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Abstract: Three-dimensional-integrated focal-plane array image processor chips offer new opportu-
nities to implement highly parallelised computer vision algorithms directly inside sensors. Neural
networks in particular can perform highly complex machine vision tasks, and therefore their effi-
cient implementation in such imagers are of significant interest. However, studies with existing
pixel-processor array chips have focused on the implementation of a subset of neural network
components—notably convolutional kernels—on pixel processor arrays. In this work, we imple-
ment a continuous end-to-end pipeline for a convolutional neural network from the digitisation of
incoming photons to the output prediction vector on a macropixel processor array chip (where a
single processor acts on group of pixels). Our implementation performs inference at a rate between
265 and 309 frames per second, directly inside of the sensor, by exploiting the different levels of
parallelism available.

Keywords: smart imagers; macropixel array processors; embedded artificial intelligence; convolu-
tional neural networks

1. Introduction

Convolutional neural network (CNNs) models serve as the basis for a number of
important computer vision applications, including classification [1,2], detection [3,4] and
segmentation [5,6]. However, CNNs are memory intensive models, and their execution
on conventional hardware, such as central and graphics processing units (CPUs; GPUs),
can often result in high latencies and energy requirements. For the most part, this is
due to the time and energy required simply to move sensor data, model parameters and
intermediate network states between shared memory and processing units rather than
performing the underlying calculations themselves [7]. In order to improve the efficiency
of CNNs, different hardware paradigms have been developed with the aim of massively
reducing the volume of information movement. Numerous dataflow architectures have
been proposed [8–14], whereby an array of processing elements (PEs), each containing their
own limited memory called a register file, minimise the flow of data by storing intermediate
results locally as well as operating on data received from their neighbouring PEs. Similarly,
tensor processing units have been proposed which accelerate matrix multiplication through
the cascading of multiplication and sum over a systolic array of PEs [15].

While these approaches allow neural network models to execute more efficiently once
the input data are in place, for computer vision tasks, there remains the cost inherent
to transporting the input pixel data from an image sensor to a standalone processor. To
solve this problem, imager chips have been proposed that integrate processing elements
with the pixels themselves [16]. Such approaches, called pixel-arrays, allow computer
vision algorithms to be executed inside of the sensor while also storing neural network
weights and intermediate data inside the register file of the pixel processors. This in-sensor
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approach promises a considerable reduction in the energy required to perform inference in
embedded systems at the edge [17].

Three-dimensional-integrated imager chips, whereby the photodetector array is stacked
directly on top of a processing layer, offer considerable advantages in terms of pixel density
and low latency processing [18–20]. Integrated solutions have been also proposed where
one die, that performs a complete image capture, is stacked on top of another which exe-
cutes the digital signal processing steps required for CNN inference [21]. However, since
the data connection between the two dies relies on a column analog-to-digital converter, the
bandwidth between the sensing and processing components may be limited. By connecting
pixels, or sets of pixels (i.e., macropixels), directly to the processing array, this limitation
can be overcome.

The previous work has demonstrated advantages in terms of energy, latency and frame
rate, of implementing convolutional neural network layers on pixel array chips [22,23].
However, while pixel processing arrays offer highly parallelised processing, the hardware
computing capabilities of the circuits below the pixels may be constrained by the size of the
pixels themselves. Macropixel processor arrays mutualise hardware resources per set of
pixels and therefore offer a compromise between the processing parallelism and hardware
capabilities, allowing more complex processing that cannot be conducted at the pixel level.

In this paper, we present the first end-to-end implementation of a convolutional
neural network model on a macropixel processor array (MPA) chip. We compare the frame
rate achieved on our architecture to previous works based on pixel-arrays. We achieve a
favourable performance for neural network architectures of similar sizes but with higher
precision weights and activations.

