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Abstract: The end-operation accuracy of the satellite-borne robotic arm is closely related to the
satellite attitude control accuracy, and the influence of the vibration of the satellite’s flexural structure
on the satellite attitude control is not negligible. Therefore, a stable and reliable vibration frequency
identification method of the satellite flexural structure is needed. Different from the traditional
non-contact measurement and identification methods of large flexible space structures based on
marker points or edge corner points, the condition of non-marker points relying on texture features
can identify more feature points, but there are problems such as low recognition and poor matching
of features. Given this, the concept of ‘the comprehensive matching parameter’ of scenes is proposed
to describe the scene characteristics of non-contact optical measurement from the two dimensions of
recognition and matching. The basic connotation and evaluation index of the concept are also given
in the paper. Guided by this theory, the recognition accuracy and matching uniqueness of features can
be improved by means of equivalent spatial transformation and novel relative position relationship
descriptor. The above problems in non-contact measurement technology can be solved only through
algorithm improvement without adding hardware devices. On this basis, the Eigensystem Realization
Algorithm (ERA) method is used to obtain the modal parameters of the large flexible space structure.
Finally, the effectiveness and superiority of the proposed method are verified by mathematical
simulation and ground testing.

Keywords: feature point matching; large flexible space structures; non-contact measurement;
modal parameter identification; low characteristic scenes

1. Introduction

With the development of space technology, spacecraft and their accessory parts—such
as solar wings, truss brackets, antennas, and robotic arms—are increasingly presented in
the form of large flexible structures [1]. To reduce the spacecraft’s load, the flexible parts
are mostly made of lightweight and ultra-thin composite materials. This large deflection
flexible material has the characteristics of low stiffness, low-frequency modal density, and
relatively small modal damping ratio. When the satellite is on orbit, flexible attachments
of the satellite are susceptible to external intensity, causing continuous vibration, which
is difficult to attenuate. This will lead to changes in the overall dynamics model of the
satellite, thus causing a great impact on the satellite attitude control [2], which will lead
to the degradation and failure of the satellite performance [3]. Finally, the vibration will
indirectly affect the accuracy of the end-effector of the on-board robotic arm. Therefore,
many countries are studying the on-orbit identification of dynamic characteristics of flexible
structures attached to spacecraft [4]. Due to the difference between the space environment
and the ground environment, the vibration characteristics of the flexible structure are also
different. The simulation often cannot effectively simulate the space environment, nor can
it predict accidental external excitation. The simulation results cannot reflect the on-orbit
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state of the spacecraft. Therefore, the on-orbit identification of the vibration information of
the satellite flexible appendage is urgently needed.

The existing on-orbit modal identification methods are mainly divided into two cate-
gories. One is based on the existing measurement devices or control system data on the
star body to complete the measurement. For example, Tang et al. [1] proposed a method
for on-orbit modal identification of flexible structures of spacecraft based on reaction wheel
actuators. The other is to observe the vibration of large flexible structures by adding spe-
cial measuring devices. This method is more accurate and reliable and can be divided
into contact and non-contact [5]. In Japan, several experiments were conducted on the
Engineering Test Satellite-6 and Engineering Test Satellite-8. The modal parameters of
the solar wing are identified based on the data from the satellite’s own attitude control
system and the data measured by the acceleration sensors attached to the flexible solar
wing at the same time [6,7]. This contact measurement method attaches the measurement
device to the surface of the flexible structure, which affects the dynamics information of the
flexible attachment itself and leads to errors in the identification information. At present,
the better solution is non-contact measurement. Non-contact optical measurement based on
binocular cameras is an effective technical approach, which can be subdivided into optical
measurements with and without marking points. Some international research institutions
have explored the measurement method of unmarked points. The Image Science and Anal-
ysis Group (ISAG) performed modal identification of the ISS 2A solar wing by binocular
camera [8], but only two feature points at the end of the 2A solar wing could be identified.
NASA obtained more dynamic information about feature points in the PASDE experiment
with an optical measurement scheme, but six cameras were used for this purpose [9], which
increased the complexity of the hardware system and algorithm. Relevant research has also
been carried out in China, but the main examples of research are focused on the method
with marker points. Wu et al. [10] proposed a visual measurement method based on circular
marker points. Zang et al. [11] also used the method of attaching circular reflective markers
on the solar wing for modal identification. Qiu et al. [5] used self-luminous light sources as
measurement points, and then used a binocular camera for parameter identification. All
these on-orbit measurement schemes add other physical devices, such as passive reflective
marker points or active light sources, to the binocular vision system. The introduction
of physical devices increases the complexity of on-orbit measurement and reduces the
stability of the measurement system. Therefore, studies regarding a modal measurement
identification method with rich identifiable features and good stability without marker
points are urgently needed.

However, there are certain technical difficulties in this kind of measurement method
without marking points. If the corner points of the edge of the flexible sails are used
as identification points, there are fewer identifiable features, which is not conducive to
improving the identification accuracy. If the texture features—such as the grid corner
points—of the solar wing are identified, different feature points are highly similar to each
other. When the optical camera identifies the feature points and matches the feature
points, the similar descriptors will lead to a higher mismatch rate, so that the spatial three-
dimensional coordinates of the feature points cannot be accurately measured. Moreover,
in the case of no identification points, the feature points extracted by the optical camera
are often different between frames. Therefore, it is more difficult to obtain the continuous
dynamic coordinate values of the feature points at fixed positions on the flexible solar wing
compared to the case with identification points. In addition, the measurement accuracy of
an optical camera is usually lower than that of traditional contact measurements, so the
improvement of measurement accuracy is also an issue to be considered.

