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Abstract: Aiming at the real-time robust optimization problem of perishable supply-chain systems in
complex environments, a real-time robust optimization scheme based on supply-chain digital twins
is proposed. Firstly, based on the quantitative logical relationship between production and sales of
single-chain series supply-chain system products, the state space equation of the supply-chain system
with logical characteristics, structural characteristics, and quantitative characteristics was constructed,
and twin data were introduced to construct the digital twins of supply chains based on the state-space
equation. Secondly, the perishable supply-chain system in complex environments was regarded as an
uncertain closed-loop system from the perspective of the state space equation, and then a robust H∞

controller design strategy was proposed, and the supply-chain digital twins was used to update and
correct the relevant parameters of the supply-chain system in real-time, to implement the real-time
robust optimization based on the supply-chain digital twins. Finally, the simulation experiment was
carried out with a cake supply-chain production as an example. The experimental results show that
the real-time updating of relevant parameters through the digital twins can help enterprise managers
to formulate reasonable management plans, effectively avoid the shortage problem of enterprises in
the cake supply-chain system, and reduce the maximum inventory movement standard deviation of
each link by 12.65%, 6.50%, and 14.87%, and the maximum production movement standard deviation
by 70.21%, 56.84%, and 45.19%.

Keywords: digital twins; perishable supply chain; complex environments; real-time robust optimization;
H∞ controller; uncertain system

1. Introduction

The supply-chain system is a cascade system composed of multiple links, and its
upstream and downstream enterprises are committed to selling products to consumers at
the lowest operating costs and the fastest speed. With the trend of globalization, more and
more enterprises and researchers pay attention to the management and optimization of the
supply-chain system, especially from the perspective of production–storage–sales [1–5],
the supply-chain system to optimize management. In the modern supply-chain system,
the operating environment of the supply-chain system is complex, and the challenges
it faces include many aspects such as natural disasters [6,7], public health [8–10], and
wars [11–13].These will lead to changes in the market environments, causing market de-
mand fluctuations.Especially in recent years, the emergence of crises such as coronavirus
disease 2019 (COVID-19)and the Russian–Ukrainian war put the world supply-chain sys-
tem in a state of extreme complexity, high uncertainty, and disruption. Companies may
suffer significant financial losses if they are unable to quickly and effectively respond
to changes in the market environments and adapt to the complex supply chain system
environments.For example, the COVID-19 outbreak at the start of 2020 made many fresh
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products unmarketable, resulting in a wide spectrum of product damage and expiry and a
significant waste of resources and economic damages. This shows that especially for the
supply-chain system of perishable products, if the product is unsellable or transportation
is interrupted due to changes in the complex market environments, it will cause product
waste and cause huge economic losses. This also makes the managers aware that traditional
supply-chain management techniques are no longer adequate to manage the complex
market environments. Instead, effective management techniques are urgently required to
assist enterprises in managing the complex market environments and developing a rea-
sonable production–storage–sales strategy to increase the robustness and anti-disturbance
capability of the supply-chain system.

The control of the supply-chain system is a management method that combines
the logical relationship of the number of purchases, sales, and inventory of each link
in the complete supply-chain system, combines the structural characteristics, constructs
the dynamic model of the supply-chain system in the case of considering the cycle, and
reasonably designs the control method based on the dynamic model, to achieve the ideal
state of production, demand, shipment, inventory, and other parameters. At the same time,
due to the suddenness and unpredictability of the sudden state, it is also necessary for the
real-time optimization management of the supply-chain system. According to the real-
time operation of the supply-chain system, a reasonable production-storage-sales scheme
is formulated, and the digital twin technology can well meet the demand of real-time
optimization. The digital twin technology is used to build digital twins of the supply chain,
and then the digital twins is used to realize the real-time connection between the physical
entities of the supply chain and the virtual simulation environment, so as to realize the
real-time robust optimization of the supply-chain system. The existing research closely
related to this paper mainly focuses on three aspects: the application research of automation
control theory in supply-chain system, the application research of robust H∞ state feedback
control, and the application of digital twin technology in supply-chain management.

With the development of the automotive control theory, more and more scholars
are also focusing on the cross-field application of automation technology, including the
application in the field of supply-chain management. At present, the research on the
application of automation technology in the field of supply chain management mainly
focuses on two aspects.

• Application of frontier automated intelligent algorithms to manage and optimize the
supply-chain system [14–17]. The research in this aspect is to create an objective
optimization function based on the supply-chain system, solve it using an intelligent
algorithm, and provide a management and optimization strategy for the supply-chain
system. The advantage of this research is that it can help the supply-chain system to
achieve multi-objective optimization, but the disadvantage is that the optimal solution
is often a range solution, which cannot give business managers clear and accurate
production, purchase, and shipment strategies. At the same time, it requires relatively
high model accuracy, which makes it necessary to set a lot of assumptions in the model
construction process.

