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Abstract: Early detection of physical frailty and infectious diseases in seniors is important to avoid any
fatal drawback and promptly provide them with the necessary healthcare. One of the major symptoms
of viral infections is elevated body temperature. In this work, preparation and implementation of
multi-age thermal faces dataset is done to train different “You Only Look Once” (YOLO) object
detection models (YOLOVS5,6 and 7) for eye detection. Eye detection allows scanning for the most
accurate temperature in the face, which is the inner canthus temperature. An approach using an
elderly thermal dataset is performed in order to produce an eye detection model specifically for
elderly people. An application of transfer learning is applied from a multi-age YOLOv7 model to an
elderly YOLOvV?7 model. The comparison of speed, accuracy, and size between the trained models
shows that the YOLOvV7 model performed the best (Mean average precision at Intersection over
Union of 0.5 (mAP@.5) = 0.996 and Frames per Seconds (FPS) = 150). The bounding box of eyes
is scanned for the highest temperature, resulting in a normalized error distance of 0.03. This work
presents a fast and reliable temperature detection model generated using non-contact infrared camera
and a deep learning approach.

Keywords: deep learning; elderlies; infectious diseases; physical frailty; temperature detection;
thermal image processing; transfer learning; YOLO

1. Introduction

According to the European Union data, by 2050, the number of elderly people will
increase by 70% for those over 65 years old and 170% for those over 80 [1]. In addition, the
elderly population is severely affected by the COVID-19 crisis, due to the higher mortality
risk upon exposure to a viral infection. It was noticed that in France, upon facing the
COVID-19 pandemic, the most affected people where those aged 65 years old and over,
with at least 92% of COVID-19 cases [2]. Moreover, viral infections have stronger and more
fatal effects on seniors [3]. For example, sometimes COVID-19 surpasses the common cold,
with its serious symptoms characterized by lung infection, a major cause of respiratory
distress syndrome (ARDS) [4].

Identifying physical frailty in the elderly has become a vital issue to keep them as far
away as possible from being exposed to the virus, as their chance of survival after exposure
is very low. However, early detection allows corrective actions as soon as possible and
helps reduce contamination [5].

One of the indicators that help in detecting viral infections is elevated body tempera-
ture [6]. A thermal camera, being a fast and reliable non-contact temperature measurement
device, is considered a better option than contact medical thermometers. The U.S. Food
and Drug Administration (FDA), in their article entitled “The Medical Devices’ Safety of
Non-contact Temperature Assessment Devices During the COVID-19 Pandemic”, stated
that infrared thermographic systems help in preventing virus transmission, because they
are non-contact temperature screening devices [7]. Additionally, a review on the medical
applications of infrared thermography mentioned that the temperature of the inner canthi
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of the eyes is the most accurate temperature to be measured using a thermal camera. This
is due to its correlation with the temperature of the axilla measured by a conventional
thermometer [8]. We know that the internal carotid, the artery that supplies the interior part
of the brain, passes underneath the inner canthus region, making it the most reliable region
for temperature detection by thermal infrared camera [9]. Moreover, a study mentioned
in [8] has shown that a temperature above 37.5 °C, with 0.5 °C tolerance, is considered a
possible indication of fever.

In order to detect the inner canthus of the eyes, one should start first by locating the
eyes in an image. This can be done by implementing object detection techniques which are
widely used in computer vision tasks. These techniques are either of a traditional machine-
learning nature or a deep-learning nature. Object detection deep-learning methods have
better performance in the case of large-scale data training. From these methods, we have
R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN and YOLO [10]. YOLO is a real-time
object monitoring algorithm, due to its small size and fast operational speed in comparison
to other object detection alternatives. In addition, YOLO can detect objects in videos,
making it a better choice in real-time detection scenarios [11].