2. Materials and Methods
2.1. Three-Dimensional-Stacked Macropixel Array Architecture

This work is built on the RETINE [18,19] MPA. It is a 3D-stacked vision chip whereby
an array of backside-illuminated photodetectors are bonded directly on top of an array
of macropixel processors (MPX-p) (see Figure 1). Specifically, an array of 16 × 16 pho-
todetectors communicate vertically via sixteen analog-to-digital converters and write the
sensed data directly into a local register file (RF) memory that exists within each macropixel
processor (MPX-p)—each with a total capacity of 384 bytes. Each MPX-p also contains
sixteen local processing elements (PEs) that execute programmed microcodes in a single-
instruction multiple-data fashion. These microcodes are generated through compiling
a custom assembly language. The sixteen PEs write into and read from one of sixteen
corresponding columns in the RF in parallel and perform logic and arithmetic operations
on these data (i.e., add, multiply, shift, etc.) thanks to an 8-bits arithmetic and logical unit
(ALU). Furthermore, RF data can be shifted in parallel, to the left or right, between data
columns within the register file and also between neighbouring in any direction. This local
MPX-p memory can also be written to and read from by an on-chip 98 KB SRAM in a
highly parallel and low latency fashion via a crossbar circuit. This might be conducted, for
example, to load the weights of a convolutional kernel that will be applied to the pixel data
stored in the RF.

These 3D-stacked MPX-p are tiled in a 16 × 12 systolic array—permitting massively
parallel and distributed in-sensor computation on 256 × 192 pixels captured by the top
layer of photodetectors on the chip at a rate of up to 5500 frames per second. RETINE can
also be configured to operate in a higher image resolution mode of 1080 × 768 pixels.
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Figure 1. Three-dimensional-stacked macropixel processor array overview: (top left) 3D-stacked
macropixel array with 16 × 16 pixels tightly coupled to a SIMD of 16 PEs (bottom left). Details of
one PE (right). A full matrix of MPX-p.

2.2. Convolutional Neural Network Model

Very similar to the LeNet-5 convolutional neural network [24], the neural network
architecture applied in this work relies on convolutional and fully connected layers. More
precisely, the model has two convolutional layers followed by two fully connected layers,
as summarised in Table 1. Since the main objective of this paper is to study and detail the
implementation details of a CNN on an MPX-p, we therefore consider the arbitrary use
case of MNIST digit classification.

Table 1. Description of the neural network model layers.

Layers Input Size Filter Size Nb Filters Stride Output Size

CONV1 24 × 24 × 1 (1b) 4 × 4 × 1 16 2 11 × 11 × 16 (4b)
CONV2 11 × 11 × 16 (4b) 5 × 5 × 16 24 2 4 × 4 × 24 (4b)

FC1 384 (4b) - 150 1 150 (4b)
FC2 150 (4b) - 10 1 10 (4b)

An input image of dimension 24 × 24, at a fixed location within the full field of view,
is fed into the model which outputs a vector of size ten, denoting the class (i.e., digits 0
through 9) logits pertaining to the input digit. After each convolutional and fully connected
layer, the weighted sum is summed with a bias-shared parameter that is a common value
for each layer, and then passed through a saturating rectifying linear unit (ReLU)—-the
saturation value is fifteen. A bit-shift scaling factor N is introduced into the ReLU operation
applied to the weighted sum per layer. This acts to divide the weighted sum by a factor of
2N , such that the distribution of weighted sums over the training dataset falls within the
permitted range of activations between zero to fifteen [25].

In order to respect the memory constraints of the RETINE MPA, the input image
is binarised and, in a post-training quantisation step, the weights and activations are
quantised to 4 bits (twos-complement signed integer for weights and unsigned integers
for the activations) after training. Note that our implementation supports an intermediate
precision in the weighted sum of up to the 17-bit signed integer precision. At this level of
quantisation on RETINE, the accuracy on the MNIST digit test set is reduced by only 1.4%
compared to an 8-bit quantisation—from 98% to 96.6%— and the resulting 34 kB neural
network can be fully stored in the MPA on-chip SRAM.
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3. End-to-End Implementation on the MPA Architecture

The neural network is implemented on RETINE by a series of microcodes that execute
the operations required to implement the four layers of our model in a continuous pipeline.
In addition to the functional codes that implement the required core operations (convolu-
tions and fully connected operations), pre-processing codes are also required before each
layer in order to organise and distribute the data (input features (IF) and weights) over the
MPA architecture to take advantage of all levels of parallelism available.

We first detail the end-to-end pipeline, as depicted in Figure 2, and then in the fol-
lowing section provide more detail relating to how the core functions (i.e., convolution,
multiply and accumulate) are realised. All of the intermediate feature maps and vectors
shown in the figure correspond to those which resulted on the MPA due to the input digit
six shown in the figure.

Figure 2. End-to-end pipeline implementation of the convolutional neural network model on the
MPA. Each intermediate state of the data from input digit to output class distribution prediction is
represented on the 16 × 12 array of MPX-p. Grey arrows indicate the flow of data over the array. The
extent of filter parallelism for each layer is noted in the upper part of the figure.