To solve the above problems, this paper first introduces the concept of the compre-
hensive matching parameter of scenes and then proposes a new feature point detection
and matching method for the grid features on satellite flexible solar wings. This method
improves the characteristic of the scene and the uniqueness of feature matching through
mathematical methods such as projection transform and image processing methods such
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as clustering and binaryzation, as well as proposing new descriptors to solve the problems
that features of the solar wing are highly repetitive and not easy to match. Finally, under
the condition of no additional physical target, the spatial 3D coordinates of the grid feature
points on the satellite flexible solar wings are continuously tracked by the binocular vision
system and used for modal recognition. The on-orbit vibration recognition simulation test
is completed for the low feature degree scene of the satellite flexible attachment, and the
accuracy of the test results is relatively high, which verifies the feasibility of the theory in
this paper.

2. Structural Dynamics Modeling Analysis of Flexible Solar Wing

In this paper, we construct a multi-body dynamics model [12] of the whole star based
on the coupled satellite model of the central rigid body and flexible attachment shown
in Figure 1, in which the central rigid body is C, the origin of the coordinate system, OC
is located at the center of mass of the rigid body, and the two flexible solar wings are
Flex1 and Flex2, respectively. The two flexible solar wings are fixed on the side near the
satellite body and the ends are free. According to the hypothetical modal method, the
elastic displacement of any point on the flexible solar wing is shown in Equation (1):

q(r, t) =
∞

∑
I=1

ϕI(r)ηI(t) = φ(r)η(t) (1)

where φ(r) is 3×∞ order modal function matrix and η(t) is ∞× 1 order modal coordinate
vector. According to the Lagrange equation, the dynamics equation of the system can be
established as follows:

m
..
ω0(t) + P1

..
η1 + P2

..
η2 = F,

J
..
θ+ H1

..
η1 + H2

..
h2 = T,

..
η1 + Ω2

1η1 + PT
1

..
ω0(t) + HT

1

..
θ = f1,

..
η2 + Ω2

2η2 + PT
2

..
ω0(t) + HT

2

..
θ = f2

(2)

where m is the total system mass, J is the system rotational inertia, ω0 is the translational
displacement, θ is the rotational displacement, ηi(i = 1, 2) is the flexible solar wing modal
coordinate vector, Pi and Hi(i = 1, 2) are the coefficient matrices of the modal momentum
and angular momentum of the flexible solar wing, Ωi(i = 1, 2) is the diagonal matrix
whose diagonal parameters are the intrinsic frequencies of the flexible solar wing, F is the
external system force, T is the external moment, and fi(i = 1, 2) is the flexible solar wing
modal force. The system external force in this study is 0, i.e., f1 = f2 = 0. The gyroscopic
moment due to the maneuvering and damping of the flexible solar wing plane is −

.
θ× J

.
θ.

Neglecting the system advection, Equation (2) can be written as follows:

J
..
θ+

.̃
θJ

.
θ+ H1

..
η1 + H2

..
η2 = T,

..
η1 + 2ξ1Ω1

.
η1 + Ω2

1η1 + HT
1

..
θ = 0,

..
η2 + 2ξ2Ω2

.
η2 + Ω2

2η2 + HT
2

..
θ = 0

(3)

where ξi(i = 1, 2) is the damping ratio of the flexible sail solar wing. Defining the gener-
alized coordinate vector X =

[
θT, ηT

1 , ηT
2
]T , then Equation (3) can be written in the form

of Equation (4).
M

..
X + Dp

.
X + KX = Q (4)

where M =

 J H1 H2

HT
1 I 0

HT
2 0 I

, Dp =


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1 0
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2

, Q =

T
0
0
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, sC  and sD  are the obser-

vation matrices of velocity and displacement, respectively. sA  and sB  are constant co-
efficient matrices, determined by the parameters of the system itself, reflecting the char-
acteristics of the system. 
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process of camera selection, the camera frame rate is considered to be 5 to 10 times of the 
sampling frequency. The camera resolution needs to ensure that the measurement accu-
racy reaches the submillimeter level. The global shutter camera is used, and the external 
signal generator controls the camera to trigger synchronously by outputting a fixed fre-
quency square wave signal. Appropriate cameras are arranged as far as possible on one 
edge of the satellite center rigid body to increase the baseline length. The longer baseline 
length is beneficial to improve the measurement accuracy of the binocular system. The 
angle between the axes of the two cameras and the baseline is acute to increase the over-
lapping range of the two cameras’ field of view. Considering the camera image quality, 
the camera focal length is controlled in the middle of the flexible solar wing, thus ensuring 
the clarity of the acquired images. After the cameras take pictures, the image data are 
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Figure 1. Whole star model and coordinate system.

Considering the output equation, the state space equation of the system can be written
as follows: { .

xs=Asxs+Bsus
ys=Cs

.
xs+Dsxs

(5)

where xs =

[ .
X
X

]
, As =

[
−M−1Dp −M−1K

I 0

]
, Bsus =

[
M−1Q

0

]
, Cs and Ds are the observa-

tion matrices of velocity and displacement, respectively. As and Bs are constant coefficient
matrices, determined by the parameters of the system itself, reflecting the characteristics of
the system.

In this section, the dynamics model of the rigid-flexible coupled spacecraft is estab-
lished, and the state–space equation of the system is obtained. This dynamic model can
provide the output data of the system. We design the measurement scheme based on the
dynamic model in this section to obtain the observed data for the identification of the
vibration modal information of the flexible attachment.

3. On Orbit Measurement Scheme Design and Test Process

Figure 2 is the on-orbit measurement simulation test scheme used in this paper. The
flexible solar wing coordinate system and camera coordinate system are shown in the figure.
The test device simulates the satellite body and the unilateral solar wing. The flexible solar
wing mainly vibrates freely along the ZB direction of its coordinate system. In the process
of camera selection, the camera frame rate is considered to be 5 to 10 times of the sampling
frequency. The camera resolution needs to ensure that the measurement accuracy reaches
the submillimeter level. The global shutter camera is used, and the external signal generator
controls the camera to trigger synchronously by outputting a fixed frequency square wave
signal. Appropriate cameras are arranged as far as possible on one edge of the satellite
center rigid body to increase the baseline length. The longer baseline length is beneficial to
improve the measurement accuracy of the binocular system. The angle between the axes
of the two cameras and the baseline is acute to increase the overlapping range of the two
cameras’ field of view. Considering the camera image quality, the camera focal length is
controlled in the middle of the flexible solar wing, thus ensuring the clarity of the acquired
images. After the cameras take pictures, the image data are transmitted to the processor for
post-processing through the network interface, and the whole system is powered by a DC
power supply.