Several techniques that aim for eye detection in thermal images were proposed in the
literature. For example, Hussein et al. worked on a training cascade-based classifier, feeding
it by Haar, histogram of oriented gradient (HoG), and local binary patterns (LBP) features
from 1000 images taken from the Natural Visible and Infrared Facial Expression Database
(NVIE). Among the three types of features, HoG features fed to the cascade classifier
achieved the highest precision and recall rates, at 98.8% and 92.6%, respectively [12].
Another group of researchers attempted to detect the eye frame and inner canthus in
15 images of different face orientations. This was carried out by applying face segmentation
and rotation of the face into a straight view, followed by using facial proportion to locate the
eyes, resulting in an accuracy of 80%. After locating the eyes, they searched the frame for
the highest intensity to localize the inner canthus, ending with 100% localization accuracy.
However, this algorithm lacks reliability in cases of longer face height and in cases of neck
presence in the image, for example, which resulted in an error in proportions. Accordingly,
the eye frame will not be correctly localized, causing incorrect inner canthus detection [13].
Additionally, Knapik et al., in their paper entitled “Fast Eyes Detection in Thermal Images”,
presented a pre-processing image technique that mainly converts the low-dynamic range
thermal image into a high-dynamic range image for detail enhancement followed by the
use of scale-invariant feature transform (SIFT). Their final detections were carried out using
the bag of visual words clustering approach. The work achieved precision and recall of
96% and 97%, respectively, when testing the YOLOvV3 deep learning model trained on
62 samples [14].

Besides the mentioned research, some work has been dedicated to inner canthus
temperature detection, such as the work presented in [15], which trained two versions of
the “you only look once” (YOLO) object detection algorithm to detect eyes” inner canthi
region. YOLOv4 and YOLO-Tiny versions of YOLO were trained using 606 thermal images
of 35 individuals, resulting in a precision score of 0.94 and 0.99, respectively, and the same
recall score of 0.99. Furthermore, Budzan et al. worked on face and eye localization for
inner canthus temperature measurement by implementing randomized Hough transform
for ellipses detections (the two eyes in this case). The method was tested on 125 thermal
images of faces and resulted in an average accuracy of 97.3% [16]. Ferrari et al. proposed
an algorithm based on the OpenPose detector to detect inner canthi locations, followed
by application of a 3D Morphable Face Model to refine the detections. The model runs
at a speed of nine frames per second (FPS), which is considered low compared to other
approaches. Their work was performed by training the OpenPose detector on visible and
not thermal images, making it not reliable enough [17]. Finally, the most recent attempt was
that of Lazri et al. [18], who worked on detecting inner canthi and nostrils to measure body
temperature and respiration rate. They used the pre-trained single shot multibox detector
(SSD) to detect faces in thermal images, then they searched for the landmarks using Kazemi
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and Sullivan’s publicly available algorithm. The model was tested on 36 thermal images,
plus four processed image types per one thermal image, and fairly detected the inner canthi
and nostrils with a speed of 146 FPS. The detection was accomplished only in frontal faced
images along with the confusion of eyebrows region. These limitations are because both
SSD and landmarks detection models were initially trained on visible frontal images only.

This paper presents an original approach for detecting the eye region of the face using
YOLOQO's object detection method. The different architectures of YOLO versions 5,6 and 7
are trained and compared in this work. At first, multi-age images collected from online
image datasets and captured thermal images are used for the training and testing processes.
Then, transfer learning is carried out, starting from the multi-age model weights, to train a
new model on the limited number of elderly faces in thermal images. This is followed by
an inner canthus temperature extraction method.

The rest of the paper is organized as follows. Section 2 introduces the materials
and describes the methodology. Section 3 shows the results, followed by a discussion in
Section 4. A conclusion with work perspectives is finally presented in Section 5.

2. Materials and Methods

The general methodology of this work consists of several steps. The first step is the
data collection and preparation procedure, followed by labelling the eyes in the dataset.
After data annotation, images are introduced to data augmentation techniques to increase
their number and avoid the model’s overfitting. Then, training and testing of YOLO
different models is carried out. Finally, the detected eye area is scanned for the inner
canthus temperature. These steps are applied once on a multi-age dataset and another time
on an elderly dataset. Figure 1 shows a flowchart of the methodology proposed in our
work wherein the final step will be performed later, retrospectively.

1. Data 2. Data 3. Data
Collection Annotation Augmentation

TROTEC IC060 Thermal Two Classes: “One Eye" = Horizontal = Color hue

Camera + TFW Online &“Two Eyes” flipping = Exposure
Dataset = Rotation = Blur
= Cropping
6. Trigger ) 5. Detection of Inner 4. Training and
an alarm (perspective) Canthus Temperature  Testing YOLOv5 Models

T\

If there exists a fever then an The “Two Eyes” Training Settings:
alarm is raised to do detected region is 80% training and 20%
antigenic test & self-isolation scanned for the testing
highest temperature Number of epochs=130
(inner canthus Batch size =32
temperature) Image size = 416

Figure 1. The methodology followed in this work.
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2.1. Datasets Collection
2.1.1. The Multi-Ages Dataset

The multi-age dataset consists of 1827 thermal images, a combination of thermal
images captured in our lab (104 images of 11 individuals) and the TFW testing indoor
dataset (1723 images of 23 individuals). The merging of two different datasets is performed
in order to obtain larger and more varied samples of face thermal images. This method will
ensure a more generalized model [19].