3.1. High-Level Pipeline

The entire field of view, transduced by the top-layer of the 3D-stacked image sensor, is
binarised in a low resolution mode (256 × 192 pixels) by the analog-to-digital converters
and written into the local register file of each MPX-p. Assuming that the region of interest
(ROI), in other words, the input MNIST digit, is in the centre of the field of view, the
24 × 24 input binary pixels of the digit are stored in a square spanning four MPX-p— each
observing a 12 × 12 pixel quadrant of the MNIST digit (Figure 3).

3.1.1. Pre-Processing CONV1

In order to apply the sixteen filters of the first convolutional layer (CONV1) in parallel,
the input ROI is duplicated fifteen times on the MPA. This is conducted first by copying the
ROI data to the four southerly MPX-p. The two central MPX-p columns containing the ROI
are then duplicated over the width of the MPA. After duplication of the input, the weights
for the CONV1 layer are then loaded into the MPA from the on-chip SRAM. Each square
group of four MPX-p, which contain the input ROI, are programmed with the weights of
one of the sixteen different convolutional filters.

3.1.2. CONV1

For each filter, the convolution operation is performed in a highly parallel fashion, as
represented on Figure 3. Not only is one kernel parallelised over four MPX-p, but twelve
of the sixteen available PE with an MPX-p operate simultaneously on by twelve columns
of MNIST digit pixels.
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Figure 3. Example of how the input and output feature maps are distributed over four MPX-p in the
CONV1 layer. The left-hand side image shows the input MNIST digit spanning four MPX-p.

The convolutional filter stride is implemented during the convolution. After applica-
tion of the filters, a ReLU activation is applied and the outputs are quantised as unsigned
4-bit integers—resulting in a 11 × 11 output features (OF) map. The four quadrants of each
of the sixteen OF maps are regrouped into one of the four MPX-p, as in the third panel of
Figure 2. All CONV1 layer filters are executed in parallel, and at the end of this layer the
sixteen OF maps are distributed over the two central lines of the MPA (cf. Figure 2).

3.1.3. Pre-Processing CONV2

The CONV1 OF maps are then duplicated vertically, such that each column of the
entire MPA contains one OF. This is achieved in two steps. In the first, the two central rows
of MPX-p are filled with the OF. Then, in a highly parallelised fashion, data from the first
line of MPX-p are transferred to the upper part of the matrix, while data from the second
line are transferred to the lower part.

At this point, the CONV2 layer inputs are duplicated twelve times (on the twelve MPA
rows). Crucially, this permits the simultaneous execution of the twelve filters. Since the
second convolutional layer requires twenty-four filters, the kernels can be applied in two
passes. Before each pass, one set of filter weights are loaded into the MPA, such that each
MPX-p contains twenty-five weights—corresponding to the 5 × 5 kernel of a channel for a
filter. Each row of MPX-p are loaded with the same filter weights. In each row, therefore,
one filter is applied to all of the feature maps from the previous layer.

3.1.4. CONV2

The convolutions for the first twelve filters are executed on the MPA. In one row of
the MPA, each MPX-p contains the 11 × 11 input feature map corresponding to a channel
and each PE from PE0 to PE10 contains in its local register file, a line of eleven IF. Similarly
to CONV1, the filter is applied simultaneously, in parallel for each set of filters and for the
set of outputs from the previous layer, on eleven of the sixteen PE for the eleven columns
of the input feature map. Weights for the last twelve filters of the CONV2 layer are then
loaded into the MPA before executing the next set of convolutions for the last twelve filters.

At this point, each MPX-p contains a partial output feature map. In order to complete
the convolution, a weighted sum of all of the feature maps in each row of the MPA is
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required. This is achieved by executing an addition tree microcode (Figure 4). Simply, the
addition tree sums up, along the rows of the MPA, all of the partial results stored in each
MPX-p (i.e., for each channel). It is executed in parallel for the twenty-four filters whereby
the sum converges, over four addition branches, towards a central column of MPX-p.
Between each addition branch, the partial sums are bit-shifted between neighbouring
MPX-p, where a different number of shifts are performed at each step. The final 17-bit
signed weighted sum is then finally passed through a ReLU activation and quantised to
4-bits. At the end of this layer, the twenty-four 4 × 4 OF maps are located in the MPA
central column as represented in Figure 2. Within each MPX-p, the data are organised such
as that the feature maps are contained within the memory of eight of the PEs.