After setting up the hardware platform, the experiment is carried out according to the
process shown in Figure 3. After the camera is installed, the calibration plate information
is first collected to calibrate the camera, and the internal and external parameters of the
camera are obtained. The calibrated camera is used to collect the vibration information of
the flexible solar wing. The image pixel grayscale data are used as the input information of
the feature enhancement and feature extraction module to detect the texture boundary of
the solar wing. The feature points are identified, and the pixel coordinates of the feature
points are used as output. This process is mainly completed under the guidance of the
theory in Section 4. Then, pixel coordinates of the feature point are used as the input
of the feature point spatial 3D information extraction module to calculate the spatial 3D
position and velocity information of the target features. Finally, the three-axis velocity
of the target feature point is input into the modal identification algorithm in Section 5
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for modal analysis. The information of modal order, fundamental frequency, and modal
coordinates are output. The related test equipment parameters, assembly relationships,
and test results are presented in Section 6.
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4. Feature Point Identification and Measurement Based on the Comprehensive
Matching Parameter
4.1. The Concept and Connotation of Comprehensive Matching Parameter

In the experimental process shown in Figure 2, feature point extraction and matching
are the key steps. In the existing optical measurement schemes with marker points, the
presence of marker points directly provides identifiable features at fixed locations on
the solar wing. It is only necessary to find the marker points in each image frame. The
significant difference between marker points and background information greatly reduces
the difficulty of feature extraction. Moreover, the marker points are clearly distributed. It is
easy to find the correspondence of the marker points in the left and right eye images of the
binocular camera, so the problems of feature point matching and 3D spatial information
measurement are also easily solved. However, in the optical measurement problem without
marking points studied in this paper, the camera does not have a clear identification target,
and the corner points or speckle features of the solar wing grids are highly similar, so it is
difficult to establish the correspondence between the same feature points in the left and
right eye images, which is prone to mismatching. In addition, in the low-feature scene
studied in this paper, the solar wing grid texture features are not easy to extract stably
during its vibration process, and the features are highly repetitive. When dealing with
such issues, many traditional algorithms can be used, such as DOG operator, SIFT operator,
SURF operator, ORB operator [13–15], and so on. However, these methods ignore the
enhancement of the scene features themselves and cannot improve the distinguishability
of the scene features. Therefore, even if the binocular camera can correctly extract feature
points, it is difficult to achieve the correct matching between the left and right eye images.
Due to the lack of theoretical guidance, the existing unmarked point feature extraction
and matching methods usually have no ideal practical effect. To solve this problem and
complete the on-orbit measurement scheme, this paper proposes the following concepts.

Definition 1. The comprehensive matching parameter of the scene is an index to judge whether
the features of the scene itself are easy to identify and distinguish, and whether the feature point
matching is robust and correct. This index is expressed by the letter ‘CMP’. It contains two contents:
the characteristic of the scene and the uniqueness of the matching.

Definition 2. The characteristic of the scene refers to the property that feature points in the scene
can be easily identified continuously and stably, and feature points have clear distinguishable
indicators from each other. It is expressed by index ‘char’.

Definition 3. The uniqueness of matching means that the matching process of binocular camera
feature points can form a one-to-one mapping relationship, i.e., it is always possible to find a unique
and correct corresponding feature point in the right camera image for the feature point in the left
camera image. It is expressed by index ‘MU’.

Definition 4. The relative position relation descriptor is a descriptor that describes the position-
related features of feature points, which is used to distinguish repetitive features in low-feature scenes.

This chapter will introduce the relevant content and usage of these definitions in detail.
The Definitions 1–3 are used to solve the problem of optical measurement without marker
points. Definitions 3 and 4 are used to solve the problem of how to extract the dynamic
coordinates of feature points in time domain in different images without marker points.

4.2. Feature Enhancement and Extraction for the Low Comprehensive Matching Parameter Scenes
4.2.1. Stable Extraction of Repetitive Features

As shown in Figure 4, the existing feature point extraction algorithms cannot guarantee
that the feature points detected in one frame of the camera can still be detected in the next
frame due to factors such as viewing angle, illumination, and resolution. However, the
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method in this paper requires stable tracking of fixed feature points in each frame to ensure
stable extraction and stable matching. In this way, we can obtain continuous feature point
position coordinate data and use them as input information for modal recognition.
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To achieve stable feature extraction, the scene images are first clustered using the
K-mean algorithm. The criterion function of the algorithm when there are K pattern classes
is as follows:

J =
K

∑
j=1

Nj

∑
i=1
‖Xi − Zj‖2, Xi ∈ Sj (6)

where Sj is the j-th aggregation class and the clustering center is Zj. Nj is the number of
samples contained in the j-th aggregation class Sj. According to the clustering algorithm
criterion of the K-means algorithm, the clustering centers should be chosen such that the
value of the criterion function J is extremely small, i.e.,

∂Jj

∂Zj
= 0 (7)

∂

∂Zj

Nj

∑
i=1
‖Xi − Zj‖2 =

∂

∂Zj

Nj

∑
i=1

(
Xi − Zj

)T(Xi − Zj
)
= 0 (8)

Equation (8) can be solved as follows:

Zj =
1
Nj

Nj

∑
i=1

Xi, Xi ∈ Sj (9)

For the satellite on-orbit scene, the K value of the pattern class is taken as 3, and the
scene image is binarized according to the clustering results to highlight the desired features.
Then, the Sobel operators sx and sy are introduced in the x and y directions of the image pixel
coordinates, respectively, from which the gradient amplitude and direction at each pixel point
of the image are calculated in turn as shown in Equation (10) and Equation (11), respectively.