Data collection in the lab is carried out using a TROTEC IC060 thermal camera with
a resolution of 152 x 115. The equipment’s sensor is an uncooled microbolometer focal
plane array with a minimum focus distance = 0.1m and a spatial resolution = 2.2 mrad.
The captured images in SAT file format are transferred to the PC using a USB data cable.
TROTEC provides ICReport software which allows exportation of the images and their
temperature data in JPG and xlsx Excel spreadsheet formats, respectively. A total of
104 images of 11 individuals are captured. Five males and six females aged between 22 and
30 contributed to data collection. The images are captured in our lab, with the camera being
parallel to the participants and placed at a distance of 1m [20]. The ambient temperature
is maintained at 20 °C (£1 °C) and measured using a thermometer. All our participants
were asked to spend 15 min in the room in order to prevent the thermal effect of the
external environment, and the same setup conditions were preserved for all captures. The
experiment was explained to the volunteers, who agreed to let their images be utilized for
research and publication purposes. Figure 2, below, shows the experimental setup.

Room Temperature:
20°C(x1°C)

Tm

Thermal Camera Volunteer

Figure 2. Experimental setup of thermal image capturing.

The second dataset, named the “annotated thermal faces in the wild dataset (TFW)”,
is a visual and thermal dataset containing images of 147 subjects of different age groups.
It counts 9982 images collected in controlled and uncontrolled and indoor and outdoor
environments. The indoor environment’s temperature is maintained at 25 °C. The images
are taken using FLIR T540 thermal camera with a resolution of 464 x 348 pixels. Note that
the TFW dataset is originally split to training, testing, and validation in order to train a
YOLOv5 model to detect individuals’ faces and their landmarks (pupils, nose, and borders
of mouth). Therefore, we have chosen its indoor unlabeled testing dataset, which contain
2160 images of 30 individuals. However, 7 individuals are wearing eyeglasses; accordingly
their images are eliminated [21]. This leaves the dataset with 1723 images of 23 individuals
with different head rotations (upward, downward, left and right).

2.1.2. The Elderly Dataset (TFW, Tufts, IRDatabase)

The preparation of the elderly dataset is done by collecting images from three different
online thermal datasets: TFW [21], Tufts [22,23] and IRDatabase [24]. TFW database is
collected in the Institute of Smart Systems and Artificial Intelligence, Nazarbayev University,
Kazakhstan. The second database, IRdatabase is collected in RWTH Aachen University in
Germany. The third database, Tufts, is built in Tufts University, Boston, USA. The elderly
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participants in the three previous datasets are staff, faculty members, and/or their family
members, alongside students’ family members. This results in a total of 656 images for
20 individuals aged 60 and above. The distribution of the sources of the database is
presented in Table 1.

Table 1. Elderly dataset sources” distribution.

Dataset Name Number of Individuals Number of Images
TFW 7 504

Tufts 11 97

IRDatabase 2 55

Total 20 656

2.2. Dataset Preparation
2.2.1. Data Annotation

We used Roboflow online tool to label our data [25]. The labelling consists of two
classes: one eye and two eyes. The class one eye includes each eye in two separate bounding
boxes; however, the class two eyes includes both eyes in the same bounding box. Figure 3
shows an example of a labeled image where the pink boxes refer to the one eye class and
the yellow box refers to the two eyes class.

Figure 3. Example of the labeled image; pink box: one eye class, yellow box: two eyes class.

For the elderly dataset, the labeling is limited to the two eyes class, which is simply
called eyes. This is due to using the two eyes box exclusively later in the methodology.

2.2.2. Data Augmentation

After labeling the 1827 multi-age dataset images and the 656 elderly dataset ones, we
integrate different data augmentation techniques using the Roboflow data augmentation
tool in order to increase the size of our dataset [25,26].

The techniques applied are:

Horizontal flipping;
Rotations;
Cropping;
Saturation;
Exposure; and

Blur.

Consequently, we had a total of 4255 images for the multi-age dataset and 1,791 images
for the elderly dataset. Some of the augmented photos are presented in Figure 4. The
rotations displayed in Figure 4 are done in order to allow the model to learn the different
possible face positions of the subjects. This way, it can detect the subject’s eyes whether he
or she is lying down or whether the thermal camera is attached to the ceiling.



