
Citation: Kononov, E.; Klyuev, A.;

Tashkinov, M. Prediction of Technical

State of Mechanical Systems Based on

Interpretive Neural Network Model.

Sensors 2023, 23, 1892. https://

doi.org/10.3390/s23041892

Academic Editor: Pavlos Lazaridis

Received: 12 December 2022

Revised: 18 January 2023

Accepted: 1 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Prediction of Technical State of Mechanical Systems Based on
Interpretive Neural Network Model
Evgeniy Kononov 1 , Andrey Klyuev 2 and Mikhail Tashkinov 1,*

1 Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic
University, 29 Komsomolsky Prospekt, 614990 Perm, Russia

2 Faculty of Applied Mathematics and Mechanics, Perm National Research Polytechnic University,
29 Komsomolsky Prospekt, 614990 Perm, Russia

* Correspondence: m.tashkinov@pstu.ru

Abstract: A classic problem in prognostic and health management (PHM) is the prediction of the
remaining useful life (RUL). However, until now, there has been no algorithm presented to achieve
perfect performance in this challenge. This study implements a less explored approach: binary
classification of the state of mechanical systems at a given forecast horizon. To prove the effectiveness
of the proposed approach, tests were conducted on the C-MAPSS sample dataset. The obtained
results demonstrate the achievement of an almost maximal performance threshold. The explainability
of artificial intelligence (XAI) using the SHAP (Shapley Additive Explanations) feature contribution
estimation method for classification models trained on data with and without a sliding window
technique is also investigated.

Keywords: deep learning; explainable artificial intelligence; predictive maintenance; prognostic and
health management

1. Introduction

Maintenance of mechanical systems requires an approach that allows one to make
decisions in order to improve their productivity, efficiency, and safety. In general, there
are several approaches to maintenance. The first approach is often referred to as reactive
maintenance (RM) [1]. Researchers also use the definition from [2] and define it as corrective
maintenance (CM). These definitions are essentially the same—this is an approach in
which parts are replaced as they fail. It provides full usability of parts, but requires a
mechanical system to suffer downtime, and therefore tends to cause serious delays and
high unscheduled repair costs.

Preventive maintenance (PM) is an approach in which it is possible to predetermine
the useful life of a part and maintain or replace it before it fails. Preventive maintenance
avoids unplanned failures but incurs costs for planned downtime and underutilization of
the component.

Predictive maintenance (PdM) is an approach that aims to optimize the balance be-
tween RM and PM by replacing components in a timely manner. With this approach,
mechanical systems are maintained only when they are close to failure and, consequently,
component life is extended (compared to PM) and unplanned maintenance and labor costs
are reduced (compared to RM). Ultimately, solving PdM tasks leads to the optimization
of periodic maintenance, the minimization of downtime and, as a consequence, the pre-
vention of property damage. The concept of PdM has existed for many years, but only
recently emerging technologies have become effective and affordable enough to make PdM
widely available [3]. As indicated in [4], a sharp increase in the number of publications that
mention PdM began in 2012. It is noteworthy that the number of works related to artificial
intelligence also began to grow exponentially in the same decade.

Sensors 2023, 23, 1892. https://doi.org/10.3390/s23041892 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23041892
https://doi.org/10.3390/s23041892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5407-4422
https://orcid.org/0000-0002-5168-5252
https://orcid.org/0000-0003-4660-0020
https://doi.org/10.3390/s23041892
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23041892?type=check_update&version=1

Sensors 2023, 23, 1892 2 of 19

For example, autoencoders have been successfully used for feature extraction [5],
multi-sensory data fusion [6], fault diagnosis [7,8], and anomaly detection [9] because they
do not require prior knowledge of the data and can compress and fuse multi-sensory data.
Autoencoders are not as efficient at reconstruction compared to generative adversarial
networks (GANs) [10], which allows GANs to solve the class imbalance problem [11,12].
However, it is difficult to stabilize the training of GANs and teach them to generate discrete
data. Due to their ability to detect important features, convolutional neural networks
(CNNs) have also found applications in predicting remaining useful life (RUL) [13,14] and
fault diagnosis [15–17]. However, CNNs can be easily overfit on time series, so recurrent
neural networks (RNNs), which are good at capturing consistent dependencies over time,
are mostly used in the same tasks of fault diagnosis [18–20] and RUL prediction [21–23].
Nevertheless, RNNs are not without drawbacks: problems with vanishing and exploding
gradients can occur, as well as difficulties in processing very long sequences. The previously
presented works on PdM can be roughly divided into two areas: diagnostic and prediction.
Diagnostics involves detecting anomalies, finding the root cause of failures and analyzing
the current state of the system. Prediction aims at predicting the values of the set point, the
RUL and the future state of the system. This paper is devoted to the prognostic direction.

Currently, there are plenty of works devoted to designing neural network models
that can improve the quality of RUL prediction: using multilayer perceptron [24], convo-
lutional [24,25] and recurrent neural networks [26,27], as well as hybrid models [28,29].
There is a limitation in the predictive ability of neural networks, which does not allow the
prediction error of RUL to be reduced below a certain level. For example, the best achieved
result in RUL prediction on the C-MAPSS dataset (subset FD001) [30] is 11.18 using the
root-mean-square error (RMSE) metric [31].

However, the RUL prediction problem can be reformulated into a binary classification
problem for the state of the system as a whole at a given prediction horizon, and there
are several advantages of using such a formulation. Firstly, there are models that may
not give state-of-the-art results in RUL prediction, but will achieve the highest quality
in the classification problem (which is confirmed by the present work with the achieved
99% accuracy). Consequently, using simpler models to achieve better results has the
following advantages: lower computational resource requirements, simplified model
implementation, and less time needed to train the neural network, obtain the prediction,
and adjust hyperparameters. Secondly, the transition from RUL to probability of failure
will expand the possibilities of interpreting the model in terms of a more comprehensible
and accessible measure of the system state—a probabilistic measure. This statement
is particularly important, because the interpretability of neural network models plays
an equally important role, since understanding why a neural network produces certain
predictions can be a crucial factor in making decisions about maintenance.

A study on the application of explainable artificial intelligence (XAI) methods from
the PdM point of view has shown that the SHAP (Shapley Additive Explanations) additive
interpretation method has the best stability and consistency in its results [32]. In addi-
tion, SHAP generates explainable trajectories, which have the properties of monotonicity,
trendability and predictability [33]. This means that SHAP values can be trusted to explain
feature contribution or feature importance. However, the interpretability of neural network
models is still considered only in very few publications that include a mention of PdM [34].
Even among them, the issue has been raised only for models of RUL prediction [35,36] and
anomaly detection [9]. It was also observed that the analysis of the contribution of features
was often limited to the calculation of SHAP values only, without any hypotheses being
put forward and confirmed.

Thus, the purpose of this work is to develop a mechanism for making rational decisions
on the maintenance of mechanical systems on the basis of intelligent analysis of the time
series of indications obtained by the sensors. To achieve this goal, in addition to solving
the problem of RUL prediction, we propose investigating, in terms of interpretability

Sensors 2023, 23, 1892 3 of 19

and predictive ability, the new approach—binary classification of the state of mechanical
systems on a given prediction horizon.

This paper is organized as follows: Section 2 describes the problem formulation.
Section 3 contains a description of the neural network architecture and hyperparameters for
training. Section 4 describes in detail the dataset used to test the new approach and presents
the prediction results. Finally, Section 5 is devoted to a discussion of the interpretability of
the classification model.

2. Problem Statement

To assess the technical state of mechanical systems, two formulations of the problem
are proposed, and the results of both are presented in the current work.

2.1. Regression

Prediction of remaining useful life (RUL) represents a regression problem and is based
on the following hypotheses:

• The number of cycles remaining to the moment of failure must be obtained from the
system sensors;

• The area of definition of RUL is the set {0} ∪N;
• The selected loss function is the mean-square error

MSE =
1
n ∑n

i=1(yi − ŷi)
2, (1)

where yi represents the true RUL values, ŷ presents the predicted RUL values, and n is the
total number of observations.