M(x, y) =

√(
∂ f (x, y)

∂x

)2
+

(
∂ f (x, y)

∂y

)2
(10)

θ = tan−1
[

∂ f (x, y)
∂y

/
∂ f (x, y)

∂x

]
(11)

When the gradient value is large, the corresponding pixel point is the boundary point
on the image, so that the pixel points surrounding each grid of the flexible solar wing can
be found. Pixel points

(
xp(i), yp(j)

)
of a grid boundary constitute a set B, and the number

of all pixels in the set is sizeB. From this, the coordinates of the grid center feature points
can be obtained as shown in Equation (12). Each grid center point can be found as a feature
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point. This method ensures the stability of feature point extraction and ensures that the
found feature points can be evenly distributed on the surface of the solar wing, avoiding
the aggregation of feature points.

p f eature =


sizeB
∑

i=1
xp(i)

sizeB
,

sizeB
∑

j=1
yp(j)

sizeB

 (12)

4.2.2. Characteristic Enhancement

Scene feature points themselves have strong repeatability, that is, the ‘appearances’ of
the feature points are similar, which is the inherent characteristic of the scene and cannot be
changed. Therefore, this paper considers adding a unique ‘label’ to the extracted feature
points from other angles as a distinction to enhance the scene characteristics. In the solar
wing coordinate system shown in Figure 2, each detectable feature point in the solar wing
plane is neatly arranged in the form of a “queue”. If the solar wing coordinate system plane
XBOBYB is transformed to be parallel to the camera pixel plane, the pixel coordinates of each
feature point will also be neatly arranged in the form of “queue” and easy to distinguish. This
transformation relationship is expressed by Equation (13), where PN is the pixel coordinates
after projection transformation, PP is the pixel coordinates of the detected feature points
in the original image, R and T are the rotation and translation transformation matrices
between the camera coordinate system and the solar wing coordinate system, respectively.
The equivalent transformation is shown in Figure 5, in which the original tilted observation
view is transformed to a forward view perpendicular to the solar wing plane XBOBYB.
In this process, the optical axis direction of the camera u = u1e1 + u2e2 + u3e3 tends to
coincide with the normal vector of the flexible solar wing plane v = v1e1 + v2e2 + v3e3, i.e.,
Equation (14). XN

YN
1

 = PN = RPP + T =

r11 r12 tx
r21 r22 ty
0 0 1

XP
YP
1

 (13)

u · v→ 0 (14)
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From Equation (14), it can be seen that this conversion process is only a change in the
vector angle and does not change the nature of the feature points themselves. However,
as shown in Figure 6, the figure illustrates the distribution of some feature points in one
frame during the image acquisition. After characteristic enhancement, the feature points
are neatly distributed in the pixel coordinate system with strong positional properties, and
the feature point distribution tends to be more discrete, so that the originally chaotic and
similar feature points are significantly distinguished. This means that the feature nature of
the scene is enhanced. According to the coordinate attribute of the feature point, the scene



Sensors 2023, 23, 1878 9 of 21

characteristic evaluation index char value is given based on the dispersion degree of the
feature point distribution, as shown in Equation (15).

char =
√

fdi f (S2
x)× fdi f

(
S2

y

)
(15)
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In Equation (15), S2
x is the variance of pixel coordinates x of feature points, S2

y is the
variance of pixel coordinates y of feature points. The whole equation is the geometric mean
of fdi f

(
S2

x
)

and fdi f

(
S2

y

)
. fdi f is a normalization function considering the scene size and

image size parameters. Since different image resolutions have different sizes, the variance
size of the pixel coordinate distribution is not consistent. In order to unify the description,
the variance value needs to be normalized, fdi f as shown in Equation (16).

fdi f = nor(C× (1− nor(XS))) (16)

nor = a tan(x) ∗ 2/π (17)

In Equation (16), the function nor is shown in Equation (17), which is a normalized
function containing an inverse tangent function that maps variance values greater than 0 to
the interval [0, 1]. C is the size factor, which reflects the measurement target size and the
acquisition image size, and is used to amplify the data difference. XS is the independent
variable, i.e., the variance S2

x or S2
y, with expressions as in Equations (18) and (19).

Sx
2 =

n
∑

i=1
(xi − x)2

n− 1
(18)

Sy
2 =

n
∑

i=1
(yi − y)2

n− 1
(19)

After the above derivation, the comprehensive expression of char value can be ob-
tained as shown in Equation (20). The char value is used as the evaluation index of the
characteristic of the scene. The value of char describes the dispersion degree of feature
points in the x and y directions of pixel coordinates. Its value usually ranges from 0 to 1.
The larger the value is, the higher the dispersion of the feature points, and the more discrete
and uniformly distributed feature points tend to be independent of each other whilst
having better location differentiation.

char =
2
π

√√√√√√√a tan

C×

1− a tan


n
∑

i=1
(xi − x)2

n− 1

× 2/π


× a tan

C×

1− a tan


n
∑

i=1
(yi − y)2

n− 1

× 2/π


 (20)
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So far, without adding additional physical devices, the effective feature points are
identified using binocular vision system and the pixel information of the feature points on
the left and right eye images are obtained. Then, the location characteristics of these feature
information in the scene are enhanced by mathematical methods.

4.3. Robust Matching and Tracking Method of Feature Points
4.3.1. Relative Position Relationship Descriptors

The existing feature point detection and matching algorithms do not work well in
low-feature scenes precisely because they cannot form this one-to-one mapping relation-
ship. Some people have improved the traditional method to improve the matching ac-
curacy [16]. Some artificial intelligence algorithms build convolutional neural networks,
improve descriptors and feature point processing methods, etc. [17–21], which achieves
a good matching effect, but also cannot achieve continuous and stable tracking of certain
feature points. Their detected feature points are still different in different frames so that
the feature point position data cannot be used for the identification of flexible solar wing
modalities. In order to solve this problem, this paper proposes the relative positional
relationship descriptor in Definition 4, which is described in detail as follows.