Sensors 2023, 23, 1851

6 of 18

Figure 4. Examples of the augmented images.

2.3. YOLO: Algorithm and Versions

“You only look once” (YOLO) is a unified single convolutional neural network (CNN)
model proposed by Redmon et al. for object detection in images [27]. In this work,
YOLQO'’s open-source CNN based software is chosen due to its high detection accuracy and
satisfactory computational complexity.

The YOLO model is trained on the COCO dataset to detect multiple bounding boxes
with their class probabilities [27]. It divides the image into an S x S grid, wherein each
grid cell predicts B bounding boxes along with their confidence scores. Equation (1) shows
how the confidence score for each bounding box is calculated.

Confidence Scoreppject= Pr(Object) ToUtuth 1)

prediction”

where Pr(Object) shows the probability that the cell contains an object and IOUgrl::tdhiction is

the intersection of the union between the detected box and the ground truth (Figure 5).
If the cell does not contain an object, then the Pr(Object) should be a zero leading to
zero confidence score. On the contrary, the aim is to have the IOUg;:letdhiction equal to the
Confidence Scoregppject-

IoU = —
total area of union

Figure 5. Intersection over union (IoU) is the division of the overlapping area by the total union area
between the ground truth bounding box and the predicted one [28].

Besides the confidence score above, each grid cell containing an object predicts C
conditional class probabilities, Pr(Class; |Object ). This metric shows the probability that
the detected object belongs to class i.

During testing of the model, a class-specific confidence score for each bounding box is
calculated, as shown in Equation (2).

Pr(Class; |Object ) +Pr(Object)* IoUT™h .. — Pr(Class;)* loUTuth (2)

prediction ™ prediction’
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Figure 6 shows the workflow of the YOLO model, in which each image contains
S x S x B bounding boxes. Each box has the following predictions: the center coordinates
(x,y), weight, height, 1, confidence score, and C, conditional class probabilities [27].

S X S X B bounding boxes
confidence = Pr(object) x loU(pred, truth)

S x S grid on input Final detections

Pr(Class, | object)

Class probability map

Figure 6. YOLO workflow [23].

There are seven main YOLO versions: the first YOLO version, YOLOv2, YOLOV3,
YOLOvV4, YOLOV5, YOLOv6 and YOLOvV7. Both YOLOv5 and YOLOv6 have models
of different sizes, whereas YOLOV5 comes with five different model sizes from Nano
to X-large (YOLOv5n, YOLOv5s, YOLOv5m, YOLOVS5], and YOLOv5xI), as shown in
Figure 7. Moreover, YOLOV®6 is of two sizes, nano or small (to date); larger sizes are
still in development. The choice of the model size is a tradeoff between accuracy and
computational power. Figure 7 shows how larger models have greater mean average
precision (mAP) scores when trained and tested on the COCO dataset [29].

> X B B

Small Medium Large XLarge
YOLOvV5s YOLOvV5mM YOLOVSI YOLOvV5x
14 MBFP"3 41 MBFP"3 90 MBFNG 168 MB;‘,‘6

22ms,, 29ms, 3.8ms,, 6.0 m
36.8 mAF’coco 44.5 mAPCoco 48.1 mAPCoco 50.1 mAPCoco

Figure 7. YOLOVS5 different model sizes, where FP16 is the half floating-point precision, v100 stands
for the inference time in milliseconds on the NVIDIA V200 GPU, and mAP (mean average precision)
is calculated according to the original COCO dataset [30].

In this study, we train the three most recent YOLO versions, 5, 6, and 7. The YOLOv5
model architecture shown in Figure 8 comprises three independent parts: the backbone,
neck and head. The backbone network is responsible for feature extraction. Then, the
features map is introduced to the neck which in turn detects the bounding boxes. Finally,
the head gives the detection results (class, confidence score, location(s) and size(s) of the
bounding box(es)) [31]. Another advantage is its ability to enhance the training data,
where the data loader of YOLOVS5, for example, applies three types of data enhancement:
color space adjustment, scaling and mosaic enhancement [30]. YOLOV6 offers a hardware-
friendly design and high performance dedicated to industrial applications. Changes are
made in the backbone and neck of YOLOVS5, in order to meet these criteria. There exist,
as of now, the YOLOv6-nano and YOLOv6-small model sizes, while other sizes are still
in development [32]. YOLOvV7, unlike YOLOV5, does not use the ImageNet pre-trained
backbones. However, the models are trained on the COCO dataset entirely. There are two
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major changes in the YOLOV? architecture: The first is the presence of a computational
block in its backbone named E-ELAN (extended efficient layer aggregation network), which
allows the framework to learn better. Secondly, the YOLOvV? introduces new BoF (bag of
freebies) methods that enhance performance without increasing training costs [33].