• Application of automation control theory for supply-chain system management and
optimization [18–21]. This research is based on the existing supply-chain production
and marketing model, taking inventory and operation costs as the controlled objects
and constructing a supply-chain system model with reasonable assumptions, and
then applying control theory ideas to optimize the management of the supply-chain
system based on the model. Compared with the intelligent algorithmic solutions, the
control theoretic can help managers to develop clear and accurate production–storage–
shipment strategies that do not require high model accuracy.

Due to the unique advantages of control philosophy in supply-chain management,
more and more scholars and business managers have conducted related research. Si-
mon [22], a an American scholar, was the first to apply the idea of control systems to
inventory management. He viewed the inventory optimization problem as a control system
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and applied the Laplace transform to convert the differential equation into the transfer
function of the control system. Vladimir et al. [23] considered the optimization problem of
a failure-prone manufacturing system with uncertainty in demand and inventory levels,
and designed a controller based on adaptive control for the online estimation and opti-
mal control of a supply-chain inventory system in the presence of unknown demand and
inaccurate inventory. Bartoszewicz et al. [24] used sliding mode control to optimize the
management of manufacturers’ inventories with storage constraints for manufacturers’
inventory management under different demands. Achamrah et al. [25] used the genetic
algorithm and deep reinforcement learning to solve the inventory path problem with transit
and substitution under dynamic and stochastic demand. Such literature addresses the
problem of demand uncertainty in complex environments from a control perspective, but
ignores the fact that complex environments can cause not only changes in demand but also
changes in the structural parameters of the supply-chain system, which is not considered
in this literature. This is one of the motivations for this paper. Of course, some scholars
have also focused on the study of supply-chain inventory management with parameter
uncertainty. Chen et al. [26] studied the optimization of supply-chain product renewal
based on a multi-period model and fuzzy control in an uncertain environment, addressing
the problem of how to satisfy uncertain market demand in the case of manufacturer prod-
uct improvement. David et al. [27] studied the design of a multi-configuration logistics
network with capacity constraints under perturbations and parameter uncertainties using
a pharmaceutical supply chain as an example of a retailer in direct contact with consumers.
However, such literature does not take into account the problem of product self-loss and
production conformity in the case of multiple cycles and does not study perishable supply-
chain systems that are subject to environmental impacts, which is another motivation for
this paper.

H∞ robust control has a better control impact for uncertain systems in complicated
contexts when compared to other automated control approaches. The main purpose of H∞
robust control is to address the issue of uncertainty disturbance of the controlled object. By
designing H∞ robust control, it is possible to improve the stability and quality robustness of
the system, which makes H∞ robust control a widely used model for solving the problems
of an unknown control system. Indri et al. [28] applied of robust H∞ control to the industrial
robotic arm to solve the tracking problem of the robotic arm under the action of unknown
disturbances. Xu et al. [29] studied the quadrotor UAV flight problem inside a culvert, and
used robust H∞ control based on the state observer for dynamic planning of UAV flight
state inside a culvert. Wang et al. [30] used the H∞ robust control strategy to solve the wind
turbine hydraulic pitch system control problem, which greatly reduced the system error of
wind turbines. In addition to the above industrial applications, H∞ robust control has also
been applied in the field of supply-chain inventory management, but the current research
in the field of supply-chain inventory management mainly focuses on solving the bullwhip
effects problem [31–33], and there is no research related to the application of perishable
supply-chain systems in complex environments. This is the third research motivation for
this paper. Although H∞ robust control can successfully solve the uncertain system control
problem under unknown environments, the fluctuation range of unknown parameters
is frequently determined by using data statistics or expert experience, which cannot be
dynamically changed in real-time with time and environmental changes, while the digital
twin model can obtain the relevant parameter data in real-time based on physical entities,
and then dynamically update the simulation.

The concept of the digital twin was first proposed by professor Grieves [34] in 2003
at the university of Michigan in the United States, and it was first used in the aerospace
and defense sectors, considerably enhancing their growth and production. Since then,
several industries have adopted and developed digital twin technology. Initially, the digital
twin model followed the three-dimensional model proposed by professor Grieves [34] for
model building, until 2019, when Tao Fei et al. [35] proposed a five-dimensional digital
twin model, which introduced data and services into the model and greatly enriched the
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model structure and extended the application area of digital twin technology. Through
the continuous discussion of the concept and definition of the digital twin, it is clear that
the objects it applies to different fields are different, among which digital twins refers to
whole physical entities and their digital drives [36]. At present, the applications of digital
twin technology in supply-chain systems are mostly focused on product design [37], shop
floor monitoring and forecasting [38], and product line management [39]. However, the
applicability to multi-cascade supply-chain systems has not been thoroughly studied, which
is the final research objective for this article. Considering the current technology, there are
two main problems: the construction of virtual entities is relatively complex [40] and data
collection between multiple enterprises is relatively difficult [41]. However, if we build the
digital twin using a dynamic equation, it can accurately reflect the logical, structural, and
quantitative characteristics of the supply-chain system, avoiding the mentioned problems.
It can also be used to obtain real-time access to the operational state of supply-chain system
and to carry out robust real-time supply-chain optimization.