2.2. Binary Classificaton

Binary classification of system failure at a given forecast horizon is performed based
on the following hypotheses:

• The system failure will be understood as the moment from which the system becomes
unsuitable for further use;

• The forecast horizon is 30 time units;
• It is necessary to know the probabilities of systems belonging to the positive class

(will fail);
• Binary classification is performed: “0”—the system will not fail at a given forecast

horizon, “1”—the system will fail;
• The boundary between classes is determined by the threshold value µ. If the probabil-

ity of the system that belong to the positive class (object x′i from the test sample X′) pi
is lower than µ, then the system is assigned to class «0», otherwise «1»:

x′i →
{

1, pi ≥ µ
0, pi < µ

. (2)

• The threshold value is determined as follows:

µ
(
α∗
(
X′
))

= arg min
µ′∈M

G
(
µ′, α∗

(
X′
))

, (3)

where M is a set of rational numbers from 0 to 1, µ′ is some value from M, and G is the
quality predictive function of the algorithm α∗.

• The selected loss function is binary cross-entropy

L(a, X) =
1
n ∑n

i=1−(yi × log(pi) + (1− yi)× log(1− pi)), (4)

Sensors 2023, 23, 1892 4 of 19

where n is the number of observations, yi is a binary indicator (“0” or “1”), pi the predicted
probability that the system state belongs to the positive class.

3. Solution Method

The problem is solved by training a bidirectional recurrent neural network (BiRNN)
with long short-term memory (LSTM) [37], which will be referred to as BiLSTM below.

3.1. BiLSTM

All temporal steps of the input sequence (unlike the problems that require output after
each input or at the end of some input segment [38]) are available to solve the problems
stated in this paper. Consequently, it is possible to use a bidirectional recurrent neural
network to take into account the flow of information not only in the positive but also in the
negative time direction [39].

The task of classification of the system failure at a given prediction horizon, as well as
the task of RUL prediction, requires only one value on the output of the neural network.
Therefore, in this paper, the many-to-one RNN type is used (Figure 1).

Sensors 2022, 22, x FOR PEER REVIEW 4 of 19

3. Solution Method
The problem is solved by training a bidirectional recurrent neural network (BiRNN)

with long short-term memory (LSTM) [37], which will be referred to as BiLSTM below.

3.1. BiLSTM
All temporal steps of the input sequence (unlike the problems that require output

after each input or at the end of some input segment [38]) are available to solve the prob-
lems stated in this paper. Consequently, it is possible to use a bidirectional recurrent neu-
ral network to take into account the flow of information not only in the positive but also
in the negative time direction [39].

The task of classification of the system failure at a given prediction horizon, as well
as the task of RUL prediction, requires only one value on the output of the neural network.
Therefore, in this paper, the many-to-one RNN type is used (Figure 1).

Figure 1. Many-to-one type of single-layer BiRNN unrolled over time. Here, 𝑥 is the input at
time step 𝑡, 𝑦 is the output at time step 𝑡, and 𝑎→ and 𝑎← are activations at the initial time
step in the forward and reverse directions of the RNN, respectively.

3.2. Model and Hyperparameters
The model presented in Table 1 is trained using an Adam optimizer (𝛽 = 0.9, 𝛽 =0.999) [40] with a learning rate of 10 and a batch size of 32. After the first two fully

connected layers, a dropout layer [41] is used with a drop fraction of units of 0.2. The
output is a fully connected layer with one neuron, which has a linear activation function
for the RUL prediction task and a sigmoid for the classification task.

Table 1. Details of the model used for training.

Layer Units Activation
BiLSTM 64 Tanh
BiLSTM 32 Tanh

FC+Dropout (0.2) 16 ReLU
FC+Dropout (0.2) 8 ReLU

FC 1 Linear/Sigmoid

4. Results and Discussion
4.1. Input Data

As an example, one of the most popular publicly available datasets for solving pre-
dictive tasks to assess the technical state of mechanical systems is used to solve both

Figure 1. Many-to-one type of single-layer BiRNN unrolled over time. Here, x〈t〉 is the input at time

step t, y〈t〉 is the output at time step t, and a〈0〉→ and a〈0〉← are activations at the initial time step in the
forward and reverse directions of the RNN, respectively.

3.2. Model and Hyperparameters

The model presented in Table 1 is trained using an Adam optimizer (β1 = 0.9,
β2 = 0.999) [40] with a learning rate of 10−5 and a batch size of 32. After the first two
fully connected layers, a dropout layer [41] is used with a drop fraction of units of 0.2. The
output is a fully connected layer with one neuron, which has a linear activation function
for the RUL prediction task and a sigmoid for the classification task.

Table 1. Details of the model used for training.

Layer Units Activation

BiLSTM 64 Tanh
BiLSTM 32 Tanh

FC+Dropout (0.2) 16 ReLU
FC+Dropout (0.2) 8 ReLU

FC 1 Linear/Sigmoid

4. Results and Discussion
4.1. Input Data

As an example, one of the most popular publicly available datasets for solving predic-
tive tasks to assess the technical state of mechanical systems is used to solve both problems.

Sensors 2023, 23, 1892 5 of 19

It contains the sample values of features (Table 2) from the damage simulation model of a
hundred aircraft engines. The damage simulation and data synthesis were performed by
the authors of [30]. The entire dataset is divided into four subsets, but the present study
uses a single subset named FD001. The following will describe how the authors of [30]
modeled damage and synthesized the data contained in the FD001 subset.

Table 2. Transcriptions of the features in the original data.

Feature Transcription

EN Engine number
FN Flight cycle number
OS1 Operation setting #1
OS2 Operation setting #2
OS3 Operation setting #3
S1 Total temperature at fan inlet
S2 Total temperature at LPC outlet
S3 Total temperature at HPC outlet
S4 Total temperature at LPT outlet
S5 Pressure at fan inlet
S6 Total pressure in bypass-duct
S7 Total pressure at HPC outlet
S8 Physical fan speed
S9 Physical core speed

S10 Engine pressure ratio
S11 Static pressure at HPC outlet
S12 Ratio of fuel flow to S11
S13 Corrected fan speed
S14 Corrected core speed
S15 Bypass ratio
S16 Burner fuel-air ratio
S17 Bleed enthalpy
S18 Demanded fan speed
S19 Demanded corrected fan speed
S20 HPT coolant bleed
S21 LPT coolant bleed

At first, a model was chosen that would allow the input of changes in parameters
related to the state of the engines and save the results of sensors measurements. The
C-MAPSS software [42], which allows simulation of the operation of a two-circuit turbofan
engine, met these requirements. To check the adequacy of the aircraft engine model,
response surfaces were built, which investigate the relationship between flow and efficiency
losses of individual rotating engine components (Figure 2) in relation to the parameters for
health index calculation for these components. The health index will be understood as a
quantitative indicator of the engine state at time t, described by Formula (5).

Sensors 2022, 22, x FOR PEER REVIEW 6 of 19

Figure 2. Simplified engine diagram in C-MAPSS [42]. Rotating modules: fan, low-pressure com-
pressor (LPC), high-pressure compressor (HPC), high-pressure turbine (HPT), low-pressure turbine
(LPT).

After studying such degradation models as Arrhenius, Coffin–Manson fatigue crack
growth, and Eiring, it was noticed that the exponential law for time to failure that is com-
mon for all models is 𝑡 = 𝐴𝑒 , where 𝐴 is the scaling factor and 𝐵 𝑡 is some func-
tion depending on the considered degradation process. That and the observation of simi-
lar degradation trends in practice motivated them to apply this law for modeling changes
in state parameters and calculating the health index: 𝐻 𝑡 = 𝑚𝑖𝑛 𝑒 𝑡 , 𝑓 𝑡 ; (5) 𝑒 𝑡 = 1 − 𝑑 − 𝑒 ; (6)

𝑓 𝑡 = 1 − 𝑑 − e , (7)

where 𝑑 and 𝑑 are the initial degree of degradation and manufacturing in terms of effi-
ciency and consumption, respectively, 𝑡 = 𝐵(𝑡), and 𝑒 () = , where 𝑡ℎ is an
upper wear threshold that denotes an operational limit beyond which the component/sub-
system cannot be used.

Thus, data synthesis was conducted according to the following algorithm:
1. Select the initial degree of degradation (within 1%);
2. Introduce an exponential rate of degradation;
3. Stop data synthesis when the health index reaches zero;
4. Impose noise on the obtained data, taking into account the effects of maintenance

between flights and differences in operating conditions (weather parameters, aircraft
load, pilot operating style, etc.).
The health index should depend on the condition of each of the rotating assemblies,

but in the considered data, the failure criterion is the situation when the residual strength
became less than 15% of the original HPC strength, i.e., when 𝑒(𝑡) < 0.15 or 𝑓(𝑡) < 0.15.