First, the region of interest is found, and the distribution statistics of the feature
points located in the region of interest are calculated according to the pixel coordinate
x direction. Due to the presence of the boundary at the folded connections of the solar
wing, the statistical graph of the characteristic pixel coordinate distribution appears as
the distributed pixel interval shown in Figure 7. Let us assume that the left boundary of
the compartment is bl and the right boundary is br. When Equation (21) is satisfied, the
interval is considered to be the boundary of the pixel coordinates, that is, the gap at the
junction of the flexible solar wing. ηboundary in Equation (21) is the threshold for determining
the boundary. The boundary feature and the boundary coordinates reflect the position
boundary characteristics of the pixel coordinates x direction of the feature points in the
region of interest. The camera can completely capture the upper and lower boundaries of
the solar wing in the y direction of the pixel coordinate, so the upper and lower boundaries
of the solar wing in the image can be used as a marker to locate the feature points.

br − bl > ηboundary (21)
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Figure 7. Statistical map of feature point distribution.
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After finding the boundary with positioning function, the relative position relationship
descriptor describing the position attribute of feature points is used to describe different
feature points, and the feature points are matched. The descriptors of traditional feature
point matching algorithms are usually associated with the gray gradient transform of the
pixels around the feature points. As shown in Figure 8, the SIFT method, which is the
most effective traditional algorithm [16], is used to compare with this method. The SIFT
method uses a 4× 4× 8 vector of 128 dimensions to describe the magnitude and direction
of the gray gradient of pixels within a fixed radius of the feature point. However, the
similar “appearance” of the feature points in the solar wing scene means that the grayscale
variations around the feature points are similar, i.e., the descriptors are similar, and the
correct matching relationship cannot be found. In this paper, we describe the distance
of each feature point to the x and y boundary using the relative position relationship
descriptors based on the found boundary features, i.e., Param1-6 in Figure 8. Since the
feature points tend to be neatly arranged according to the queue relation after the projection
transformation, the relative position relation descriptors of different feature points have
obvious differences. Suppose the pixel coordinate of a feature point is

(
xp(i, j), yp(i, j)

)
.

The i and j in the coordinates describe this queue relationship. The feature point on the
right of the current feature point can be described as

(
xp(i + 1, j), yp(i + 1, j)

)
. The feature

point above the current feature point can be described as
(
xp(i, j + 1), yp(i, j + 1)

)
. Given

the pixel coordinate x direction threshold ηp1 and y direction threshold ηp2 , there is only one
feature point satisfying the pixel coordinate limit of Equation (22). At this point, the relative
positional relationship descriptor RPD can be expressed in the form of Equation (23).{

xp(i, j) < br + ηp1 < xp(i + 1, j)

yp(i, j) < bb + ηp2 < yp(i, j + 1)
(22)

RPD =

{
desX = xp(i, j)− br

desY = yp(i, j)− bb
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To verify the feature point recognition and matching effect of this method, this pa-

per’s method is compared and analyzed with the SIFT method and SuperGlue algorithm, 
which is based on graph neural network [22,23]. Mikolajczyk et al. [18] used the correct 
rate and recall rate as the evaluation index of feature matching in their study. Here, the 
two are fused and the MU  value is used as an evaluation metric for comparative analy-
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tion (26), where H  is the homography matrix. Then, Equation (27) can be obtained by 
expanding Equation (26), and the theoretical transformation relationship between the 
right-eye pixel coordinates and the left-eye pixel coordinates shown in Equation (28) can 
be obtained by further calculation. 

Figure 8. Comparison of feature point description methods.

In conjunction with the representation of the relative position relationship descriptor
in Figure 8, it is clear that Param1 is not equal to Param3, so possible match point 1 can
be excluded. When the distance between two feature points is less than a given threshold,
the two feature points are considered to be corresponding. In this example, Param1 is
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approximately equal to Param5, Param2 is approximately equal to Param6, so that the
correct matching is obtained.

Compared with traditional methods, the method in this paper can clearly distinguish
different feature points with few parameters, which makes feature point matching efficient
and accurate.

4.3.2. Evaluation of Matching Effect

To verify the feature point recognition and matching effect of this method, this paper’s
method is compared and analyzed with the SIFT method and SuperGlue algorithm, which
is based on graph neural network [22,23]. Mikolajczyk et al. [18] used the correct rate and
recall rate as the evaluation index of feature matching in their study. Here, the two are
fused and the MU value is used as an evaluation metric for comparative analysis. MU is
expressed as follows.

MU =
1 + b2

b2

P + 1
R

(24)

where, R is the recall rate of matching results, P is the correct rate of matching results, and
b is the weight of correct rate in the evaluation index. The values of MU, P, and R range
from 0 to 1. When the values of P and R are both 1, it means that all feature points are
found and all of them are matched correctly, which is an ideal situation. It should be
guaranteed that the location information of feature points on the solar wing could be
collected accurately and continuously. We are more concerned about the correctness rate
than the recall rate. To meet this requirement, the correctness rate of the matching result is
required to be very high, so the value of P needs to be given a high weight. Select b = 20.

In order to solve the value of MU, we need to calculate the correct match rate P and
the recall rate R, as in Equation (25).P =

Number of correctly matched feature points
Number of detected feature points

R =
Number of correctly matched feature points

Total number of feature points

(25)

The feature points correctly matched in Equation (25) are determined according to
the homography constrains. The mapping of the pixel coordinates p1 and p2 for the
left and right eyes of the binocular system, respectively, can be described in the form of
Equation (26), where H is the homography matrix. Then, Equation (27) can be obtained
by expanding Equation (26), and the theoretical transformation relationship between the
right-eye pixel coordinates and the left-eye pixel coordinates shown in Equation (28) can be
obtained by further calculation.

p2 = Hp1 (26)u2
v2
1

 =

h1 h2 h3
h4 h5 h6
h7 h8 h9

u1
v1
1

 (27)

{
h1u1 + h2v1 + h3 − h7u1u2 − h8v1u2 = u2

h4u1 + h5v1 + h6 − h7u1v2 − h8v1v2 = v2
(28)

According to Equation (28), the theoretical pixel coordinate value (u2C,v2C) of the
feature point identified in the left eye in the right eye can be calculated, and the actual
value (u2T,v2T) of the pixel coordinate of the relevant feature point can be read from the
right eye image; given the threshold η as shown in Equation (29), when the threshold η is
less than the set value, it means that the theoretical calculated value and the actual detected
value match, that is, the correct feature point is matched, and then the evaluation index
MU value can be found.