Based on the above analysis, this paper designs the H∞ robust controller for perishable
supply-chain systems in complex environments and builds the digital supply-chain twins
to obtain unknown parameters in real-time to achieve the dynamic robust optimization
of the supply-chain system. The goal of this work is to resolve the control problem of
perishable supply-chain inventory systems under the fluctuation of market demand caused
by complex environments, and supply-chain uncertainty. It can also help the supply-chain
system to adapt to the complex market environments and meet unknown demands, while
reducing the impact of demand fluctuation and parameter changes on the operating cost
of the supply-chain system. The rest of this paper is organized as follows. Section 2
builds supply-chain digital twins based on the supply-chain state-space equation by digital
twin technology. We design a robust H∞ controller of the supply-chain system in com-
plex environments and illustrate the real-time robust optimization principle based on the
supply-chain digital twins in Section 3. Section 4 discusses simulation and comparison
experiments based on the cake supply-chain system. We make conclusions and discuss
future possibilities in Section 5.

2. Supply-Chain Digital Twins

The supply-chain system is a complex network system made up of multi-level links,
and because of its structural complexity, high level of unpredictability, and high operating
expenses, researchers and business managers have faced several challenges while designing
and validating algorithms. Firstly, if algorithm verification is carried out in the real supply-
chain system, a lot of resources will be wasted. Secondly, because the operating parameters
of supply-chain system are frequently influenced by environmental factors, setting them
beforehand based on simulation results will result in an inaccurate description of the supply-
chain system and inaccurate experimental results. Finally, owing to the unexpectedness
and unpredictability of emergencies, there will be some uncertainty in the algorithm’s
verification if the pertinent data from the supply-chain system cannot be obtained in
real-time.

To solve the previous issues, this paper builds digital twins for real-time data trans-
mission to better monitor the operating status of the supply-chain system in complex
environments, and then uses real-time data to correct unknown parameters in real-time,
allowing for the development of more reasonable production plans can be made that are
more reasonable for a variety of operating conditions and environments for perishable
supply-chain systems in complex environments. This lowers inventory costs and increases
the enterprise’s robustness and anti-disruption capabilities, while it can also meet market
demand. The supply-chain digital twinning process is shown in Figure 1.

From Figure 1, we can see that the process of supply-chain digital twinning in this
paper is divided into two steps: creating the state-space equation of supply-chain system,
which includes structural and parametric properties, and creating its digital twins using
the state-space equation.
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Figure 1. Digital twinning process of supply-chain system.

2.1. Dynamics Equation of Perishable Supply-Chain System

We base our analysis on a single-chain tandem supply-chain system, the structure of
which is shown in Figure 2. In a single-chain tandem supply-chain system, only the last
producer needs to sell directly to the market. At the same time, in most cases, all parts of
the supply-chain system are replenished according to a certain production cycle. According
to the definition of single-chain tandem supply-chain system and the schematic diagram of
Figure 2, it can be equated as shown in Figure 3.

Figure 2. Single-chain series supply-chain system.

Market
…

Manufacture-01 Manufacture-02 Manufacture-n

Product Parts TransferProduct Parts Transfer Product DistributionProduct Parts Transfer Product Distribution

Market
…

Manufacture-01 Manufacture-02 Manufacture-n

Product Parts Transfer Product Distribution

Figure 3. Equivalent diagram of single-chain tandem supply-chain system.

As shown in Figure 3, manufacturer-01 creates components for transfer to manufacture-
02, manufacture-02 creates components for transfer to downstream producers, and producer-
n creates finished items for sale. In order to model and analyze the single-chain tandem
supply-chain system more accurately, so as to be closer to the operation state of each link
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of the supply-chain system in the real environment, the following assumptions need to
be made.

Assumption 1. This paper considers the situation that the supply-chain system is a single chain.
Only the last-link manufacturer directly outputs products to the market. Other links do not export
goods to the outside market, only produce product parts for transmission, and only transmit within
the supply-chain system.

Assumption 2. In this paper, we consider the production replenishment time point of the supply-
chain inventory system is kT, where k = 0, 1, 2, . . . , n, T represents the production planning cycle.
In most cases, the production planning cycle is day, so this paper uses k to represent kT.

Assumption 3. The manufacturer’s production is influenced by various factors such as production
capacity and production equipment, and it cannot guarantee that all the parts produced are qualified.
In this paper, we set the production rate in a single cycle T as δ, and then we obtain

δ = [δ1, δ2, . . . , δn]
T. (1)

Assumption 4. The product under consideration is perishable, and there is a self-loss of inventory
at each stage of the production process due to the product itself or storage conditions, and assume that
the self-loss rate of the supply-chain inventory system is ρ for a single cycle T, then we can obtain

ρ = [ρ1, ρ2, . . . , ρn]
T. (2)

According to the internal linkage of each link in the sales route of the supply chain
system and the logical relationship between production and sales of the products sold as
shown in Figure 3, the most important inventory quantity of each link of the supply-chain
system is taken as the controlled object, and the inventory relationship of each link of the
supply-chain system can be obtained by equivalence and simplification based on the above
assumptions, as shown in Figure 4.