4.2. Preprocessing and Testing
Before the direct training of the neural network, the initial data were pre-processed.

It was noticed that the features OS3, S1, S5, S6, S10, S16, S18 and S19 have a constant value
during the entire time interval (the full list of measured features is presented in Table 2).
These features were removed because they do not carry any useful information. In addi-
tion, the values measured by the sensors have different ranges and therefore the values
for the features have been scaled to the range [0,1]: 𝑥 = 𝑥 − 𝑥𝑥 − 𝑥 . (8)

Figure 2. Simplified engine diagram in C-MAPSS [42]. Rotating modules: fan, low-pressure compres-
sor (LPC), high-pressure compressor (HPC), high-pressure turbine (HPT), low-pressure turbine (LPT).

Sensors 2023, 23, 1892 6 of 19

After studying such degradation models as Arrhenius, Coffin–Manson fatigue crack
growth, and Eiring, it was noticed that the exponential law for time to failure that is
common for all models is t f ault = AeB(t), where A is the scaling factor and B(t) is some
function depending on the considered degradation process. That and the observation
of similar degradation trends in practice motivated them to apply this law for modeling
changes in state parameters and calculating the health index:

H(t) = min(e(t), f (t)); (5)

e(t) = 1− de − eae(t)tbe(t) ; (6)

f (t) = 1− d f − ea f (t)t
b f (t)

, (7)

where de and d f are the initial degree of degradation and manufacturing in terms of ef-
ficiency and consumption, respectively, tb(t) = B(t), and ea(t) = A

thwear
, where thwear is

an upper wear threshold that denotes an operational limit beyond which the compo-
nent/subsystem cannot be used.

Thus, data synthesis was conducted according to the following algorithm:

1. Select the initial degree of degradation (within 1%);
2. Introduce an exponential rate of degradation;
3. Stop data synthesis when the health index reaches zero;
4. Impose noise on the obtained data, taking into account the effects of maintenance

between flights and differences in operating conditions (weather parameters, aircraft
load, pilot operating style, etc.).

The health index should depend on the condition of each of the rotating assemblies,
but in the considered data, the failure criterion is the situation when the residual strength
became less than 15% of the original HPC strength, i.e., when e(t) < 0.15 or f (t) < 0.15.

4.2. Preprocessing and Testing

Before the direct training of the neural network, the initial data were pre-processed. It
was noticed that the features OS3, S1, S5, S6, S10, S16, S18 and S19 have a constant value
during the entire time interval (the full list of measured features is presented in Table 2).
These features were removed because they do not carry any useful information. In addition,
the values measured by the sensors have different ranges and therefore the values for the
features have been scaled to the range [0, 1]:

xscaled =
x− xmin

xmax − xmin
. (8)

Thus, the total volume of the training set is 20,631 samples. The model was trained
using TensorFlow machine learning library [43] and Keras interface [44] on NVIDIA RTX
A5000 GPU, AMD Ryzen 9 5900X CPU and 64 GB RAM. The presented results were
calculated on the last time step of the sensor indications for each engine; hence, the volume
of the test set was 100 samples. It is important to note that the test sample has no cycles in
which the engine would fail.

4.3. Solution of the RUL Prediction Problem

By plotting the dependence of predicted and true RUL values on the engine number
(Figure 3), it can be found that the model has a high predictive ability. The average absolute
error is convenient to use in order to interpret the obtained result:

MAE =
1
n ∑n

i=1

∣∣Yi − Ŷi
∣∣, (9)

where Yi represents the true RUL values, Ŷ represents the predicted RUL values, and n is
the total number of observations. In this case, the MAE is approximately 14.815, i.e., the

Sensors 2023, 23, 1892 7 of 19

model is on average wrong by 15 cycles. It is important to note that most of this error is
due to about 10% of the engines whose RUL predictions stand out strongly from the overall
picture. Therefore, it can be concluded that for 90 out of 100 engines, satisfactory forecasts
of their remaining useful life are obtained.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 19

Thus, the total volume of the training set is 20,631 samples. The model was trained
using TensorFlow machine learning library [43] and Keras interface [44] on NVIDIA RTX
A5000 GPU, AMD Ryzen 9 5900X CPU and 64 GB RAM. The presented results were cal-
culated on the last time step of the sensor indications for each engine; hence, the volume
of the test set was 100 samples. It is important to note that the test sample has no cycles in
which the engine would fail.

4.3. Solution of the RUL Prediction Problem
By plotting the dependence of predicted and true RUL values on the engine number

(Figure 3), it can be found that the model has a high predictive ability. The average abso-
lute error is convenient to use in order to interpret the obtained result: 𝑀𝐴𝐸 = ∑ 𝑌 − 𝑌 , (9)

where 𝑌 represents the true RUL values, 𝑌 represents the predicted RUL values, and 𝑛 is
the total number of observations. In this case, the 𝑀𝐴𝐸 is approximately 14.815, i.e., the
model is on average wrong by 15 cycles. It is important to note that most of this error is
due to about 10% of the engines whose RUL predictions stand out strongly from the over-
all picture. Therefore, it can be concluded that for 90 out of 100 engines, satisfactory fore-
casts of their remaining useful life are obtained.

Figure 3. Predicted (blue) and true (red) engine RUL values. Table 3 shows a comparison of the RUL
prediction results of the presented model, which will be referred to as BiLSTM (baseline), with neu-
ral network architectures from other studies concerning the RMSE metric. The model presented in
this paper is similar to the model from [27]. It is assumed that the difference in the results between
them is due to the insufficient optimization of hyperparameters. The largest decrease in RMSE oc-
curred after the transition from classical MLP to more modern recurrent and convolutional neural
network architectures, while hyperparameter optimization also added a significant gain, but the use
of hybrid architectures did not have a great effect. In this regard, there seems to be a performance
threshold for RUL prediction on this dataset, so it makes sense to switch from the regression task to
the classification task.

Table 3. Comparison of method performance on a dataset C-MAPSS (FD001).

Method RMSE
MLP [24] 37.56

BiLSTM (baseline) 19.12
CNN [24] 18.45

DLSTM [26] 16.14
BiLSTM [27] 13.65

Figure 3. Predicted (blue) and true (red) engine RUL values. Table 3 shows a comparison of the
RUL prediction results of the presented model, which will be referred to as BiLSTM (baseline), with
neural network architectures from other studies concerning the RMSE metric. The model presented
in this paper is similar to the model from [27]. It is assumed that the difference in the results between
them is due to the insufficient optimization of hyperparameters. The largest decrease in RMSE
occurred after the transition from classical MLP to more modern recurrent and convolutional neural
network architectures, while hyperparameter optimization also added a significant gain, but the use
of hybrid architectures did not have a great effect. In this regard, there seems to be a performance
threshold for RUL prediction on this dataset, so it makes sense to switch from the regression task to
the classification task.

Table 3. Comparison of method performance on a dataset C-MAPSS (FD001).

Method RMSE

MLP [24] 37.56
BiLSTM (baseline) 19.12

CNN [24] 18.45
DLSTM [26] 16.14
BiLSTM [27] 13.65
DCNN [25] 13.32
HDNN [29] 13.02

RBM+LSTM [28] 12.56
LSTM-Fusion [31] 11.18

4.4. Solution of the Classification Problem

As opposed to the regression model, the training of the classification model was
performed not only on the data with the sliding window technique, but also without it.
This was done in order to further compare the interpretability of the model trained on
simplified and complicated data. By using a sliding window of size l, we observe such
a data transformation that splits the original sequence into a set of sequences of length l,
which, in turn, is a set of elements included in the sliding window moving with a single
step along the original sequence (Figure 4). In this paper, l = 21.

Sensors 2023, 23, 1892 8 of 19

Sensors 2022, 22, x FOR PEER REVIEW 8 of 19

DCNN [25] 13.32
HDNN [29] 13.02

RBM+LSTM [28] 12.56
LSTM-Fusion [31] 11.18

4.4. Solution of the Classification Problem
As opposed to the regression model, the training of the classification model was per-

formed not only on the data with the sliding window technique, but also without it. This
was done in order to further compare the interpretability of the model trained on simpli-
fied and complicated data. By using a sliding window of size 𝑙, we observe such a data
transformation that splits the original sequence into a set of sequences of length 𝑙, which,
in turn, is a set of elements included in the sliding window moving with a single step
along the original sequence (Figure 4). In this paper, 𝑙 = 21.

Figure 4. Example of sliding window application (𝑙 = 5) for a vector of numbers from 0 to 9.