Figure 4. The addition tree execution steps for a row of sixteen MPX-p. Numbered grey squares
correspond to MPX-p in a row of the MPA. Arrows converging on addition symbols (within a
black circle) show how data from these MPX-p are summed together spatially. After four branches
of the tree, the final results converge at the central MPX-p column (here MPX number 7). The
communication shift value is specified for each branch at the left-hand side of the figure.

3.1.5. Pre-Processing FC1

To parallelise the calculation of the 150 filters of the FC1 layer, IF maps are first
duplicated once inside the MPX-p: features located in the first eight PEs are copied into
the eight remaining PEs (PE8 to PE15), thereby doubling the number of partial results that
can be evaluated inside a single MPX. The central column of the MPA is then horizontally
distributed such that each row in the MPA contains copies of the same output feature map
from the previous layer.

3.1.6. FC1

At this point, each column of the MPA contains the flattened 384 ReLU activation
vector from the CONV2 layer. Each MPX-p will compute the partial weighted sum for two
hidden neurons in a single pass—therefore, thirty-two neurons on the entire MPA. Each
MPX-p is programmed with sixty-four 4-bit signed weights, corresponding to a 32 × 2
weight matrix. To compute the partial products for the 150 hidden layer neurons, five
passes are therefore required. After these five passes, to compute the full weighted sum, the
partial products stored in each MPX-p are summed vertically over the MPA using another
addition tree code. This sum converges in a central row of the MPA, as shown in Figure 2.
A ReLU activation is then applied and the output is reduced from a vector of 16-bit signed
integers to 4-bit unsigned integers.

3.1.7. Pre-Processing FC2

The entire vector of 150 4-bit ReLU activations from FC1 layer is distributed over the
sixteen MPX-p of the central row in the MPA. In preparation for the final fully connected
layer, all the activation values are regrouped into one MPX-p, which is then copied to nine
others to allow the computation of the ten final output neurons in parallel. Each of these
MPX-p are loaded with 150 4-bit signed weights.
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3.1.8. FC2

The entire calculation executes within a single MPX-p and no further communication
with neighbouring MPX-p are required. The single value calculated per MPX-p corresponds
to the output logit of that neuron. The output class distribution for the example input
digit, calculated on the MPA implementation, is shown in the final stage of the pipeline in
Figure 2.

3.2. Description of Core Functions

In the pipeline described above, there are two core functions that underpin the neu-
ral network model: convolution operations and vector–matrix multiplications (i.e., fully
connected layers). These operations are well known and widely used on CPU and GPU
architectures, but their efficient implementation on a specific architecture such as a highly
parallel MPA architecture is a challenging task. One of the main issues is to exploit the
computing power in parallel without adding too much data movement time. The following
section details, from the perspective of register file of an MPX-p, how these operations are
implemented to exploit the MPA parallelism.

3.2.1. Convolution

The local register file memory of each MPX-p can be viewed as depicted in the two
panels of Figure 5 (each panel shows a different state of the RF at a different moment in
the convolution). The RF memory is divided into five sections. The first section, input,
contains the data on which the convolutional filters are applied (i.e., pixel data or input
feature maps); the second, kernel weights, is loaded with the filter weights; and the third,
communication, is used for communicating input data between neighbouring columns of
PE and neighbouring MPX-p. The fourth section, accumulator, contains the accumulated
values of an ongoing convolution, which, after the operation is finished, are written into
the fifth section, output, that contains the output feature maps of the convolution.

As described in Section 2.1, each PE within an MPX-p operates on one corresponding
data column in the RF. Each of the sixteen PE applies the filter (loaded into the second
section) simultaneously, while the data values are transferred through the communication
section to be multiplied by the corresponding weight in the PE. The convolution exploits a
specific feature of the MPX-p, whereby the weight value currently contained within the
zeroth column of the register file (the leftmost in Figure 5) can be broadcast simultaneously
to all sixteen PE. Concretely, the input data value loaded into each PE is multiplied by the
broadcast weight value and, in order to cycle through all weights of the loaded filter, the
weights are repeatedly shifted from right to left within the register file. By copying the
value in column zero into column fifteen, the weights circle indefinitely within an MPX-p.