BackBone PANet Output
(BottleNeckCsP ——— Concat “BottleNeckCsP ———»| convix1 |
: 2 —_—— £ -

: P | Conv3x3 52
| P i
| | BottleNeckCSP |
| BottleNeckCsP Concat | BottleNeckCSP ———> Convlxl
i aamsual B T

[ convaxas2 |
Comvixl
BottleNeckCsP | ([BBHeNeEREER——— comiix

Figure 8. YOLOvV5 model architecture [30].

2.4. Training Settings

The training settings of the augmented multi-age dataset are detailed in Figure 9,
where seven different models were established.

130 epochs
batch size of 32
> YOLOVSI image size of 416
80% of dataset for training
20% of the dataset for testing

Training Settings

Augmented Multi-age

!

Dataset

i

Figure 9. Training settings for the augmented multi-age dataset: different YOLO models trained with
130 epochs, a batch size of 32, an image size of 416, and an 80-20% train-test split.

For the elderly dataset, we have used both the original and augmented versions
separately to train different models of YOLOv7 and compare among them. The training
consisted of two stages: the first started from the original YOLOvV7 weights; however, the
second started from the weights of YOLOv7 model trained on the augmented multi-age
dataset (i.e., transfer learning). A general structure of transfer learning is represented in
Figure 10, wherein the knowledge is transferred from a model trained on the large dataset
to a new model [34]. Figure 11 shows the training settings for the elderly dataset.

Figure 12 shows how the trained models process the input image. First, the input
image splits into 416 x 416 grids. Second, bounding boxes are predicted by each grid,
along with their confidence scores and class probabilities. Finally, classes are detected on
the output by tracing bounding boxes on the originally input image.
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/ Source Domain \

Pre-training Learning Task \Pre-Trained

Dataset 1 ' B Model
Large Dataset
Knowl | Knowledge
i Transfer

New Task ; P

Dataset 2 . Learning Task /N ew DL
Model
Target Domain J

Small Dataset

Figure 10. Transfer learning structure. DL: deep learning [34].

Starting from YOLOv7
original weights
Training Settings
130 epochs, batch size of 32
image size of 416

80% of dataset for training
20% of the dataset for testing

Starting from multi-age
dataset model weights

Elderly Original Dataset

YOLOV7 Training

Elderly Augmented

Dataset

Figure 11. Training of elderly original and augmented datasets using YOLOvV7 original weights and
YOLOvV7 multi-age dataset model weights.

HEF " NEE
4

F= gk
Fomm
B ) —
I 1
= | M

416 x 416 grid on input Bounding boxes + Confidence Scores Final Predictions

Figure 12. The models’ processing steps on the input image.

2.5. Blindfold Testing

The blindfold testing approach is adopted to examine the eye detection model further.
This approach is basically training the model on a number of faces and testing it on new
faces. In this way, the model is tested for its ability to work in a practical scenario where it
will be subjected to varied images.

In order to do so, the TFW elderly dataset is used for training (504 images), and the
IRDatabase and TUFTS elderly datasets are used for testing (152 images). The previous
data augmentation techniques are applied to the training dataset, where its size increased
by three times. Additionally, the same training settings used before (130 epochs, a batch
size of 32 and an image size of 416) are applied for the blindfold model. The training started
from the weights of YOLOv7 model trained on the augmented multi-age dataset.
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2.6. Detection of Inner Canthus Temperature

After detecting the two eyes in a bounding box, this region is scanned for the highest
temperature. The highest temperature corresponds to the inner canthus of the eye. As
mentioned in the introduction, the inner canthus is the optimal region to detect the body’s
temperature using an infrared thermometer [9]. The process of detecting the temperature
is done using a code generated in MATLAB R2021a, wherein the temperature data is
scanned for the highest temperature, starting from the location of the upper left edge of
the bounding box to its lower right edge. The eye region, the inner canthus point, and the
temperature are then presented on the image processed.

In order to further validate the detected inner canthus point, we followed the
following procedure:

1.  Run the algorithm of inner canthus and temperature detection on a number of the

images collected in our lab.