The obtained probabilities of engine failure from the test sample are shown in Figure
5. It is evident that the training of the neural network on the data using the sliding window
technique increases the prediction confidence. However, some engines still cannot be as-
signed to a particular class with high confidence. To ensure a clear separation into classes,
it is necessary to find an optimal threshold value of the probability below which the en-
gine will be assigned to class “0”, and otherwise “1”.

(a)

Figure 4. Example of sliding window application (l = 5) for a vector of numbers from 0 to 9.

The obtained probabilities of engine failure from the test sample are shown in Figure 5.
It is evident that the training of the neural network on the data using the sliding window
technique increases the prediction confidence. However, some engines still cannot be
assigned to a particular class with high confidence. To ensure a clear separation into classes,
it is necessary to find an optimal threshold value of the probability below which the engine
will be assigned to class “0”, and otherwise “1”.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 19

DCNN [25] 13.32
HDNN [29] 13.02

RBM+LSTM [28] 12.56
LSTM-Fusion [31] 11.18

4.4. Solution of the Classification Problem
As opposed to the regression model, the training of the classification model was per-

formed not only on the data with the sliding window technique, but also without it. This
was done in order to further compare the interpretability of the model trained on simpli-
fied and complicated data. By using a sliding window of size 𝑙, we observe such a data
transformation that splits the original sequence into a set of sequences of length 𝑙, which,
in turn, is a set of elements included in the sliding window moving with a single step
along the original sequence (Figure 4). In this paper, 𝑙 = 21.

Figure 4. Example of sliding window application (𝑙 = 5) for a vector of numbers from 0 to 9.

The obtained probabilities of engine failure from the test sample are shown in Figure
5. It is evident that the training of the neural network on the data using the sliding window
technique increases the prediction confidence. However, some engines still cannot be as-
signed to a particular class with high confidence. To ensure a clear separation into classes,
it is necessary to find an optimal threshold value of the probability below which the en-
gine will be assigned to class “0”, and otherwise “1”.

(a)

Figure 5. Probabilities of engine failure in the next 30 cycles for the model trained on data without
(a) and with (b) a sliding window. The area highlighted in red contains engines that cannot be
assigned to any class with a high degree of certainty.

Sensors 2023, 23, 1892 9 of 19

4.5. Finding the Optimal Threshold Value

Let us define the basic metrics needed to find the optimal threshold value µ:

• Precision is the fraction of objects called positive by the classifier that are indeed positive:

Precision =
TP

TP + FP
, (10)

where TP is true positive predictions, FP is false positive predictions (error of the sec-
ond kind).

• Recall is the fraction of objects of the positive class found by the algorithm out of all
objects of the positive class:

Recall =
TP

TP + FN
, (11)

where FN is false negative predictions (error of the first kind).

• True Positive Rate (TPR) is an analog of Recall.
• False Positive Rate (FPR) is the fraction of negative class objects incorrectly predicted

by the algorithm:

FPR =
FP

FP + TN
, (12)

where TN is true negative predictions.
When working with data on the condition of an aircraft engine, it is reasonable to

assume that the correct approach in the selection of µ will be to minimize the error of the
first kind, because in a real-life situation it is better to double-check the engine than to hope
for its correct operation. This will lead to unnecessary financial expenses for diagnostics,
but it will reduce the probability of engine failure during operation. With this approach, it
is worth giving preference to the fact that the proposed algorithm demonstrates the ability
to detect a failure in general, so it is necessary to maximize Recall (or TPR).

The second approach is to find the balance between errors of the first and second kind.
For this purpose, an ROC curve can be constructed, which shows the dependence of TPR
on FPR with variation of the threshold. Here, the best solution is to choose thresholds
that correspond to the minimum of the TPR− FPR difference. However, for samples with
class imbalances, this approach usually does not lead to a good result. In addition, in a
situation where several minima are found, it is impossible to choose a particular one, since
it is unknown whether the total sum of errors of the first and second kind will decrease.

To avoid the disadvantages described above, in order to implement the second ap-
proach, instead of minimizing the TPR− FPR difference, let us minimize the F-measure:

Fβ =
(

1 + β2
)
· precision · recall
(β2 · precision) + recall

. (13)

In order to obtain a balance between FP and FN, it is necessary to take a coefficient
value β = 1:

F1 = 2 · precision · recall
precision + recall

. (14)

Therefore, Precision and Recall will have the same weight in the evaluation of the result.
The results of the two approaches described above are presented in Table 4. It can be

seen that for the model trained on sliding window data, the optimal threshold values for
the two approaches coincide. In addition, the use of the sliding window technique confirms
an improvement in the predictive ability of the neural network, since it becomes possible to
select a threshold value at which the model is wrong in only 1 case out of 100. In addition,
there is no engine that the model detects as a false negative.

Sensors 2023, 23, 1892 10 of 19

Table 4. The result of the two approaches for determining the threshold value for model predictions
trained on data with and without a sliding window.

Precision Recall F1 FN FP FN+FP

max(TPR),
0.6944 1 0.8197 0% 11% 11%µ = 0.0136

(without sliding window)

max(TPR),
0.9615 1 0.9804 0% 1% 1%µ = 0.1034

(with sliding window)

max(F1),
0.9565 0.88 0.9167 3% 1% 4%µ = 0.289

(without sliding window)

max(F1),
0.9615 1 0.9804 0% 1% 1%µ = 0.1034

(with sliding window)

Based on the obtained results of the binary classification of the state of aircraft engines,
it can be concluded that the transition from the regression problem to the classification
problem turned out to be successful, since it was possible to achieve 99% accuracy. More-
over, a relatively simple model was required to achieve this result, which, firstly, is easier
to implement, unlike hybrid models, and, secondly, does not require additional time for
hyperparameter optimization.

5. Interpretation of the Classification Model

An important step when using neural networks or machine learning algorithms is their
interpretation, because understanding the reason why a model makes a certain prediction
can be as important as the accuracy of the model. The Deep SHAP method [45] was used to
explain the resulting probabilities of aircraft engine failure, which estimates the influence
of each of the available features on the model prognosis. The philosophy of this method
can be explained by the classical formula for calculating Shapley values:

φi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|!

[
fS∪{i}

(
xS∪{i}

)
− fS(xS)

]
, (15)

where |F| is the total number of features from the whole set of features F, S is a subset
of features (|S| is the size of this subset), which does not include the i-th feature, fS∪{i}
represents the model predictions for data xS∪{i} (with i -th feature), and fS represents the
model predictions for xS (without the i-th feature). If the mathematical expectation is taken
from the entered predictions, then the value φi for the i-th feature will be a constant, and in
this case, its positive (negative) value will tell us about the increasing (decreasing) influence
of the i-th feature on the probability of failure. The authors [45] also took into account
the specificity of neural networks and came up with a way to optimize the calculation of
Shepley values by approximating φi using Deep LIFT [46].

5.1. Enchanced Interpretability

In this section, we consider a model trained on data to which the sliding window
technique has not been applied. In this regard, there is an opportunity to conduct a fairly
in-depth analysis, which will allow a good understanding of what data the trained model
considers important.

First, let us build a graph (Figure 6), the axes and peak values of which exactly
correspond to Figure 5, but with the difference being that its interactive version allows
us to see the most important features affecting the prediction for a particular engine. The
vertical cross-sections of this graph for engines #81 and #99 are presented on Figure 7. The

Sensors 2023, 23, 1892 11 of 19

length of each segment, labelled with the name of the feature, denotes its contribution to
the probability of engine failure at the output of the neural network f (x). It is evident that
most of the contribution to the probability of failure of engines #81 and #99 consists of the
same set of features. Similar patterns can be observed for engines with a probability of
failure close to 100% or 0%. Hence, it can be concluded that the same set of features makes
the greatest contribution to the model’s confident predictions.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 19

where |𝐹| is the total number of features from the whole set of features 𝐹, 𝑆 is a subset of
features (|𝑆| is the size of this subset), which does not include the 𝑖-th feature, 𝑓 ∪{ } repre-
sents the model predictions for data 𝑥 ∪{ } (with 𝑖 -th feature), and 𝑓 represents the model
predictions for 𝑥 (without the 𝑖-th feature). If the mathematical expectation is taken from
the entered predictions, then the value 𝜙 for the 𝑖-th feature will be a constant, and in this
case, its positive (negative) value will tell us about the increasing (decreasing) influence
of the 𝑖-th feature on the probability of failure. The authors [45] also took into account the
specificity of neural networks and came up with a way to optimize the calculation of Shep-
ley values by approximating 𝜙 using Deep LIFT [46].