…
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+
Integrator

Finished Product  Warehouse

-

+

Warehouse

+
Integrator

 Product Parts Warehouse

-

+
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+
Integrator

 Product Parts Warehouse
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1x 2x nx11 − 21 − 1 n−

Figure 4. Equivalent diagram of single-chain tandem supply-chain system.

Where ui denotes the planned production of the ith manufacturer; xi represents the
parts inventory of the ith manufacturer; δi indicates the production pass rate parameter of
the ith manufacturer in the supply chain system; ρi means the inventory self-loss rate of
the ith manufacturer in the supply-chain system; d denotes the fixed market demand.

Firstly, based on the above assumptions and considering the logical relationship
between the parameters of the single-chain tandem supply-chain system, the inventory
relationship between the producers in each link of the supply-chain system in Figure 4 can
be expressed as follows.

x1(k + 1) = (1− ρ1)x1(k) + δ1u1(k)− u2(k)

x2(k + 1) = (1− ρ2)x2(k) + δ2u2(k)− u3(k)
...

xn(k + 1) = (1− ρn)xn(k) + δnun(k)− d(k)

(3)
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Secondly, based on Figure 4, the relationship between the inventory of each link of the
supply-chain system, considering the production quantity, inventory quantity, and market
demand, which are the most important concerns of enterprise managers, we let

x(k) = [x1(k), x2(k), . . . , xn(k)]
T ∈ Rn

u(k) = [u1(k), u2(k), . . . , xn(k)]
T ∈ Rn

d(k) = [0, 0, . . . , d]T ∈ Rn,

(4)

where x(k) denotes the set of inventory of each producer in the supply chain system at time
k. u(k) represents the production quantity of each producer in the supply-chain system at
time k. d(k) indicates the fixed market demand in the supply-chain system at time k.

Finally, by combining Equation (3) with Equation (4), the following Equation (5) can
be obtained.

xi(k + 1) = Axi(k) + Bui(k) + Dd(k) (5)

where

A =


1− ρ1 0 0 . . . 0 0

0 1− ρ2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1− ρn−1 0
0 0 0 . . . 0 1− ρn



B =


δ1 −1 0 . . . 0 0
0 δ2 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . δn−1 −1
0 0 0 . . . 0 δn



D =


0
...

0

−1


n

.

In summary, the state-space equation for a single-chain tandem perishable supply-
chain system with n producer links can be built as{

x(k + 1) = Ax(k) + Bu(k) + Dd(k)

y(k) = Cx(k)
(6)

where y(k) ∈ Rn denotes the measurable output of the supply-chain system, A ∈ Rn×n ,
B ∈ Rn×n , C ∈ Rn×n are known constant matrices, respectively, and C is the unit matrix.
We suppose that the (A,B) matrix is controllable and the (A,C) matrix is observable.

For the constructed dynamic equation of the single-chain tandem perishable supply
chain system, the following remarks are needed.

Remark 1. The value range of the inventory level of each link in the supply-chain system is
xj(k) 6 mj, where mj represents the maximum storage capacity of the warehouse in the j link. Of
course, when the inventory is xj(k) < 0, it means that the link is currently in a short shortage state,
which is also existing and reasonable for the real supply-chain system.

Remark 2. The production of manufacturer has a certain range of values, which is 0 < u1(k) 6
umax and the umax represents the maximum production capacity of the manufacturer.
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Remark 3. The fixed market demand faced by the supply-chain system is known to the upstream
and downstream enterprises and is relatively stable, and the changes in market demand affecting the
supply-chain are mainly caused by demand fluctuations.

We set the market demand fluctuation ω(k) at time k based on the dynamic equation
of the single-chain tandem perishable supply-chain system. We know that although the
market demand fluctuation directly acts on the last producer, due to the bullwhip effects and
the cascade effect of the single-chain supply-chain system, the market demand fluctuation
will gradually affect the upstream producers in the supply chain against the direction of
product flow. We let the impact matrix of market demand fluctuation ω(k) on the supply-
chain system be D1 ∈ Rn, then the state-space equation of the supply-chain system with
demand fluctuation can be obtained as shown in Equation (7).{

x(k + 1) = Ax(k) + Bu(k) + Dd(k) + D1ω(k)

y(k) = x(k)
(7)

To reflect the change of inventory costs in the supply-chain system, here we introduce
the inventory costs parameter z(k) at the time k. The inventory cost z(k) of the supply-chain
inventory system is closely related to the inventory quantity in each link of the supply chain.
In this paper, let the matrix of inventory cost and inventory quantity related parameters
be C1 ∈ R1×n; then, the state-space expression of the single-chain tandem perishable
supply-chain system with inventory cost can be obtained as follows.