The convolution mechanism is composed of three nested loops (denoted by arrows in
the input section of Figure 5): loop y , which loops over each row of data in the input data
section, and the kernel loops i and j—where I and J correspond to the dimensions of the
convolutional kernel (both equal to five in this example). Three dashed boxes in Figure 5
show the neighbourhood over which a subset of three PEs apply the kernel. Black squares
denote the current point of execution within the nested i and j loops, while grey squares
show the data points that have already been multiplied by the corresponding weight in the
weight section. At the beginning of each i loop, the (y + j)th row of input data is loaded
into the communication section. After each multiplication in the i loop, the communication
section shifts its contents progressively from left to right. Note that for processing elements
on the right-hand side, input data are shifted in from the neighbouring MPX-p; therefore,
there are no edge effects between MPX-p.

The results of the sixteen parallel multiplications are summed with the existing sixteen
values in the accumulator section over the i and j loops. At the end of each outer y loop, in
other words after applying the kernel to a full row of input data, the sixteen accumulated
values are written into the corresponding column in the output section and the accumulator
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is reset to an initial value—here a learned bias parameter. The weights are also realigned to
their original position.

Figure 5 shows two intermediate positions of this convolution operation. In the left
panel (y = 2, j = 0, i = 0), the PEs are operating on the data in the same column and the
weights are in their initial position. The results of the accumulator after application of the
kernel will be written into the second line of the output section. In the right-hand side
panel (y = 3, j = 3, i = 2), the PEs are operating on the next row of input data but the kernel
is in a more advanced state. Note that the weights section has been shifted several times,
wrapping around from the zeroth to the fifteenth PE. Furthermore, the input data that have
been loaded into the communication section at the beginning of the third j loop have also
been shifted three times to the left.

Figure 5. Convolutional kernel implementation in a MPX-p. Two example states of a 5 × 5 kernel
convolution at y = 2; i = 0; j = 0 and y = 3; i = 3; j = 2. Input, kernel weights, communication,
accumulator and output data section are represented as rows of a table. An additional bottom row
shows the PEs that operate on the columns of data in the register file. Each grey or black square
corresponds to a data stored in the register file. Black squares identify the current data in use by a
processing element and dark grey squares show data already processed on the current Y iteration by
the kernel. White circles and stars in the input and weights sections mark the start and end points of
the operation.

After iterating over all Y rows in the input data section, the convolution operation
has been completed and the output section contains the output feature map. In order
to implement a stride on the convolution, two additional steps are required. First, for
the vertical component of the stride, it is simply required to skip a certain number of y
iterations. To implement the horizontal component of the stride, the values in the feature
map are multiplied by zero and then the columns of the output feature map are shifted to
the left. The implementation of the convolution operation described above is illustrated for
a 5 × 5 kernel but it remains applicable for any kernel size, the only limitation being the
space available in the register file.

As detailed in Section 3.1, two convolutional layers are required in the model im-
plemented on the MPA. The first requires the application of sixteen 4 × 4 convolutional
kernels to a digit spread over four MPX-p (Figure 3). For this layer, the same set of sixteen
weights (one per MPX-p register file column) are loaded to all four MPX-p and perform the
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convolution on four quadrants of the image in parallel. In the second convolutional layer,
composed of twenty-four 5 × 5 kernels, the output feature maps from the first layer are
processed in two steps. First, the convolution operation is applied to each channel within a
single MPX-p—consistent with the presented operation in Figure 5—resulting in sixteen
partial output maps distributed in sixteen MPX-p, which is then followed by the addition
tree operation to accumulate the partial results into a single MPX-p.

3.2.2. Vector-Matrix Multiplication

The second core operation, required for the final two layers of the model, is fully
connected layers. This requires one simply to compute the inner-product between an input
vector and a weight matrix. If the input vector is of a dimension N and the desired output
vector is of dimension M, the weights will be a N × M matrix.

The register file memory within an MPX-p is organised similarly, as in the case of
convolution (Figure 5). An input data section, which may be composed of a plurality of
rows, stores the input vector. To store, for example, an input vector of sixty-four elements,
since there are sixteen PEs, this section would be required to be four rows of data long.
A second section contains all of the weights that will be multiplied with this data. The
number of rows in the weights section is required to be an integer multiple of the number
of rows in the input section, such that there exists M sets of weights—one for each of the
M outputs. For example, if M = 4 (i.e., there are four output neurons), a total of sixteen
rows are required for this section. Each set of four rows in this section corresponds to the
synaptic weights applied to all the input features to give one output feature. The third
section is an output data section which has M rows—one for each element of the output
vector. There is also an additional communications section, used to help calculate the
accumulation of the partial product calculated in each PE.