5.1. Enchanced Interpretability
In this section, we consider a model trained on data to which the sliding window

technique has not been applied. In this regard, there is an opportunity to conduct a fairly
in-depth analysis, which will allow a good understanding of what data the trained model
considers important.

First, let us build a graph (Figure 6), the axes and peak values of which exactly cor-
respond to Figure 5, but with the difference being that its interactive version allows us to
see the most important features affecting the prediction for a particular engine. The verti-
cal cross-sections of this graph for engines #81 and #99 are presented on Figure 7. The
length of each segment, labelled with the name of the feature, denotes its contribution to
the probability of engine failure at the output of the neural network 𝑓(𝑥). It is evident that
most of the contribution to the probability of failure of engines #81 and #99 consists of the
same set of features. Similar patterns can be observed for engines with a probability of
failure close to 100% or 0%. Hence, it can be concluded that the same set of features makes
the greatest contribution to the model’s confident predictions.

Figure 6. Contribution of all features to the probability of engine failure (red means positive contri-
bution, and blue means negative).

(a)

(b)

Figure 6. Contribution of all features to the probability of engine failure (red means positive contribu-
tion, and blue means negative).

Sensors 2022, 22, x FOR PEER REVIEW 11 of 19

where |𝐹| is the total number of features from the whole set of features 𝐹, 𝑆 is a subset of
features (|𝑆| is the size of this subset), which does not include the 𝑖-th feature, 𝑓 ∪{ } repre-
sents the model predictions for data 𝑥 ∪{ } (with 𝑖 -th feature), and 𝑓 represents the model
predictions for 𝑥 (without the 𝑖-th feature). If the mathematical expectation is taken from
the entered predictions, then the value 𝜙 for the 𝑖-th feature will be a constant, and in this
case, its positive (negative) value will tell us about the increasing (decreasing) influence
of the 𝑖-th feature on the probability of failure. The authors [45] also took into account the
specificity of neural networks and came up with a way to optimize the calculation of Shep-
ley values by approximating 𝜙 using Deep LIFT [46].

5.1. Enchanced Interpretability
In this section, we consider a model trained on data to which the sliding window

technique has not been applied. In this regard, there is an opportunity to conduct a fairly
in-depth analysis, which will allow a good understanding of what data the trained model
considers important.

First, let us build a graph (Figure 6), the axes and peak values of which exactly cor-
respond to Figure 5, but with the difference being that its interactive version allows us to
see the most important features affecting the prediction for a particular engine. The verti-
cal cross-sections of this graph for engines #81 and #99 are presented on Figure 7. The
length of each segment, labelled with the name of the feature, denotes its contribution to
the probability of engine failure at the output of the neural network 𝑓(𝑥). It is evident that
most of the contribution to the probability of failure of engines #81 and #99 consists of the
same set of features. Similar patterns can be observed for engines with a probability of
failure close to 100% or 0%. Hence, it can be concluded that the same set of features makes
the greatest contribution to the model’s confident predictions.

Figure 6. Contribution of all features to the probability of engine failure (red means positive contri-
bution, and blue means negative).

(a)

(b)

Figure 7. Contribution of features to the probability of failure of engines #81 (a) and #99 (b), where
the base value is the average predicted value on the training set (or the value that would be predicted
by the trained model if no features of the test engine were known, i.e., the values of all its features are
equal to zero).

Since not all engines can be confidently assigned to this or that class and they differ
from each other in their characteristics and operating parameters, such an analysis can give
different results of the contribution of features to the probability of failure. In this case, a
ranked list of features can be obtained by taking the modulo average of the contributions
(SHAP values) of each feature for all engines (Figure 8). Here, we observe the same set of
the most significant features as in Figure 7. This result is explained by the fact that most
of the predictions have a probability close to 100% or 0% (see Figure 5). This confirms the
previous conclusion about the contribution of the features to confident predictions.

Since it was initially known that S11 and S12 values depend on each other, and in
Figure 8 their contribution to the prediction is one of the most significant, it is interesting to
look at their dependence directly: in Figure 9, it can be noted that often, high S11 values
and low S12 values increase the SHAP value for S12. In other words, this behavior often
increases the probability of engine failure. If the cluster of points in the upper left corner
are separated by SHAP value above 0.025 and the engines with behavior that describes this
dependence are identified, then by marking these engines with triangles in Figure 10, one

Sensors 2023, 23, 1892 12 of 19

can see that this behavior mostly refers to engines with a high probability of failure. The
only four engines (#61, #77, #91 and #91) stand out strongly from the general rule, with less
than 60% probability of failure, so special attention should be paid to them. Referring to the
test data labels and finding the engines from the considered cluster, it turns out that 18 out
of 20 engines (without #77 and #91) of this cluster would actually fail in the next 30 days;
hence, the initially considered dependence (Figure 9) represents important information.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19

Figure 7. Contribution of features to the probability of failure of engines #81 (a) and #99 (b), where
the base value is the average predicted value on the training set (or the value that would be pre-
dicted by the trained model if no features of the test engine were known, i.e., the values of all its
features are equal to zero).

Since not all engines can be confidently assigned to this or that class and they differ
from each other in their characteristics and operating parameters, such an analysis can
give different results of the contribution of features to the probability of failure. In this
case, a ranked list of features can be obtained by taking the modulo average of the contri-
butions (SHAP values) of each feature for all engines (Figure 8). Here, we observe the
same set of the most significant features as in Figure 7. This result is explained by the fact
that most of the predictions have a probability close to 100% or 0% (see Figure 5). This
confirms the previous conclusion about the contribution of the features to confident pre-
dictions.

Figure 8. Histogram of the contribution of the features, where the contribution of each feature is
taken as the average absolute value of this feature for all engines.

Since it was initially known that S11 and S12 values depend on each other, and in
Figure 8 their contribution to the prediction is one of the most significant, it is interesting
to look at their dependence directly: in Figure 9, it can be noted that often, high S11 values
and low S12 values increase the SHAP value for S12. In other words, this behavior often
increases the probability of engine failure. If the cluster of points in the upper left corner
are separated by SHAP value above 0.025 and the engines with behavior that describes
this dependence are identified, then by marking these engines with triangles in Figure 10,
one can see that this behavior mostly refers to engines with a high probability of failure.
The only four engines (#61, #77, #91 and #91) stand out strongly from the general rule,
with less than 60% probability of failure, so special attention should be paid to them. Re-
ferring to the test data labels and finding the engines from the considered cluster, it turns
out that 18 out of 20 engines (without #77 and #91) of this cluster would actually fail in the

Figure 8. Histogram of the contribution of the features, where the contribution of each feature is
taken as the average absolute value of this feature for all engines.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 19

next 30 days; hence, the initially considered dependence (Figure 9) represents important
information.

Figure 9. Dependence of SHAP values of the S12 feature on its value (the gradient indicates the
value of the S11 feature). A cluster of engines with SHAP values for the S12 attribute higher than
0.025 is highlighted by the cloud.

Figure 10. Probabilities of engine failure in the next 30 cycles for the model trained on simplified
data, where the triangles are the engines from the considered cluster.

Another interesting visualization is shown in Figure 11. Each case of this visualiza-
tion is represented by a single point for each feature. The position of the point along the
abscissa axis is determined by its SHAP value, and the color is used to show the value of
the feature value in the point. Here, it is possible to trace the effect of high or low values
of a particular feature on the SHAP value. For example, the left tail of the string with
SHAP values of the feature FN shows that the neural network does not always consider
the long operation of the engine as a sign that in the next 30 days it can fail. The leftmost
value of this tail corresponds to engine #49, which the model determined to have an 85%
probability of failure. According to the Shepley value, the current cycle number reading

Figure 9. Dependence of SHAP values of the S12 feature on its value (the gradient indicates the value
of the S11 feature). A cluster of engines with SHAP values for the S12 attribute higher than 0.025 is
highlighted by the cloud.

Sensors 2023, 23, 1892 13 of 19

Sensors 2022, 22, x FOR PEER REVIEW 13 of 19

next 30 days; hence, the initially considered dependence (Figure 9) represents important
information.

Figure 9. Dependence of SHAP values of the S12 feature on its value (the gradient indicates the
value of the S11 feature). A cluster of engines with SHAP values for the S12 attribute higher than
0.025 is highlighted by the cloud.

Figure 10. Probabilities of engine failure in the next 30 cycles for the model trained on simplified
data, where the triangles are the engines from the considered cluster.