x(k + 1) = Ax(k) + Bu(k) + Dd(k) + D1ω(k)

y(k) = x(k)

z(k) = C1x(k)

(8)

2.2. Supply-Chain Digital Twins Based on State-Space Equation

The digital twins of the supply chain established in this paper need to achieve the
information transfer between the physical and virtual entities of the supply chain and
their real-time interaction, and play a role in the whole process of robust optimization,
so the digital twins built in this paper are shown in Figure 5, which mainly consists of
the real physical environment, the virtual simulation environment, and the data transfer
environment. The real physical environment consists of the physical entity layer, the data
acquisition layer, and the production decision layer. The virtual simulation environment
and the data transfer environment include the algorithm processing layer and the data
transfer layer.

The real-world physical environment, the computer-generated simulation environ-
ment, and the data-dump layer are defined as follows from Figure 5.

• The physical entity layer is a perishable supply-chain system, which consists of several
segments that produce perishable products, each of which includes production, stor-
age, and sales components. During the operation of the supply-chain system, different
types of data are generated, including supply-chain parameters, production data, and
product storage data, which are transmitted to the data acquisition layer.

• The data acquisition layer is the medium through which the digital twins collects data,
mainly the operational data of the supply-chain system, including production data
and store data, and the external data of the supply-chain system, including weather,
average temperature, and market demand.

• The production decision layer will create the best production plan based on market
demand and the production plan generated by the algorithm processing layer, and
then issue the production order to the terminal equipment to guarantee the supply-
chain system runs normally.

• The algorithm processing layer, which is the central component of the supply-chain
digital twins, directly sets the production strategy for each link in the system. To
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assist businesses in creating the best production plan, it first builds the supply-chain
state-space equation based on data from the data receiving layer and then updates
the operation state and pertinent supply-chain system parameters with the real-time
transmitted data.

• The data transfer layer is mainly composed of data storage and data transmission,
which realizes the efficient transfer of data between each link of the supply-chain
system, and stores and recalls these data in real-time through a combination of cloud
and local terminals.
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Figure 5. Digital twins of perishable supply-chain.

By the supply-chain digital twins, we can realize the supply-chain system to link with
the virtual simulation environment through the twin data in real-time to achieve better
control effects, optimize the simulation results in the virtual environment, and help the
enterprises in each link of the supply-chain system to make better production plans.

3. Analysis and Methods

The different operating environments of the supply-chain system are reflected in the
state-space equation of the supply-chain system, which can be represented by different
system parameters.The different operating environments of the supply-chain system are
reflected in the state-space equation of the supply-chain system, which can be represented
by different system parameters, and then the uncertain supply-chain system state-space
equation can be used to describe the supply-chain system in a complex environments.

After describing the supply-chain system in complex environments by using the un-
certain state-space equation, we propose the design theorem of a robust H∞ controller for
an uncertain system, and then design the robust H∞ controller to meet the performance
requirements, and finally use the supply-chain digital twins to obtain the unknown pa-
rameters of the supply chain system in the current environment in real-time to achieve the
real-time robust optimization of the supply-chain system.
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3.1. Model Analysis of Perishable Supply-Chain System in Complex Environments

The challenges that the modern supply-chain system faces emerge from a variety of
sources, and the environment in which it operates is very complex. In particular, for the
perishable supply-chain system, the unique characteristics of the items would create huge
economic loss if the supply chain system was unable to address the issues and adapt to
the complicated operational environments.Therefore, there is a pressing need to address
the issue of how to improve the robustness of supply-chain system while coping with
the complicated and ever-changing operational environments. Due to the complexity of
the market and operating environments, the operation state of the supply-chain system
will also change, which is reflected in the constructed state-space equation of the supply-
chain system and can be expressed as the change of relevant parameters.We need to make
some remarks about the perishable supply-chain system’s parameter changes in this paper
because of the complex environments.

Remark 4. The dynamic model of the perishable supply-chain system is mainly characterized by
two changes in parameters: internally, the self-loss rate ρ and the production conformity rate δ.
Externally, it is mainly reflected in the changes in market demand fluctuation ω.

The following assumptions on the influences on the supply-chain system need to be
established in order to study the supply-chain system in the complex environments.

Assumption 5. The matrix D1 of the impact of demand volatility on the supply-chain system and
the parameter C1 of the correlation between the supply-chain inventory quantity and inventory
costs do not change under complex environments.

Assumption 6. In complex environments, the fixed market demand of the supply-chain system
does not change, but the change in market demand is mainly caused by the fluctuation of demand.