In the execution of a fully connected microcode on an MPX-p, all M sets of N weights
are multiplied with the N input data elements. These multiplications are performed in
parallel in batches of sixteen—one per processing element. After each multiplication
operation, the result is accumulated in the output section. After all M sets of weights have
been applied to the input, the partial products in each of the PEs must be summed together.
This is achieved by performing an addition tree internally within the MPX-p. After the
addition tree is completed, one of the PE will contain the full partial result for an MPX-p.
In order to compute the full weighted sum between MPX-p, there is an addition tree code
that sums partial products from across MPX-p in an MPA.

3.2.3. Addition Tree

Since partial products are computed in a parallelised fashion across the MPA, their
elements are required to be summed together in order to calculate the final weighted sum.
The addition tree moves data stored in a given RF section to neighboring MPX-p’s, where
it is added to data stored in the same section.

The register file memory of each MPX-p is simply divided into two sections. The first
section, which is configured to store data up to a 17-bit signed precision, contains the input
data to accumulate. The second section is used to communicate between neighbouring
MPX-p.

In the loop, the data in the first section are written into the communication section,
which is then shifted as many times as necessary to move the data into the communication
section of a neighbouring MPX-p. The direction of the communication is configured before
the transfer (i.e., North, South, East or West). For example, to reach the nearest neighbouring
MPX-p to the left, the communication section is configured for West communication and
the data are shifted the appropriate number of steps from right to left. Since a single shift
operation moves data between adjacent PEs, and because each MPX-p contains sixteen
PE, it is required to shift the data sixteen times to move the contents of one RF section
completely between MPX-p. After the section has been shifted, the data are then simply
accumulated with the contents of the destination MPX-p by summing it with the data
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currently in the first section. If the precision of the data is larger than that permitted in the
communication section or larger than the PE precision, the data can be cut into slices, and
communication-accumulation can be achieved in an incremental fashion.

The addition tree code is repeated over a certain number of addition branches until all
of the data distributed over a row or column of MPX-p have been accumulated into a single
MPX-p. The first addition branch takes place between neighbouring MPX-p and those
that follow with increasingly distant MPX-p in a symmetrical fashion, such that the sum
converges towards the center, as represented in Figure 4. The number of shift operations
varies in integer multiples of sixteen depending on the distance between two MPX-p that
are summed in an addition branch.

As mentioned in Section 3.1, two addition trees are required in the implemented
pipeline. The first one—consistent with the Figure 4—accumulates the partial results
horizontally of each line of sixteen MPX-p in the CONV2 layer. The second one accumulates
the partial results vertically for each of the twelve rows MPX-p in the FC1 layer.

4. Results

The above detailed end-to-end pipeline was implemented on the RETINE MPA chip
at a clock frequency of 100 MHz. The results and intermediate states achieved on the chip
implementation correspond exactly to those observed in the quantised software version of
the model.

The latencies, for each pre-processing and functional step in the pipeline, are shown
in Table 2. The total time taken to classify an input digit was measured to be 3.8 ms—
corresponding to a frame rate of 265 frames per second (FPS). Among all of the steps, the
second convolutional layer incurred the largest latency, at 1.6 ms in total, while the second
fully connected layer was the fastest to execute—at only 6.1 µs. For the first three layers, the
pre-processing steps, responsible for preparing the data and loading the weights into the
MPX-p, correspond to between 10% and 20% of the time taken for the following functional
step. In contrast, the pre-processing latency required for the second fully connected layer is
almost two orders of magnitude greater than the execution time of the layer itself. This is
due to the more complex mechanism required to regroup together the results from across
the MPA and duplicate these data in ten of the MPX-p, compared to the relative simplicity
of the operations required to realise the second fully connected layer.

Table 2. A breakdown of the latency for step of the code. A clock frequency of 100 MHz is used.