Another interesting visualization is shown in Figure 11. Each case of this visualiza-
tion is represented by a single point for each feature. The position of the point along the
abscissa axis is determined by its SHAP value, and the color is used to show the value of
the feature value in the point. Here, it is possible to trace the effect of high or low values
of a particular feature on the SHAP value. For example, the left tail of the string with
SHAP values of the feature FN shows that the neural network does not always consider
the long operation of the engine as a sign that in the next 30 days it can fail. The leftmost
value of this tail corresponds to engine #49, which the model determined to have an 85%
probability of failure. According to the Shepley value, the current cycle number reading

Figure 10. Probabilities of engine failure in the next 30 cycles for the model trained on simplified
data, where the triangles are the engines from the considered cluster.

Another interesting visualization is shown in Figure 11. Each case of this visualization
is represented by a single point for each feature. The position of the point along the abscissa
axis is determined by its SHAP value, and the color is used to show the value of the feature
value in the point. Here, it is possible to trace the effect of high or low values of a particular
feature on the SHAP value. For example, the left tail of the string with SHAP values of the
feature FN shows that the neural network does not always consider the long operation
of the engine as a sign that in the next 30 days it can fail. The leftmost value of this tail
corresponds to engine #49, which the model determined to have an 85% probability of
failure. According to the Shepley value, the current cycle number reading of engine #49
reduces its probability of failure by about 10%. This stands out strongly against the general
picture for the FN feature (Figure 8) and is due to the fact that the indications of engine #49
were measured most—303 times. Additionally, since no other values of the features for
this engine contradict the general pattern, perhaps it should therefore be considered that
the probability of failure of engine #49 is in fact higher and it is necessary to pay special
attention to it.

Figure 11 also shows that the overall pattern of feature contribution is as follows: high
feature values increase the probability of failure while low values decrease it, or low values
increase the probability of failure while high values decrease it (OS1 and OS2 features do
not fit this general rule). We can also observe points where the value of a feature contributes
too much to the prediction. These values often correspond to the engines about which the
neural network is unsure regarding their failure, and therefore they need to be considered
in more detail.

Thus, thanks to the large number of interpretation tools, knowing the specifics of
aircraft engines and analyzing various dependencies, it is possible to achieve high success
in identifying inoperable engines. It is important to note that the interpretation tools
presented above will not be of any use for models whose quality is too low, since these
judgments will refer to the model predictions, and hence there is a high probability of
facing the problem of overlapping errors.

Sensors 2023, 23, 1892 14 of 19

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19

of engine #49 reduces its probability of failure by about 10%. This stands out strongly
against the general picture for the FN feature (Figure 8) and is due to the fact that the
indications of engine #49 were measured most—303 times. Additionally, since no other
values of the features for this engine contradict the general pattern, perhaps it should
therefore be considered that the probability of failure of engine #49 is in fact higher and it
is necessary to pay special attention to it.

Figure 11. Dependence of the contribution of unique feature values to the forecast on their magni-
tude (indicated by the blue–red gradient).

Figure 11 also shows that the overall pattern of feature contribution is as follows:
high feature values increase the probability of failure while low values decrease it, or low
values increase the probability of failure while high values decrease it (OS1 and OS2 fea-
tures do not fit this general rule). We can also observe points where the value of a feature
contributes too much to the prediction. These values often correspond to the engines
about which the neural network is unsure regarding their failure, and therefore they need
to be considered in more detail.

Thus, thanks to the large number of interpretation tools, knowing the specifics of
aircraft engines and analyzing various dependencies, it is possible to achieve high success
in identifying inoperable engines. It is important to note that the interpretation tools pre-
sented above will not be of any use for models whose quality is too low, since these

Figure 11. Dependence of the contribution of unique feature values to the forecast on their magnitude
(indicated by the blue–red gradient).

5.2. Reduced Interpretability

This section examines the interpretation capabilities of a model trained on data to
which sliding window technology has been applied. Although the quality metrics and con-
fidence in the technical condition of the engines are higher with this model, the application
of the sliding window to the data resulted in a time window dependency being considered
when constructing visualization tools, as the number of meaningful (which is not the same
size as one) measurements in the data increased.

In this regard, for example, Figure 6 can be constructed both for a single engine
(Figure 12) and simultaneously for all engines within a particular time window (Figure 13).
A similar situation occurs with the rest of the visualization tools: complexity arises, which
obliges the researcher to take into account the separation by time windows in the data.

To overcome this difficulty, the average SHAP value over all time windows can be
calculated. Thus, in Figure 14, we observe a similar picture as in Figure 7: for engines with
a high probability of failure, the same features contribute the most, as seen for engines
with a low probability of failure, but with the opposite sign. However, in this case, the
probabilistic interpretation is lost: f (x) is no longer equal to the predicted probability of
failure of the analyzed engine; hence, it cannot be decomposed into the sum of SHAP

Sensors 2023, 23, 1892 15 of 19

values of the features. It should be taken into account that a large contribution of a feature
in a particular time window can strongly bias the average estimate if the contribution on
the other time windows is small.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 19

judgments will refer to the model predictions, and hence there is a high probability of
facing the problem of overlapping errors.

5.2. Reduced Interpretability
This section examines the interpretation capabilities of a model trained on data to

which sliding window technology has been applied. Although the quality metrics and
confidence in the technical condition of the engines are higher with this model, the appli-
cation of the sliding window to the data resulted in a time window dependency being
considered when constructing visualization tools, as the number of meaningful (which is
not the same size as one) measurements in the data increased.

In this regard, for example, Figure 6 can be constructed both for a single engine (Fig-
ure 12) and simultaneously for all engines within a particular time window (Figure 13). A
similar situation occurs with the rest of the visualization tools: complexity arises, which
obliges the researcher to take into account the separation by time windows in the data.

Figure 12. Contribution of features to the probability of failure of engine #81 on time windows.

Figure 13. Contribution of features to the probability of engine failure in the last (21st) time window.

To overcome this difficulty, the average SHAP value over all time windows can be
calculated. Thus, in Figure 14, we observe a similar picture as in Figure 7: for engines with
a high probability of failure, the same features contribute the most, as seen for engines
with a low probability of failure, but with the opposite sign. However, in this case, the
probabilistic interpretation is lost: 𝑓(𝑥) is no longer equal to the predicted probability of
failure of the analyzed engine; hence, it cannot be decomposed into the sum of SHAP
values of the features. It should be taken into account that a large contribution of a feature

Figure 12. Contribution of features to the probability of failure of engine #81 on time windows.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 19

judgments will refer to the model predictions, and hence there is a high probability of
facing the problem of overlapping errors.

5.2. Reduced Interpretability
This section examines the interpretation capabilities of a model trained on data to

which sliding window technology has been applied. Although the quality metrics and
confidence in the technical condition of the engines are higher with this model, the appli-
cation of the sliding window to the data resulted in a time window dependency being
considered when constructing visualization tools, as the number of meaningful (which is
not the same size as one) measurements in the data increased.

In this regard, for example, Figure 6 can be constructed both for a single engine (Fig-
ure 12) and simultaneously for all engines within a particular time window (Figure 13). A
similar situation occurs with the rest of the visualization tools: complexity arises, which
obliges the researcher to take into account the separation by time windows in the data.

Figure 12. Contribution of features to the probability of failure of engine #81 on time windows.

Figure 13. Contribution of features to the probability of engine failure in the last (21st) time window.

To overcome this difficulty, the average SHAP value over all time windows can be
calculated. Thus, in Figure 14, we observe a similar picture as in Figure 7: for engines with
a high probability of failure, the same features contribute the most, as seen for engines
with a low probability of failure, but with the opposite sign. However, in this case, the
probabilistic interpretation is lost: 𝑓(𝑥) is no longer equal to the predicted probability of
failure of the analyzed engine; hence, it cannot be decomposed into the sum of SHAP
values of the features. It should be taken into account that a large contribution of a feature

Figure 13. Contribution of features to the probability of engine failure in the last (21st) time window.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19

in a particular time window can strongly bias the average estimate if the contribution on
the other time windows is small.

(a)

(b)

Figure 14. Contributions of features to the probability of engine failure, averaged over all time win-
dows, for the failure of engines #81 (a) and #99 (b).

Let us consider Figure 15, for which it is more difficult to divide the points into two
clusters than in Figure 9. This is because the dispersion of the points has increased and it
is impossible to uniquely determine the threshold above which the cluster will be clearly
separable, since the area of the described cluster in Figure 9 included points that have a
high value of the feature S12, whereas previously the following rule worked: high values
of S11 and low values of S12 increase the SHAP value for S12.