Register the automatically detected pixel (q) coordinates (qx, q,) for each image.

3. Locate manually the inner canthi for the same images and extract their pixel (p)
coordinates (px, py).

4. Normalize the g and p pixel coordinates to the image size 152 x 116 (Equations (3)-(6))
in order to obtain a normalized metric (q,

N

norm” pxnorm’ qym,rm ’ pYnorm ) ’

Ty = 155 ©)
P = 125 @
Q. = 1% ©)
Py = (6)

5. Calculate the Euclidean distance (d) between the manually and automatically detected
inner canthus of each image using Equation (7) [35].
6.  Calculate the mean of the distances (d).

d = /A2 + Ay? @)

Ax = 9xnorm ~ Pxnorm and Ay = qynorm_ pynorm

where

3. Results
3.1. Trained Models Results

The training and analysis of results of YOLO models are performed on Google Colab
Python-based virtual machine using a TensorFlow library for machine learning and artificial
intelligence [36]. The results of testing the trained models are displayed in Table 2. The
metrics chosen to evaluate the different trained models are precision (P), recall (R), and
mean average precision (mAP). Precision shows the ability of the model to detect only
correct predictions (true positives). A prediction is said to be a true positive (TP) if the IoU
of the bounding box is greater or equal to 0.5. Otherwise, if the IoU is less than 0.5 or a
duplicated bounding box exists for the same object, then the prediction is denoted as a false
positive (FP). On the other hand, a false negative (FN) occurs when there exists a ground
truth bounding box but the model did not predict it. Below, Equations 8 and 9 are those of
P and R, respectively.

TP

P= TP + FP ®)
TP

R= TP + FN ©)
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Table 2. Precision (P), recall (R) and mAP@.5 Results.

Model Weights Training Dataset P R F1-Score %mAP@.5
YOLOvV5n 1 1 1
YOLOvV5s 0.99 1 0.99 995
YOLOvVSm Auemented 1 1 1 :
YOLOvSI multi—ga e dataset 1 1 1
YOLOv6n & 1 1 1 99.48
YOLOv6s 1 1 1 )
YOLOv7 1 0.99 0.99 99.61
Original elderly
YOLOV? dataset 1 0.98 0.98 99.3
Augmented
elderly dataset 1 1 1 99.6
Original elderly
YOLOv7Augmented 1 1 99.5
. dataset
Multi-age Dataset Augmented
: 1
Model Weights elderly dataset 1 1 99.6
Blindfold elderly 99,61

testing dataset

! Highest %mAP@.5.

The Fl-score is calculated from the precision and recall. The F1-score is a machine
learning evaluation metric that measures the model’s accuracy by taking into account both
the false positives and false negatives of the tested model, and is calculated as shown in
Equation (10) [37].

P xR
P+R

Equation (11) below expresses mAP, which is defined as the area under the precision-
recall curve. This metric is standardly used in object detection applications and helps in
analyzing the model’s accuracy. In our case, mAP is evaluated under the condition of
IoU > 0.5, hence it is denoted as mAP@.5 [28].

F1-Score = 2 x

(10)

Q
mAp — Za=1 AVP(@ (11)
Q
where Q signifies the number of queries in the set and AveP(q) signifies the average
precision for a given query (q).
An example of eye detection using YOLOV? elderly model, which is a result of
transferring the augmented multi-age dataset model, is presented in Figure 13.

Figure 13. Detection of eyes in a senior face image using YOLOV? elderly transferred model.
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In order to test the inference of the trained models, we have recorded a video of
13 s of a volunteer looking at the camera and turning slightly to the left. Table 3 shows
the size, inference time and frame processed per second (FPS) of the different training
models. FPS is the number of image frames per second processed by the model. The more
processed frames per second, the faster the model infers. The FPS is found by calculating
the reciprocal of the inference time (Equation (12)) [38].

1

12
inference time(s) (12)

FPS (frames per second) =

Table 3. The sizes, inference and FPS of different models.

Frames Processed

Model Model Size (MB) Inference Time Per Second (EPS)
YOLOv5n 3.6 17.3 58
YOLOv5s 13.6 13.9 72
YOLOv5m 40.1 10 100
YOLOvV51 88.4 8.7 115

YOLOv7 11.681 6.7 1502

1 Average size; 2 highest FPS.

YOLOV6, as shown in Table 1, had the lowest mAP@.5 score; therefore, it is eliminated
and not tested for inference.