Step Latency (µs)

Pre-processing CONV1 75.5
CONV1 648.9

Pre-processing CONV2 186.9
CONV2 1556.4

Pre-processing FC1 127.9
FC1 641.8

Pre-processing FC2 476.4
FC2 6.1

Total 3774.7

In order to better visualise how each step contributes to this total latency, we plot the
percentage of the total time of each step in the outer pie chart of Figure 6. An additional
inner pie-chart shows the theoretical computational complexity of each layer—simply
the total number of additions and multiplications per layer. This comparison offers an
insight into the efficiency of the implementation of each layer. What is striking is the
imbalance between the theoretical complexity (0.6% of total MACs) of the second fully
connected layer and the percentage of the total time taken on the MPA to implement it
(14.2% of total latency). As discussed, the latency required to perform the pre-processing
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for this layer exaggerates this difference even more. In stark contrast, however, the MPA
implementations of the second convolutional layer and the first linear layer contribute less
to the total time than would be expected from the computational complexity of these layers.

Figure 6. Nested pie charts comparing the (inner) theoretical calculation complexity and (outer) the
resulting percentage of the total latency of the layer implemented on the MPA. The pie-chart elapses
from zero degrees in a clockwise fashion and different colours correspond to each layer.

This disparity is in large part due to the fashion in which data can be distributed over
the MPA (depicted in Figure 2) to permit the maximum parallel usage of the computing
resources. The bar chart in Figure 7 shows the percentage utilisation of all available MPX-p
and their processing elements (PEs) for each layer. While the second convolutional layer
and the first fully connected layer make excellent use of the full array, in particular the
first fully connected layer, which leaves no PE untapped, the first convolutional layer and,
especially, the second fully connected layer do not. The extent of parallelism is the main
reason for the difference between the theoretical and implemented latency observed in
Figure 6. In certain applications, instead of implementing the second linear layer on the
MPA itself, it might be favourable to offload this computation to an external microprocessor
that could handle this calculation faster. In doing this, the pipeline on the MPA would be
reduced to 3.2 ms per digit—increasing the frame rate to 309 FPS.

In Table 3, we present a more fine-grained look into the sub-steps that are performed
for the entire second convolutional layer to better understand how different operations
contribute to the overall latency. After the pre-processing step, already present in Table 2,
the next step is the loading of the 4-bit kernel filter weights into the MPX-p. The time taken
to load the weights from the on-chip SRAM into the full matrix of MPX-p requires only
390 ns. Using these weights, the MPA applies the first twelve convolution filters—taking
a total time of 567.5 µs. Thanks to the highly parallel data transfer mechanism between
MPX-p register files and the on-chip SRAM, loading the weights amounts to less than
one-thousandth of the time spent computing with them.
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Figure 7. A bar plot comparing the utilisation of MPX-p across the MPA as well as the utilisation of
processing elements with the MPX-p for each layer of the model.

The second pass requires an additional thirty microseconds since it performs further
data manipulation operations that are required to preserve the results from the first pass.
The addition tree code, which sums up the partial results of each MPX-p in a tree-structure
that converges towards a central column of MPX-p, requires 374.5 µs. Despite its conceptual
simplicity, relative to the convolutions, this step requires a series of different microcodes
to be loaded into MPX-p across the array (loading a microcode requires around 8 µs each
time). The microcode that realises the ReLU that operates on the final feature map requires
only 21.9 µs.

Considering the pre-processing step and the weight transfer as data movement steps,
only 11% of this total latency is incurred due to data movement operations, while the
remaining 89% is due to actual functional computations using this data. In contrast to
typical von Neumann-based neural network implementations, our CNN implementation
on RETINE succeeds in spending the majority of its time computing with data rather than
transporting it.

Table 3. A breakdown of the latency for each step required to perform the second convolutional layer.
A clock frequency of 100 MHz is used.

CONV2 Step Latency (µs)

Pre-processing 186.9
Load 1st weights 0.4
CONV first pass 567.5

Load 2nd weights 0.4
CONV second pass 597.1

Addition tree 374.5
ReLU 21.9

In this work, we have achieved end-to-end CNN inference with 4-bit precision weights
and activations at 265 FPS. As the last fully connected layer is very inefficient due to its lack
of parallelism, we can achieve CNN inference at 309 FPS. To our knowledge, the SCAMP-
5 [16] pixel-array processor is the only other fabricated pixel-array processor on which
end-to-end neural networks have been implemented. We therefore compare our CNN
implementation on the RETINE MPA to other implementations of convolutional models
on this pixel-array processor in Table 4. Specifically, we look at the number and complexity
of layers, the precision of the weights and activations and the resulting frame rate that
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was achieved, since this offers a reasonable proxy to the efficiency of the implementation.
Our macropixel-array-based implementation on RETINE achieves equal or favourable
performance on the pixel-array implementations for a similar network size. The fairest
comparison can be made between lines two and five of Table 4—both networks realise two
convolutional layers followed by a fully connected layer. While the pixel-array has a frame
rate of 224 FPS, our macropixel-array-based implementation achieves 309 FPS—a 38%
improvement. Furthermore, while the pixel-array uses a 1-bit precision, our macropixel
processor array supports weights and activations of up to 4-bits. This may ultimately
permit more performant neural networks to be realised—while the 1-bit precision model on
the pixel-array obtained accuracies ranging between 92–94%, our implementation achieved
a score of 96.6%.