Figure 15. The dependence of the SHAP values of the S12 feature averaged over time windows on
its value (the gradient indicates the value of the S11 feature).

Thus, it is still possible to analyze the influence of features on the predictions ob-
tained by the neural network, but only with careful formulation of hypotheses, because
the data have a non-trivial dependence on the shift along the time window. In addition,
as the size of the time window increases, the complexity of interpreting the visualizations
also grows. For example, to obtain the same general representation that was obtained by
judging with respect to Figure 11, one would ideally need to plot as many of the same

Figure 14. Contributions of features to the probability of engine failure, averaged over all time
windows, for the failure of engines #81 (a) and #99 (b).

Sensors 2023, 23, 1892 16 of 19

Let us consider Figure 15, for which it is more difficult to divide the points into two
clusters than in Figure 9. This is because the dispersion of the points has increased and it
is impossible to uniquely determine the threshold above which the cluster will be clearly
separable, since the area of the described cluster in Figure 9 included points that have a
high value of the feature S12, whereas previously the following rule worked: high values
of S11 and low values of S12 increase the SHAP value for S12.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19

in a particular time window can strongly bias the average estimate if the contribution on
the other time windows is small.

(a)

(b)

Figure 14. Contributions of features to the probability of engine failure, averaged over all time win-
dows, for the failure of engines #81 (a) and #99 (b).

Let us consider Figure 15, for which it is more difficult to divide the points into two
clusters than in Figure 9. This is because the dispersion of the points has increased and it
is impossible to uniquely determine the threshold above which the cluster will be clearly
separable, since the area of the described cluster in Figure 9 included points that have a
high value of the feature S12, whereas previously the following rule worked: high values
of S11 and low values of S12 increase the SHAP value for S12.

Figure 15. The dependence of the SHAP values of the S12 feature averaged over time windows on
its value (the gradient indicates the value of the S11 feature).

Thus, it is still possible to analyze the influence of features on the predictions ob-
tained by the neural network, but only with careful formulation of hypotheses, because
the data have a non-trivial dependence on the shift along the time window. In addition,
as the size of the time window increases, the complexity of interpreting the visualizations
also grows. For example, to obtain the same general representation that was obtained by
judging with respect to Figure 11, one would ideally need to plot as many of the same

Figure 15. The dependence of the SHAP values of the S12 feature averaged over time windows on its
value (the gradient indicates the value of the S11 feature).

Thus, it is still possible to analyze the influence of features on the predictions obtained
by the neural network, but only with careful formulation of hypotheses, because the data
have a non-trivial dependence on the shift along the time window. In addition, as the size
of the time window increases, the complexity of interpreting the visualizations also grows.
For example, to obtain the same general representation that was obtained by judging with
respect to Figure 11, one would ideally need to plot as many of the same graphs as the
sliding window size is initially given, then analyze each of them, consider the relationships
between them, and draw a general conclusion. Of course, as shown earlier, the method
of averaging SHAP values over all time windows can be applied, but then some of the
dispersion in data will be lost (the larger the window size is, the larger amount of dispersion
that will be lost). However, the most important drawback is that the probability of engine
failure cannot be decomposed into the sum of SHAP values of its features (as it was shown
in Section 5.1), due to which the probabilistic interpretation of feature contributions is lost.

6. Conclusions

In this paper, the problem of the evaluation of the technical condition of mechanical sys-
tems is solved using two methods. The first is one of the most popular to date—predicting
the remaining useful life. The results showed that the trained model is wrong on average
for all engines by 15 flight cycles. This result is not the best among known works using
the C-MAPSS dataset. However, training the same BiLSTM model to solve the problem of
binary classification of engine failure at a given forecast horizon resulted in 99% accuracy

Sensors 2023, 23, 1892 17 of 19

on the test sample. This suggests that, if necessary, it is possible to reformulate the RUL
prediction problem into a classification problem and obtain an efficient, more informative,
and less risky model. The possibilities of interpreting classification models by considering
the most important features affecting the prediction are also investigated. In addition, the
advantages, disadvantages and limitations of the explicable artificial intelligence method
SHAP are presented in terms of two cases: when transparency of interpretation is required
and when maximum model performance is required.

Thus, on the basis of intelligent analysis of time series of indications of measuring
devices, a mechanism has been developed to provide assistance in making rational decisions
on maintenance of mechanical systems, and its capabilities have been shown in practice.

Author Contributions: Conceptualization, E.K. and A.K.; methodology, E.K.; validation, E.K. and M.T.;
formal analysis, E.K.; investigation, E.K.; writing—original draft preparation, E.K.; writing—review and
editing, M.T.; visualization, E.K.; supervision, A.K. and M.T.; project administration, M.T.; funding
acquisition, M.T. All authors have read and agreed to the published version of the manuscript.

Funding: The study was funded by Perm National Research Polytechnic University in the framework
of the Federal Academic Leadership Program «Priority-2030».

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mobley, R.K. An Introduction to Predictive Maintenance; Butterworth-Heinemann: Oxford, UK, 2002.
2. Kothamasu, R.; Huang, S.H.; Verduin, W.H. System health monitoring and prognostics—A review of current paradigms and

practices. Int. J. Adv. Manuf. Technol. 2006, 28, 1012–1024. [CrossRef]
3. Ran, Y.; Zhou, X.; Lin, P.; Wen, Y.; Deng, R. A survey of predictive maintenance: Systems, purposes and approaches. IEEE

Commun. Surv. Tutor. 2019, XX, 1–36. [CrossRef]
4. Montero Jimenez, J.J.; Schwartz, S.; Vingerhoeds, R.; Grabot, B.; Salaün, M. Towards multi-model approaches to predictive

maintenance: A systematic literature survey on diagnostics and prognostics. J. Manuf. Syst. 2020, 56, 539–557. [CrossRef]
5. Jia, F.; Lei, Y.; Guo, L.; Lin, J.; Xing, S. A neural network constructed by deep learning technique and its application to intelligent

fault diagnosis of machines. Neurocomputing 2018, 272, 619–628. [CrossRef]
6. Hoang, D.T.; Tran, X.T.; Van, M.; Kang, H.J. A deep neural network-based feature fusion for bearing fault diagnosis. Sensors 2021,

21, 244. [CrossRef]
7. Sun, W.; Shao, S.; Zhao, R.; Yan, R.; Zhang, X.; Chen, X. A sparse auto-encoder-based deep neural network approach for induction

motor faults classification. Measurement 2016, 89, 171–178. [CrossRef]
8. Shao, H.; Jiang, H.; Zhao, H.; Wang, F. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis.

Mech. Syst. Signal Process. 2017, 95, 187–204. [CrossRef]
9. Jakubowski, J.; Stanisz, P.; Bobek, S.; Nalepa, G.J. Anomaly detection in asset degradation process using variational autoencoder

and explanations. Sensors 2021, 22, 291. [CrossRef]
10. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [CrossRef]
11. Shao, S.; Wang, P.; Yan, R. Generative adversarial networks for data augmentation in machine fault diagnosis. Comput. Ind. 2019,

106, 85–93. [CrossRef]
12. Mao, W.; Liu, Y.; Ding, L.; Li, Y. Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: A

comparative study. IEEE Access 2019, 7, 9515–9530. [CrossRef]
13. Zhu, J.; Chen, N.; Peng, W. Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE

Trans. Ind. Electron. 2019, 66, 3208–3216. [CrossRef]
14. Yang, B.; Liu, R.; Zio, E. Remaining useful life prediction based on a double-convolutional neural network architecture. IEEE

Trans. Ind. Electron. 2019, 66, 9521–9530. [CrossRef]
15. Chen, Z.Q.; Li, C.; Sanchez, R.V. Gearbox fault identification and classification with convolutional neural networks. Shock Vib.