η =

√
(u2C − u2T)

2 + (v2C − v2T)
2 (29)
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Combined with the evaluation parameter char in Section 4.2, the comprehensive
matching parameter (CMP) of the scene can be obtained by taking the summation average
of the parameter MU and the parameter char from Equation (30). The value of CMP ranges
from 0 to 1, and the closer the value is to 1, the stronger the characteristic of the scene and
the better the matching of feature points. Ideally, the value of CMP can be taken to 1, which
means that the characteristic of the scene is very high, the features are easy to extract and
distinguish, and the matching is completely correct after extracting feature points.

CMP =
2

1
char +

1
MU

(30)

So far, we have enhanced, identified, and extracted the scene features from two
dimensions of the comprehensive matching parameter of the scene. We can extract the
continuous pixel coordinate change data of certain feature points steadily under the premise
of binocular vision system only. The continuous change data of the spatial 3D position of
feature points can be obtained using these feature point pixel coordinates combined with
camera parameters. The three-axis velocity of the spatial motion of the feature point in
the camera coordinate system is obtained by differentiating the spatial three-dimensional
coordinates in the time domain. This velocity information is used as the input parameter of
the modal recognition algorithm.

5. Modal Identification Algorithms

In Section 4, a continuous sequence of spatial 3D coordinates of feature points in the
time domain is obtained by a binocular vision system. The modal parameter information
of the system can be obtained by feeding the data into the modal recognition algorithm.
ERA and Stochastic Subspace Identification (SSI) are typical representatives of time-domain
methods in modal parameter recognition algorithms, which have been successfully applied
in specific models in the aerospace field. Based on them, a series of improved algorithms
have been born, such as ERA based on data correlation improved by the random decrement
(RDT+ERA/DC) technique, and the data-driven stochastic subspace identification (SSI-
DATA) technique. The modal omission problem occurs when these two methods are used
alone. However, we find that the operations of these two time-domain modal parameter
identification methods are not completely independent, but are related. Therefore, in this
paper, we consider the fusion of the two methods RDT+ERA/DC and SSI-DATA, aiming to
solve their own modal omission problems. The fusion unified calculation flow is shown
in Figure 9.

1. The cross-correlation analysis of the vibration response output signal is carried out to
obtain the time series of cross-correlation function enhanced by modal information.
The cross-correlation function Rijk(τ) of observation points i and j can be expressed
in the form of Equation (31).

Rijk(τ) =
2n
∑

r=1

2n
∑

s=1
ϕirϕjsakraks

∫ t
−∞

∫ t
−∞ eλr(t+τ−p)+λs(t−q)E[ fk(p) fk(q)]dpdq

=
2n
∑

r=1

2n
∑

s=1
ϕirϕjsakraksak

−eλrτ

λr+λs

=
2n
∑

r=1
bjrϕireλrτ

(31)

where ak denotes the constant associated with the excitation point k only, ϕir and ϕjs
denote the r and s order mode oscillations of the observation points i and j, akr and aks
denote the parameters associated with the excitation point k and the mode order r or
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s, respectively, bjr =
2n
∑

s=1
ϕjsakraksak

−1
λr+λs

, λr and λs are the main diagonal elements

of the diagonal matrix. If we take f (t) as white noise, we obtain the following:

E[ fk(p) fk(q)] = akδ(p− q) (32)

where δ(·) denotes the pulse function.
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In order to increase the signal-to-noise ratio of the cross-correlation function of the
observed signal, the cross-power spectrum of the observed signal is calculated first, and
then the cross-correlation function of the observed signal and its time series are obtained
by inverse Fourier transform.

2. The generalized Hankel matrix constructed from this time series is shown in
Equation (33), and the H(0) and H(1) in the generalized Hankel matrix are extracted.

H(t− 1) =


h(t) h(t + 1) · · · h(t + β)

h(t + 1) h(t + 2) · · · h(t + β + 1)
...

...
. . .

...
h(t + α) h(t + α + 1) · · · h(t + α + β)


(α+1)l×(β+1)m

(33)

where h(t) is the system unit impulse response function at t time, α and β are
arbitrary integers.

3. Considering that the CVA weighted processing method is highly resistant to noise,
the SVD decomposition of the matrix H(0) after weighting processing is performed to
obtain the system observability matrix. The singular value decomposition of H(0) can
be obtained as follows:

H(0) = USVT (34)
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where U is the (α + 1)l × 2n dimensional left singular matrix, V is the (β + 1)m× 2n
dimensional right singular matrix, S is the 2n× 2n dimensional diagonal matrix. U,
V, and S satisfy the requirements of Equation (35).

UTU = I2n×2n

VTV = I2n×2n

S = diag(σ1, · · · , σ2n)

(35)

4. The least squares method is used to extract the system matrix of the state space model.
Introducing ET

l = [Il 0l · · · 0l ], ET
m = [Im 0m · · · 0m] the system matrix of

the system state space model is derived as follows:
A = S−1/2UTH(1)VS−1/2

B = S1/2VTEm

C = ET
l US1/2

(36)

5. The information of the modal parameters is extracted from the system matrix. Based
on the solutions of vibration theory and state equation, the i order modal frequency
ωi, damping ratio ξi, mode matrix Cψ and amplitude matrix of the system ψ−1B are
obtained based on the ERA method as follows:

ωi =
√

Re(si)
2 + Im(si)

2

ξi =
Re(si)

ωi

Cψ = ET
l US1/2ψ

ψ−1B = ψ−1S1/2VTEm

(37)

where si = ln(zi)/∆t denotes the eigenvalues of the continuous-time system matrix
A and ∆t denotes the sampling interval. Based on the SSI method, the i order modal

frequency ωi, damping ratio ξi, and the vibration matrix of the system Φ are obtained
as follows: 

ωi = |si|

ξi =
|Re(si)|

ωi

Φ = Cψ

(38)

where si = ln(zi)/∆t, ∆t denote the sampling time interval.