The fact that, for a similar size of CNN, we achieve not only a higher frame rate,
but do so with a higher bit-precision, demonstrates the advantage of the macropixel-level
calculation over single pixel-level calculation. Since the size of the processor is constrained
by the form factor of the pixels above, macropixels allow for a more complex digital circuit
and a larger data and microcode memory to exist beneath a group of pixels than is possible
under individual pixels.

Table 4. Benchmarking frame rate against convolutional models implemented on the SCAMP-5
pixel-array processor.

Work Chip On-Chip Layers Precision Frame Rate

Bose 2019 [26] SCAMP-5 CONV1: 16 5 × 5 2-bit 170

Bose 2020 [23] SCAMP-5
CONV1: 16 4 × 4
CONV2: 16 4 × 4

FC1: 256 × 10
1-bit 224

Liu 2022 [27] SCAMP-5
CONV1: 16 5 × 5
CONV2: 128 4 × 4
CONV3: 64 1 × 1

1-bit 283

This work RETINE

CONV1: 16 4 × 4
CONV2: 24 5 × 5

FC1: 384 × 150
FC2:150 × 10

4-bit 265

This work RETINE
CONV1: 16 4 × 4
CONV2: 24 5 × 5

FC1: 384 × 150
4-bit 309

5. Discussion

We have presented the first end-to-end pipeline of a convolutional neural network
model implemented on a 3D-integrated general purpose macropixel array chip. The
model was implemented with 4-bit precision weights and activations while allowing for
intermediate signed mixed-precision calculations of up to 17-bits. Both convolutional
and fully connected layers were found to be implemented very efficiently when their
weight matrices operated in parallel on different subsets of the input data distributed
across the full processing array. However, as parallelisation was reduced, the resulting
layer implementations became increasingly less efficient. This was in particular for the
second fully connected layer, where parallelisation was difficult due to the small size
of the output vector of the layer. While we have implemented a Lenet-based neural
network, the MPA is programmable and supports a wide range of neural networks. In
this implementation, we have spatially distributed the number of filters as well as the
ifmaps over several macropixels in parallel. The number of parallel units for each layer
is a trade-off between the memory available locally in the macropixel, and the amount of
data to be transferred to perform the processing. The mechanisms used to implement this
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network can be adapted for more complex networks. However, this scaling will probably
be limited by the data movements to feed the computational elements. Fast data transfer
mechanisms will probably have to be added.

In a more fine-grained breakdown of the latency incurred within the second convolu-
tional layer, we observed that approximately 11% of the total latency was incurred by data
and weight transfer codes, while 89% of the total time was dedicated to processing once
the data were in place. Importantly, this demonstrates that computing the in-sensor, in a
massively parallel fashion, permits a departure from the von Neumann rhetoric, whereby
the majority of the time taken to implement neural network models is consumed due to
data movement between either the memory or sensor and processing units.

In comparing our MPA implementation to other pixel-array processor implementa-
tions, we achieved a favourable frame rate for similar sizes of the model. Furthermore,
we are able to achieve this using a higher bit-precision for the weights and activations.
The four layer version of our neural network model implementation on the MPA was able
to process 265 frames per second, while for a three-layer version (omitting the final fully
connected layer) this was improved to 309 frames per second.

Ultimately, this study has demonstrated that the macropixel processor array-based
neural network implementations are advantageous to pixel-array processor arrays because
they allow for more operations to be applied per pixel. Macropixels offer a good trade-off
between hardware factorisation, computing power and sensor readout rate.

Future works will investigate the implementation of other neural network architec-
tures, for example fully convolutional models with dense output layers (i.e., for detection
and segmentation tasks), where the full parallelism of the MPA can be exploited. We will
also consider how existing MPA architectures can be revised and how they can be improved
using more advanced technology nodes, so that they can support larger and more advanced
model architectures.
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