2015, 2015, 390134. [CrossRef]
16. Li, G.; Deng, C.; Wu, J.; Xu, X.; Shao, X.; Wang, Y. Sensor data-driven bearing fault diagnosis based on deep convolutional neural

networks and s-transform. Sensors 2019, 19, 2750. [CrossRef]
17. Pinedo-Sánchez, L.A.; Mercado-Ravell, D.A.; Carballo-Monsivais, C.A. Vibration analysis in bearings for failure prevention using

CNN. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 628. [CrossRef]

http://doi.org/10.1007/s00170-004-2131-6
http://doi.org/10.48550/arxiv.1912.07383
http://doi.org/10.1016/j.jmsy.2020.07.008
http://doi.org/10.1016/j.neucom.2017.07.032
http://doi.org/10.3390/s21010244
http://doi.org/10.1016/j.measurement.2016.04.007
http://doi.org/10.1016/j.ymssp.2017.03.034
http://doi.org/10.3390/s22010291
http://doi.org/10.1145/3422622
http://doi.org/10.1016/j.compind.2019.01.001
http://doi.org/10.1109/ACCESS.2018.2890693
http://doi.org/10.1109/TIE.2018.2844856
http://doi.org/10.1109/TIE.2019.2924605
http://doi.org/10.1155/2015/390134
http://doi.org/10.3390/s19122750
http://doi.org/10.1007/s40430-020-02711-w

Sensors 2023, 23, 1892 18 of 19

18. Yuan, J.; Tian, Y. An intelligent fault diagnosis method using GRU neural network towards sequential data in dynamic processes.
Processes 2019, 7, 152. [CrossRef]

19. Zhao, K.; Shao, H. Intelligent fault diagnosis of rolling bearing using adaptive deep gated recurrent unit. Neural Process. Lett.
2020, 51, 1165–1184. [CrossRef]

20. Biggio, L.; Kastanis, I. Prognostics and health management of industrial assets: Current progress and road ahead. Front. Artif.
Intell. 2020, 3, 88. [CrossRef]

21. Mao, W.; He, J.; Tang, J.; Li, Y. Predicting remaining useful life of rolling bearings based on deep feature representation and long
short-term memory neural network. Adv. Mech. Eng. 2018, 10. [CrossRef]

22. Chen, J.; Jing, H.; Chang, Y.; Liu, Q. Gated recurrent unit based recurrent neural network for remaining useful life prediction of
nonlinear deterioration process. Reliab. Eng. Syst. Saf. 2019, 185, 372–382. [CrossRef]

23. Liu, Y.; Tang, X.; Zhang, H.; Hong, J.; Wang, Z.; Wu, G. State-partial accurate voltage fault prognosis for lithium-ion batteries
based on self-attention networks. Energies 2022, 15, 8458. [CrossRef]

24. Babu, G.S.; Zhao, P.; Li, X.L. Deep convolutional neural network based regression approach for estimation of remaining useful
life. Lect. Notes Comput. Sci. 2016, 9642, 214–228. [CrossRef]

25. Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng.
Syst. Saf. 2018, 172, 1–11. [CrossRef]

26. Zheng, S.; Ristovski, K.; Farahat, A.; Gupta, C. Long short-term memory network for remaining useful life estimation. In
Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21
June 2017; pp. 88–95. [CrossRef]

27. Wang, J.; Wen, G.; Yang, S.; Liu, Y. Remaining useful life estimation in prognostics using deep bidirectional LSTM neural network.
In Proceedings of the 2018 Prognostics and System Health Management Conference (PHM-Chongqing), Chongqing, China, 26–28
October 2018; pp. 1037–1042. [CrossRef]

28. Listou Ellefsen, A.; Bjørlykhaug, E.; Æsøy, V.; Ushakov, S.; Zhang, H. Remaining useful life predictions for turbofan engine
degradation using semi-supervised deep architecture. Reliab. Eng. Syst. Saf. 2019, 183, 240–251. [CrossRef]

29. Al-Dulaimi, A.; Zabihi, S.; Asif, A.; Mohammadi, A. A multimodal and hybrid deep neural network model for remaining useful
life estimation. Comput. Ind. 2019, 108, 186–196. [CrossRef]

30. Saxena, A.; Goebel, K.; Simon, D.; Eklund, N. Damage propagation modeling for aircraft engine run-to-failure simulation. In
Proceedings of the 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008.
[CrossRef]

31. Zhang, Y.; Hutchinson, P.; Lieven, N.A.J.; Nunez-Yanez, J. Remaining useful life estimation using long short-term memory neural
networks and deep fusion. IEEE Access 2020, 8, 19033–19045. [CrossRef]

32. Jakubowski, J.; Stanisz, P.; Bobek, S.; Nalepa, G.J. Performance of explainable AI methods in asset failure prediction. Lect. Notes
Comput. Sci. 2022, 13353, 472–485. [CrossRef]

33. Baptista, M.L.; Goebel, K.; Henriques, E.M.P. Relation between prognostics predictor evaluation metrics and local interpretability
SHAP values. Artif. Intell. 2022, 306, 103667. [CrossRef]

34. Vollert, S.; Theissler, A. Challenges of machine learning-based RUL prognosis: A review on NASA’s C-MAPSS data set. In
Proceedings of the 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vasteras,
Sweden, 7–10 September 2021. [CrossRef]

35. Hong, C.W.; Lee, C.; Lee, K.; Ko, M.S.; Hur, K. Explainable artificial intelligence for the remaining useful life prognosis of the
turbofan engines. In Proceedings of the 2020 3rd IEEE International Conference on Knowledge Innovation and Invention (ICKII),
Kaohsiung, Taiwan, 21–23 August 2020; pp. 144–147. [CrossRef]

36. Hong, C.W.; Lee, C.; Lee, K.; Ko, M.S.; Kim, D.E.; Hur, K. Remaining useful life prognosis for turbofan engine using explainable
deep neural networks with dimensionality reduction. Sensors 2020, 20, 6626. [CrossRef]

37. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
38. Graves, A.; Fernández, S.; Schmidhuber, J. Bidirectional LSTM networks for improved phoneme classification and recognition.

Lect. Notes Comput. Sci. 2005, 3697, 799–804. [CrossRef]
39. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
40. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning

Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [CrossRef]
41. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting.

J. Mach. Learn. Res. 2014, 15, 1929–1958.
42. Frederick, D.K.; DeCastro, J.A.; Litt, J.S. User’s Guide for the Commercial Modular Aero-Propulsion System Simulation

(C-MAPSS). Available online: https://ntrs.nasa.gov/citations/20070034949 (accessed on 20 October 2022).
43. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow:

A system for large-scale machine learning. In Proceedings of the OSDI’16: 12th USENIX Conference on Operating Systems
Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

44. Chollet, F. Keras 2015. GitHub. Available online: https://github.com/fchollet/keras (accessed on 20 October 2022).

http://doi.org/10.3390/pr7030152
http://doi.org/10.1007/s11063-019-10137-2
http://doi.org/10.3389/frai.2020.578613
http://doi.org/10.1177/1687814018817184
http://doi.org/10.1016/j.ress.2019.01.006
http://doi.org/10.3390/EN15228458
http://doi.org/10.1007/978-3-319-32025-0_14/TABLES/4
http://doi.org/10.1016/j.ress.2017.11.021
http://doi.org/10.1109/ICPHM.2017.7998311
http://doi.org/10.1109/PHM-CHONGQING.2018.00184
http://doi.org/10.1016/j.ress.2018.11.027
http://doi.org/10.1016/j.compind.2019.02.004
http://doi.org/10.1109/PHM.2008.4711414
http://doi.org/10.1109/ACCESS.2020.2966827
http://doi.org/10.1007/978-3-031-08760-8_40/FIGURES/6
http://doi.org/10.1016/j.artint.2022.103667
http://doi.org/10.1109/ETFA45728.2021.9613682
http://doi.org/10.1109/ICKII50300.2020.9318912
http://doi.org/10.3390/s20226626
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1007/11550907_126/COVER
http://doi.org/10.1109/78.650093
http://doi.org/10.48550/arxiv.1412.6980
https://ntrs.nasa.gov/citations/20070034949
https://github.com/fchollet/keras

Sensors 2023, 23, 1892 19 of 19

45. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the NIPS’17: 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4766–4775. [CrossRef]

46. Shrikumar, A.; Greenside, P.; Kundaje, A. Learning important features through propagating activation differences. In Proceed-
ings of the ICML’17: 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70,
pp. 4844–4866. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.48550/arxiv.1705.07874
http://doi.org/10.48550/arxiv.1704.02685

	Introduction
	Problem Statement
	Regression
	Binary Classificaton

	Solution Method
	BiLSTM
	Model and Hyperparameters

	Results and Discussion
	Input Data
	Preprocessing and Testing
	Solution of the RUL Prediction Problem
	Solution of the Classification Problem
	Finding the Optimal Threshold Value

	Interpretation of the Classification Model
	Enchanced Interpretability
	Reduced Interpretability

	Conclusions
	References