Figure 6 shows the operation diagram of the supply-chain system under complex en-
vironments, where the complex environments are mainly reflected in the weather, average
temperature, production conditions, and unexpected events during the operation cycle
T. These parts will directly cause changes in the relevant parameters of the supply-chain
system and market demand. The supply-chain system will exhibit different operating pa-
rameters in different environments, which often makes the management of the supply-chain
system more difficult for enterprise managers.
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Figure 6. Operation diagram of perishable supply-chain system in complex environments.
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According to Figure 6 and Equation (6), some parameters of the perishable supply-
chain system are different under different environmental conditions, which can be described
by the state-space equation as follows.

x(k + 1) = Aix(k) + Biu(k) + Dd(k) + D1ωi(k)

y(k) = x(k)

z(k) = C1x(k)

(9)

where the parameters i = 1, 2, . . . , n represent different external environmental conditions.
Because the fixed market demand is known and constant, we set the controller into

two parts:

u(k) = u1(k) + u2(k) (10)

the u1 part is used to achieve robust H∞ state feedback control, and the u2 part is used to
balance the fixed market demand in the market. Then we can obtain

u2(k) = −B−1
i Dd(k). (11)

Combining Equations (9)–(11), we can obtain the dynamic equation of supply-chain
inventory model with state feedback control in a complex environment.

x(k + 1) = Aix(k) + Biu1(k) + D1ωi(k)

y(k) = x(k)

z(k) = C1x(k)

(12)

For the constructed system (12), the system (12) is considered as an uncertain supply-
chain system since each cycle T of the supply-chain system leads to uncertainty in pa-
rameters A and B under different operating environments. For the uncertain closed-loop
supply-chain system (12), the following remarks are also required.

Remark 5. In the uncertain closed-loop supply-chain system (12), Ai,Bi is the uncertainty param-
eter matrix of the system and satisfies

Ai = Ā + A∗ Bi = B̄ + B∗, (13)

where Ā and B̄ are the initial values of the system parameters, A∗ and B∗ are the change matrices
caused by the complex environmental changes, and we let[

A∗ B∗
]
= HG

[
E1 E2

]
. (14)

Here, H, E1, E2 are matrices of known proper dimensions, and H, E1, E2 are related to the
operating environment of the supply-chain system and its own operation. G is an unknown real
matrix function and satisfies GTG 6 I.

Remark 6. From the uncertainty matrix of the system Ai,Bi determined by the self-loss rate
parameter ρ and the transport loss rate parameter δ, respectively. It can be seen that the parameters
Ai,Bi have a certain range of values.

3.2. Robust H∞ Controller Design

In this part, we design the robust H∞ controller for perishable supply-chain system in
complex environments based on the supply-chain system state-space Equation (12), which
aims to help the supply-chain system to effectively adapt to the complex market environ-
ments, achieve the required operational demand, reduce the impact of demand fluctuations
on the supply chain inventory costs, and improve the robustness of the supply-chain system
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in complex environments. The controller u1(k) is designed by H∞ state feedback so that
the uncertain closed-loop supply-chain system (12) satisfies the following requirements.

• When the demand perturbation ω(k) = 0, the uncertain closed-loop supply-chain
inventory system (12) is capable of satisfying robust asymptotic stability.

• When the demand fluctuation ω(k) 6= 0, the uncertain closed-loop supply-chain
system (12) should satisfy the H∞ performance parameter γ, which can be equated to
the transfer function of ω(k)→ z(k) in the system Gwz, then Gwz is satisfied

‖Gwz‖∞ < γ, (15)

where γ is the H∞ performance sub-optimization parameter of the system.

The design of the H∞ controller based on the state-space equation of the supply-chain
system for uncertain supply-chain system in complex environments is shown in Figure 7,
where the fixed market demand is obtained directly from the market survey, and the H∞
state feedback controller u1(k) is designed to make the uncertain closed-loop perishable
supply chain system (12) satisfy requirement 1 and requirement 2.
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Figure 7. Robust H∞ controller design scheme based on state-space equation.

From Figure 7, the control matrix of H∞ state feedback controller u1(k) is K, and then

u1(k) = Ky(k) = Kx(k) (16)

By combining Equations (12), (13) and (16), we can obtain
zx(z) = (Ā + A∗)x(z) + (B̄ + B∗)Kx(z) + D1ω(z)

y(z) = x(z)

z(z) = C1x(z)

(17)

and then from the Equation (17), the z(z) can be written as

z(z) = C1 · [zI − (Ā + A∗)− (B̄ + B∗)K]−1D1ωi(z)

= C1 · (zI − Ab − HGE)−1D1ω(z)
(18)

where Ab = Ā + B̄K, E = E1 + E2K. Futhermore, with Equation (18), we can equate
requirement 2 to
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‖Gwz‖∞ =
‖z(z)‖[0,+∞)

‖ω(z)‖[0,+∞)

=
∥∥∥C1(zI − Ab − HGE)−1D1

∥∥∥
∞
< γ. (19)

Next, it is required that we introduce Lemma 1 in order to be able to develop con-
trollers that fulfill the robust H∞ performance of perishable supply-chain systems in com-
plicated environments.