6. The modal amplitude coherence coefficient (MAC) and modal singular value (MSV)
criteria are used to distinguish the real and false modes.

Define the MAC as shown in Equation (39):

γi =

∣∣∣∣ –
q

H
i qi

∣∣∣∣
‖ –

qi‖·‖qi‖
, i = 1, · · · , 2n8 (39)

where the row vector qH
i represents the time series of the identified modal amplitude of

the i order modal motion, and the value interval of γi is [0, 1]. γi → 1 when the i order
modal is the true modal, and γi → 0 when the i order modal is the false modal. MSV is a
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method for determining the degree of contribution of each order of the identified modal to
the impulse response signal and is calculated as follows:

κi =

√
|ci|(1 + |zi|+

∣∣z2
i

∣∣+ · · ·+ ∣∣∣zβ
i

∣∣∣)|bi| (40)

where ci is the column vector of the system matrix C and bi is the row vector of the system
matrix B. zi is the eigenvalue of the system matrix A. When |zi| < 1 and β→ µ (µ is a
sufficiently large number), Equation (40) becomes the form of Equation (41).

κi =
√
(|ci| · |bi|)/(1− |zi|) (41)

So far, based on analyzing the difference and connection between ERA and SSI system
time domain identification methods, the correlation analysis technique is introduced, the
generalized Hankel matrix is constructed, and the SVD decomposition and least squares
method are used to solve the system state matrix and extract the modal parameter informa-
tion. The false and real modes are distinguished according to MAC and MSV. Thus, the
fusion of ERA and SSI time domain methods is realized. It effectively solves the problem of
modal omission caused by RDT+ERA/DC and SSI-DATA algorithms because the modes
with a small vibration response are eliminated as noise.

6. Experimental Verification of Modal Identification of Flexible Satellite Appendages
6.1. Mathematical Simulation

A three-dimensional model of the whole star which has a central rigid body coupled
with flexible attachment is established. The dimension of the central rigid body is set to
600× 600× 800 mm and the dimension of the flexible solar wing is 1600× 400× 2 mm,
which is the same as the physical model. When the flexible solar wing is subjected to
external excitation frequency of 0.66573, the first-order vibration pattern is mainly shown
in Figure 10.
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6.2. Ground Test
6.2.1. Relevant Parameters of the Ground Test

In order to verify the feasibility and measurement accuracy of the method of on-orbit
measurement and identification of large flexible structures based on non-contact optical
measurement in the low-feature scene of this paper, a flexible solar wing model dynamics
test platform is built as shown in Figure 11. The length and width of the three-stage
solar array is 1600 mm × 400 mm. The camera baseline length is about 450 mm. The
camera resolution is 4096 × 3000. The maximum camera frame rate is 46 fps. Other
cameras and lens related parameters are shown in Table 1. During the test, the flexible
solar wing is subjected to random external excitation and vibrates freely. The vibration
information is collected by the binocular camera, which is then transmitted to the processor
for centralized processing.
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Table 1. Camera and lens parameters table.

Camera Pixel Size Camera Sensor Spectrum Exposure Time Lens Focal Length f Lens Aperture F

3.45 µm× 3.45 µm 1.1 inches, Global Shutter Mono 3 ms 16 mm 6

6.2.2. Results of Ground Tests

Firstly, the binocular vision system is calibrated. The intrinsic parameters of the
camera are shown in Table 2. The extrinsic parameters are shown in Equation (42). Then,
the superiority of the method is verified in terms of the characteristic of the scene and
the uniqueness of the matching. For the scene of this paper, C = 104 is selected, and the
characteristic of the scene is calculated according to Equation (20), as shown in Table 3.

T f orm =


0.99163 0.12630 −0.02675 16.59488
−0.11764 0.79857 −0.59029 −425.66317
−0.05319 0.58849 0.80674 138.84437

0 0 0 1

 (42)

Table 2. Binocular camera internal parameters.

Camera fx fy cx cy

Left eye 4703.986588930 4703.111975069 2079.232347048 1475.465152926
Right eye 4725.708015617 4723.713940567 2052.554124594 1490.440881834

Table 3. Scene Characteristic Comparison.

Before Enhanced Features After Enhanced Features

Scene characterization char 0.4665 0.9091

The actual effect of the relative position descriptor matching method, SIFT algorithm,
and SuperGlue algorithm between different frames is shown in Table 4. From the table,
it can be seen that the SIFT algorithm, as the most stable and best performing traditional
feature point recognition matching algorithm [16], only has an MU value of 0.5499 in
this scene, which indicates that the SIFT algorithm has poor applicability in this scene.
The SuperGlue method based on artificial intelligence still maintains a good matching
effect in this low-feature scene, but it still has the problem shown in Figure 4. The feature
points detected between different frames are quite different, and so the fixed feature points
cannot be tracked stably, and the data cannot be used for modal identification. In contrast,
the feature point matching algorithm based on the relative position relation descriptor
proposed in this paper ensures a better matching effect, and in each frame of the image, the
fixed feature points with clear location attributes are tracked stably.
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Table 4. Comparison of feature point matching results of different algorithms.

Total Points Detected Points Correct Matching Points MU

SIFT algorithm 306 14 8 0.5499
SuperGlue algorithm 306 18 16 0.8631
Methods in this paper 306 3 3 0.8389

Then, the comprehensive matching parameter of the scene is calculated according to
Equation (30), and the results are shown in Table 5. The data show that the comprehensive
matching parameter of the SIFT algorithm is only 0.5082, indicating that this algorithm
is not suitable for low-feature scenes, which is consistent with its actual performance in
scene feature point matching. The matching effect of SuperGlue algorithm has been greatly
improved due to the introduction of artificial intelligence and should have a better matching
effect if the characteristic of the scene is enhanced. The method used in this paper has the
highest CMP value, which not only ensures the correct rate of feature matching but also
can stably extract the continuous position changes of the required feature points in each
frame, which has better practical significance.

