

Gd

(
G f (xs)

))]
− Ext∼Dt

[
log
(

1−Gd

(
G f (xt)

))]
Calculate distribution discrepancy metric : LMMD(Ds,Dt) =

√
1

m2

m
∑

i,j=1
k
(

xi
s, xj

s

)
− 2

mn

m,n
∑

i,j=1
k
(

xi
s, xj

t

)
+ 1

n2

n
∑

i,j=1
k
(

xi
t, xj

t

)
Calculate loss function of feature extractor : L f (Ds,Dt) = Ly(Ds)− λLd(Ds,Dt) + αLMMD(Ds,Dt)

Update parameters: θ f ← θ f − µ
∂L f
∂θ f

, θy ← θy − µ
∂Ly
∂θy

, θd ← θd − µ ∂Ld
∂θd

End for
Output: Predicted class label for target domain data Gy

(
G f (xt)

)
Appendix B

The architectures of the 1D-CNN, WGAN-GP, DAC, DAN, and DANN model used in
this paper are shown in Figure A1.
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