Lemma 1 ([42]). For the closed-loop system transfer function G(z) = C(zI − A)−1B, where A is
the stable matrix, then the necessary and sufficient condition for ‖G(z)‖∞ < 1 is Riccati inequality

ATXA− X + ATXB(I − BTXB)−1BTXA + CTC < 0 (20)

and there exists a positive definite solution X = XT , which makes BTXB < I.

Based on Lemma 1, we propose the Theorem 1.

Theorem 1. The transfer function of the closed-loop system is G(z) = C(zI − A− A1)
−1B,

where A + A1 is the stable matrix. If there is a positive definite matrix P = PT , which means the
matrix inequality satisfies

BT PB < γ2 I

(A + A1)
T P[B(γ2 I − BT PB)−1BT + P−1]P(A + A1)− P + CTC < 0

(21)

then the closed-loop system is robustly stable and meets ‖G(z)‖∞ < γ.

The proof of Theorem 1 proceeds as follows.

Proof. According to Lemma 1, a sufficient condition for ‖G(z)‖∞ < 1 is Riccati’s inequality
as shown in Equation (12). Then, for H∞ performance γ- suboptimization objective, that
is, ‖G(z)‖∞ < γ, use Bγ = γ−1B instead of the matrix B in Lemma 1. In addition, taking
A = A + A1, then we can obtain

(A + A1)
T P(A + A1)− P+

(A + A1)
T Pγ−1B(I − γ−1BT Pγ−1B)−1 · γ−1BT P(A + A1) + CTC < 0.

(22)

Theorem 1 is true and the proof is complete by organizing Equation (22).

According to Theorem 1, for the uncertain closed-loop supply-chain system (12), this
paper proposes Theorem 2.

Theorem 2. The transfer function for the uncertain closed-loop supply-chain inventory system (12)
is G(z) = C1(zI − Ab − HGE)−1D1, where Ab + HGE is a stable matrix for all permissible
uncertain parameters. If there exists a scalar parameter α > 0 and a positive definite matrix P = PT ,
for all supply-chain inventory systems in complex environments, the following two conditions

αHT LH < I

ĀT J Ā + α−1ET
1 E1 + CT

1 C1 − NTQ−1N − P < 0
(23)

are satisfied simultaneously, where

M = (γ2 I − DT
1 PD1)

−1

L = P + PD1MDT
1 P

J = L + LH(α−1 I − HT LH)−1HT LT

N = α−1ET
2 E1 + B̄T J Ā

Q = α−1ET
2 E2 + B̄T JB̄.
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Then the uncertain closed-loop supply-chain inventory system (12) is robust and stable and
satisfies ‖G(z)‖∞ < γ. Then, the feedback control law is

K = −Q−1N = −(α−1ET
2 E2 + B̄T JB̄)−1 · (α−1ET

2 E1 + B̄T J Ā). (24)

Next, we will prove Theorem 2.

Proof. We set L = P+ PD1MDT
1 P, where M = (γ2 I − DT

1 PD1)
−1, and since P is known to

be a positive definite symmetric matrix, we can obtain that both L and M are symmetric ma-
trices. Then, the Ab + HGE stability matrix is substituted into Lemma 1, the Equation (20)
can be transformed into

(Ab + HGE)T P[D1(γ
2 I − DT

1 PD1)DT
1 + P−1]P(Ab + HGE)

= (Ab + HGE)T [PD1MDT
1 P + P](Ab + HGE) = (Ab + HGE)T L(Ab + HGE)

= AT
b LAb + ETGT HT LHGE + ETGT HT LAb + AT

b LHGE.

(25)

Because of the state feedback control for the uncertain closed-loop supply chain
system (12), it contains the corresponding uncertain parameters. Then we set the existing
parameter matrices W1, W2, and scalar parameters α > 0, and W1, W2 are defined as

W1 = α
1
2 Ab

T LHF−
1
2 W2 = α−

1
2 ETGT F

1
2 , (26)

where F is the symmetric matrix. By Equation (26) we obtain

W = (W1 −W2) · (W1 −W2)
T = W1WT

1 + W2WT
2 −W1WT

2 −W2WT
1

= αAT
b LHF−1HT LT Ab + α−1ETGT FGE− ETGT HT LAb − AT

b LHGE ≥ 0.
(27)

According to Equation (27), we have

αAT
b LHF−1HT LT Ab + α−1ETGT FGE > ETGT HT LAb + AT

b LHGE. (28)

Substituting Equation (28) into Equation (25), the Equation (25) can be translated as

(Ab + HGE)T L(Ab + HGE) = AT
b LAb + ETGT HT LHGE + ETGT HT LAb + AT

b LHGE

≤ AT
b LAb + ETGT HT LHGE + αAT

b LHF−1HT LT Ab + α−1ETGT FGE

= AT
b [L + αLHF−1HT LT ]Ab + ETGT [HT LH + α−1F]GE.