The model size metric in megabytes (MB) is considered in order to take it into consid-
eration later on when developing an embedded system of the model.

On the other hand, comparing the scenes between the different models” detections
allows us to infer their performance. For example, Figure 14 shows how YOLOv5n model
falsely detects number 0 as one eye. However, such false detection is not found in YOLOv5s.

Figure 14. The same video scene with false detection of the one eye class by YOLOv5n, which
YOLOvb5s does not detect. IoU scores are displayed (Pink boxes are for Two Eyes detection and red

boxes are for One Eye detection).
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Temperature (°C)

The YOLOv7 model trained on the augmented multi-age dataset is tested for distance
effect. A volunteer was asked to stand close to the camera one time, and to move further
the other time. The testing performance can be found in Figure 15.

Figure 15. Distance effect on eyes detection by YOLOvV7 model trained on the augmented
multi-age dataset.

3.2. Detection of Inner Canthus Temperature

A graphical representation of the temperature distribution along the eyes line passing
through both eyes (A and E), the root of the nose (C), and the left, and right inner canthi
(IC) (B and D) is presented in Figure 16. In this example, the temperatures of both eye
surfaces are 33.7 °C and 34.1 °C, respectively. These temperatures lie in the range of average
eye surface temperature (34.51 °C =+ 0.82 °C) indicated in the study of Tkacov4 et al. [39].
Additionally, we can notice that the temperature significantly rises in the regions of both
inner canthi, reaching 37.37 °C and 37.23 °C, respectively. It is important to mention that
according to [8], a temperature of 37.5 °C and above is considered fever. The decrease in the
temperature at the root of nose is due to the presence of the nasal bone directly underneath
the skin and not to blood capillaries [40].

375

37

20 25 30 35 40 45 50
Eyeline Row Pixels

Figure 16. Temperature distribution along eyes line: Temperature of right and left eye, right and left
inner canthus (IC) and the root of the nose.

The result of detecting the inner canthus temperature and displaying it on the image
along with the bounding box is implemented in MATLAB R2021a and shown in Figure 17.
Now, in some cases, the inner canthi of both eyes are detected simultaneously since they



Sensors 2023, 23, 1851

14 0f 18

both have exactly the same temperature. The process of detecting the inner canthus temper-
ature requires around 0.09 s. The normalized average distance between the automatically
detected inner canthus point and the manually located (d) is calculated using Equation (7),
and found to be equal to 0.03.

Temperature = 36.75°C

Figure 17. Sample of the temperature data of an image and its detected inner canthus temperature,
where the red * (H) belongs to the pixel of the inner canthus detected.

4. Discussion

As shown in Table 1, the increase in the %mAP@0.5 is not significant between the
augmented multi-age YOLOv5 models and YOLOV? (it only increases by 0.1%). However,
the major difference among the models is in the FPS, which increased from 58 in YOLOv5n
to 115 in YOLOV7, as presented in Table 2. The best-performing model is YOLOv7, with
a %mAP@.5 of 99.6% and a speed of 150 FPS. This indicates an accurate and fast eye and
inner canthus detection model compared to the ones presented in the literature.

The augmented multi-age model’s experimental results in Table 1 show that the
%mAP@.5 score is constant between the different model sizes of YOLOv5. However, when
testing a particular image on both YOLOv5n and YOLOv5s, YOLOv5s proved its enhanced
performance (Figure 14).

Our method presents a fast and reliable model that accurately detects the eye region.
The model is set after training and testing different YOLO versions using different datasets.
The multi-age dataset is a combination of our own collected dataset and the online TFW
dataset with the application of several augmentation techniques (1827 images). Never-
theless, the elderly dataset is a combination of images from three different datasets: TFW,
Tufts, and IRDatabase (656 images). This provides the most diverse and large thermal faces
dataset in the literature, with age classification. Our model results in precision and recall
equal to 100%. However, the second largest thermal face dataset found in the literature
(1000 images) results in precision and recall of 98.8% and 92.6%, respectively, when fed
to a cascade classifier after extracting HoG features [12]. Besides the size of our used
dataset, it also contains different face poses, enabling the model to identify the eye region
in straight-facing images and in rotated-facing images (Figure 18). This is considered a
limitation in the system developed by Lazri et al. [18]. In the case of the rotated photos,
the detection of the temperature of one inner canthus is sufficient to measure the person’s
temperature. This is because, as shown in the graph of Figure 16, there is only a small
variation between the temperatures of each inner canthus (0.14 °C).