Table 5. Comparison of the comprehensive matching parameter of scenes.

char MU CMP

SIFT algorithm 0.4665 0.5499 0.5048
SuperGlue algorithm 0.4665 0.8631 0.6057
Methods in this paper 0.9091 0.8389 0.8726

Finally, the spatial 3D coordinates of the target measurement point were tracked using
the calibrated binocular camera. The 3-axis spatial position and velocity of the feature
points in the camera coordinate system were obtained as shown in Figures 12 and 13. To
evaluate the measurement accuracy of the vision system in this experimental scheme, five
OptiTrack series PrimeX22 cameras were used to form a high-precision camera set with a
frame rate of 360 fps and a 3D measurement accuracy of ±0.15 mm. The targets used by
OptiTrack cameras were pasted at the three target measurement points, and the 3D spatial
positions of the three target points were measured. Due to the influence of the target’s
height, the coordinates of the spatial points obtained by the OptiTrack camera set and the
camera in this experimental scheme are not exactly the same. To solve this problem, the
measured data from the OptiTrack camera set were transformed to the camera coordinate
system of this experimental binocular camera. Then, the Y coordinate difference of the
adjacent measured points in the camera coordinate system was calculated. This value was
compared with the Y coordinate difference of the feature points measured by the binocular
camera in this paper’s experimental scheme. The absolute error curve of measurement was
obtained as shown in Figure 14. The dashed line in Figure 14 shows the average absolute
error in 102 sampling frames, and the value is 0.937044118 mm. Hereby, the binocular
camera scheme in this paper can achieve sub-millimeter level measurement accuracy, which
is an effective on-orbit measurement method.

After obtaining the motion information of the free vibration process of the flexible
solar array under external excitation, the modal identification is carried out by using the
fusion method of RDT+ERA/DC and SSI-DATA. The results are shown in Table 6 and
Figure 15. The true value of the vibration frequency of the flexible solar wing is 0.7146 Hz,
so the experimental identification error is 2.82% and the mathematical analysis error
is 6.84%.
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Table 6. Modal recognition results.

Order Theoretical Value/ Hz Identification Value/ Hz Error

1, 2 0.7364 (High precision solutions) 0.73478 (Experimental protocol of this paper) 2.82% (Experimental protocol of this paper)



Sensors 2023, 23, 1878 20 of 21Sensors 2023, 23, x FOR PEER REVIEW 22 of 23 
 

 

System orders / n

ha
nk

el
 m

at
rix

 si
ng

ul
ar

 v
al

ue
s

 
Figure 15. Modal parameter identification. 

7. Conclusions 
This paper proposes a non-contact optical measurement method for the on-orbit 

measurement and identification of the modal parameters of large flexible structures of 
satellites, and the following conclusions are obtained. 

The concept of the comprehensive matching parameter of scenes is proposed, based 
on which the features of the scenes themselves are enhanced through theoretical deriva-
tion and mathematical transformation. The relative position relationship descriptor is pro-
posed for the description and matching of feature points so that stable tracking measure-
ments of specific feature points can be achieved by using only binocular cameras without 
relying on physical identification points. 

To demonstrate the feasibility of the above scheme, a physical experimental platform 
is built for experimental testing and the binocular measurement results are evaluated. The 
average absolute measurement error is about 0.937 mm. Compared with the traditional 
targeting scheme, the scheme in this paper takes into account the measurement accuracy 
while simplifying the experimental setup and improving the stability of the system. 

In this paper, the binocular vision system measurement data are applied to the modal 
identification method based on the fusion of Eigensystem Realization Algorithm and Sto-
chastic Subspace Identification. The first-order frequency of the flexible solar wing vibra-
tion is 0.7364 Hz and the discrimination error is 2.82%, which proves that the non-contact 
optical measurement scheme has good modal identification accuracy and practical appli-
cation value. In the future, we can consider combining the feature enhancement method 
or the feature point description method proposed in this paper with the neural network 
to improve feature point detection efficiency and recognition accuracy. 

Author Contributions: Conceptualization, T.C. and X.J.; methodology, Q.B.; software, T.C. and 
Z.Z.; writing—original draft preparation, T.C.; writing—review and editing, T.C.; supervision, C.W. 
All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Key R&D Program of China under Grant 
2021YFB1715000, National Natural Science Funds of China under Grant 62022013, 12150007, 
62103450. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 15. Modal parameter identification.

7. Conclusions

This paper proposes a non-contact optical measurement method for the on-orbit
measurement and identification of the modal parameters of large flexible structures of
satellites, and the following conclusions are obtained.

The concept of the comprehensive matching parameter of scenes is proposed, based
on which the features of the scenes themselves are enhanced through theoretical derivation
and mathematical transformation. The relative position relationship descriptor is proposed
for the description and matching of feature points so that stable tracking measurements of
specific feature points can be achieved by using only binocular cameras without relying on
physical identification points.

To demonstrate the feasibility of the above scheme, a physical experimental platform
is built for experimental testing and the binocular measurement results are evaluated. The
average absolute measurement error is about 0.937 mm. Compared with the traditional
targeting scheme, the scheme in this paper takes into account the measurement accuracy
while simplifying the experimental setup and improving the stability of the system.

In this paper, the binocular vision system measurement data are applied to the modal
identification method based on the fusion of Eigensystem Realization Algorithm and
Stochastic Subspace Identification. The first-order frequency of the flexible solar wing
vibration is 0.7364 Hz and the discrimination error is 2.82%, which proves that the non-
contact optical measurement scheme has good modal identification accuracy and practical
application value. In the future, we can consider combining the feature enhancement
method or the feature point description method proposed in this paper with the neural
network to improve feature point detection efficiency and recognition accuracy.
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