The augmented multi-age YOLOv7 model successfully detects the eyes in a near face
and a far face image, as presented in Figure 17.
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Figure 18. Detection of Eyes in Rotated Faces of the Dataset.

In our future work, we aim to accomplish the early detection of infectious diseases
by testing for other symptoms such as cough and fatigue. This is in order to raise the
alarm when one of these symptoms are present, and undertake the necessary lab tests and
corrective actions. Therefore, we have worked on building eye detection models exclusively
for seniors, because the appearance of the face landmarks including the eyes changes
with age [41]. Elderly images gathered from three different datasets were used to train
these models.

In order to test the effect of dataset size on model performance, we trained one model
using the original elderly dataset and another one using the augmented elderly dataset.
Both trainings started from original YOLOv7 weights. Table 1 shows that the dataset
augmentation increases in %mAP@.5 by 0.3%. This is expected, since better deep learning
models are built using augmented datasets, as mentioned in [26].

Another approach in establishing the elderly eye detection model is the application of
transfer learning to the augmented multi-age YOLOv7 model. This is considered beneficial
since it uses the knowledge of somehow similarly pre-trained models to train and fine-tune
the new model, which leads to better performance [33]. Table 1 shows how the model
trained on the original elderly dataset without augmentation, starting from the weights of
YOLOv7 augmented multi-age dataset, performed better (99.5%) than the mode trained
starting from the original YOLOvV7 weights (99.3%). However, upon using the augmented
elderly dataset, there was no difference observed in the %mAP®@.5 scores between both
models. Furthermore, the results of blindfold testing are promising (99.6%); this proved
the generality of the model and its ability to perform well in real case scenarios wherein
new individuals are going to be presented to the model.

Our model detects the inner canthus with an acceptable normalized distance of 0.03
with the manually detected method. Despite this shift, we are still in the region of inner
canthus and managed to detect the highest temperature in that region, as presented in
Section 3 (Figure 17). Additionally, our work could be implemented in a real-time tem-
perature monitoring system, since we were able to detect the eyes in a video scene with a
high speed, reaching 150 FPS in the trained YOLOv7 model, as shown in Figure 19. This is
compared to a maximum of 146 FPS in [18] when testing a pre-trained single shot multi-box
detector (SSD). Regarding accuracy, a comparison between our model and that of [18] is
inapplicable, since there, the SSD model is pre-trained on visible images and IoU was as an
accuracy metric, whereas our model is trained solely on thermal images, with %mAP@0.5
taken as an accuracy measure.
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Figure 19. Detection of eyes in video scene by YOLOv7 model with confidence scores.

In general, the limitation of thermal image-based temperature detection systems is
their inability to detect the inner canthus temperature in the presence of eye glasses due
to their reflective property [15]. The solution would be training a model that detects first
the face and the presence of glasses, then searches for the highest temperature in the face
outside the eye region. However, this method shall still give an approximation of the
body’s temperature rather than the accurate one.

5. Conclusions and Perspectives

This paper presents a fast and reliable model that accurately detects the eye region
after training and testing different YOLO versions using multi-age and elderly thermal
image datasets. Recruiting a thermal camera-based system protects the user’s privacy
and is a cheaper solution than visible cameras. This proposed system also allows the
comparison of size, speed and accuracy between different recently released object detection
YOLO versions: YOLOV5, v6 and v7. In addition, the presence of different head poses
in the training dataset and the implementation of data augmentation methods allow the
model to detect the eyes and temperature of a person in different orientations. With the aim
of frailty and infectious diseases detection, our approach is the first to gather images of the
elderly exclusively to build a temperature detection model. The proposed system could be
considered a solution for speed, accuracy, and image condition limitations in temperature
detection methods, especially during an epidemic. It also can be adapted by hospitals,
retirement homes, and homes.

Looking ahead, further studies will be done in order to ensure the accurate measure-
ment of temperature by considering emissivity, distance effect, camera angle and face
angle effects, as well as the impact of ambient temperature [20]. Additionally, we aim to
implement this work in real-time, due to the high speed of YOLOV7, in order to allow the
installation of the system in infirmaries and elderly care homes. This will be done after
implementing an alarm system which will be raised when fever is detected. Moreover,
although the databases used are considered various and have inter and intra differences, it
is important to include a more significant number of individuals to produce more general-
ized model. Additionally, it is possible to define models for different narrowed age groups
that could help integrate our solution in workplaces, schools and nurseries.
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