(29)

We set F as
F = (I − αHT LH), (30)

then, by substituting Equation (30) into Equation (29), we can obtain

AT
b [L + αLHF−1HT LT ]Ab + ETGT [HT LH + α−1F]GE

= AT
b [L + αLH(I − αHT LH)−1HT LT ]Ab + ETGTα−1 IGE

= AT
b JAT

b + α−1ETGTGE,

(31)

where J = L + αLH(I − αHT LH)−1HT LT , then we find J is a symmetric matrix. From the
description of GTG 6 I in Remark 5, then from Equation (31) we obtain

AT
b JAb + α−1ETGTGE 6 AT

b JAb + α−1ETE. (32)
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Due to Ab = Ā + B̄K, E = E1 + E2K, we have

AT
b JAb + α−1ETE = AT

b JAb + α−1(E1 + E2K)T(E1 + E2K)

= ĀT J Ā + ĀT JB̄K + kT B̄T J Ā + KT B̄T JB̄K

+α−1[ET
1 E1 + ET

1 E2K + KTET
2 E1 + KTET

2 E2K]

= ĀT J Ā + KT(α−1ET
2 E1 + B̄T J Ā) + α−1ET

1 E1

+(ĀT JB̄ + α−1ET
1 E2)K + KT(α−1ET

2 E2 + B̄T JB̄)K.

(33)

Since we need to solve for the state feedback parameter matrix K that satisfies the
system control conditions, we organize the Equation (33) by

N = α−1ET
2 E1 + B̄T J Ā Q = α−1ET

2 E2 + B̄T JB̄. (34)

In summary, according to the Equations (21), (33) and (34), the

(Ab + HGE)T [PD1(γ
2 I − D1

T PD1)
−1D1

T P + P](Ab + HGE)− P + CT
1 C1

6 AT
b JAT

b + α−1ETE− P + CT
1 C1

= ĀT J Ā + α−1ET
1 E1 + KT N + NTK + KTQK− P + CT

1 C1

(35)

can be obtained.
According to Theorem 1, we know that the uncertain closed-loop supply chain inven-

tory system (12) is robust and stable as long as there exists a positive definite symmetric
matrix P such that

(Ab + HGE)T [PD1(γ
2 I − D1

T PD1)
−1D1

T P + P](Ab + HGE)− P + CT
1 C1

6 AT
b JAT

b + α−1ETE− P + CT
1 C1

= ĀT J Ā + α−1ET
1 E1 + KT N + NTK + KTQK− P + CT

1 C1 < 0

(36)

satisfies the condition. Then, we have

P > ĀT J Ā + α−1ET
1 E1 + KT N + NTK + KTQK + CT

1 C1 = f (K) (37)

By the condition 1 in Theorem 1, we can find that the size of the H∞ performance
γ parameter is equivalent to the size of the positive semidefinite part of the symmetric
positive definite matrix P. That is, if we minimize the H∞ performance γ parameter, it is
equivalent to minimizing the positive semidefinite part of the symmetric positive definite
matrix P. Therefore, if we want to make the symmetric positive definite matrix P as small
as possible to improve the performance of H∞, we need to satisfy max{ f (K)} as small as
possible. Function f (K) can be expressed as

f (K) = ĀT J Ā + α−1ET
1 E1 + CT

1 C1 + KT N + NTK + KTQK

= ĀT J Ā + α−1ET
1 E1 + CT

1 C1 − NTQ−1N + [K + Q−1N]TQ[K + Q−1N],
(38)

then, we can find only when K = −Q−1N, function f (K) obtains the maximum value. In
this situation

fmax(K) = ĀT J Ā + α−1ET
1 E1 + CT

1 C1 − NTQ−1N. (39)

Therefore Theorem 2 holds, and the proof is over.

In conclusion, this paper uses Theorem 2 to create a state feedback controller for an
uncertain closed-loop supply-chain system (12) in complex environments. The goal is to
achieve the H∞ performance γ-suboptimization objective of a perishable supply-chain
system in complex environments with unknown parameters within a specific range.
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3.3. Real-Time Robust Optimization Principles

Perishable supply-chain systems in complex environments are influenced by many
factors, making it impossible for enterprise managers to make reasonable and accurate
production plans. The supply-chain digital twins can interact with the real supply-chain
system in real-time, and obtain the operation status and environment status of the supply-
chain system in real-time, and simulate it in the virtual simulation space, so as to help
enterprise managers to make the optimal production plan and help enterprises adapt to the
complex market environments. The working principle of the real-time robust optimization
of supply-chain system based on digital twins is shown in Figure 8 below. The real-time
robust optimization system based on the digital twins of the supply-chain system consists
of a physical environment and a virtual environment, of which the physical environment
and the virtual environment have been described above. From Figure 8, it can be seen that
the robust optimization principle based on the digital twins of the supply-chain system is
divided into two main parts. One of them is to use the acquisition sensors to collect the
operational state data of the supply-chain system in the physical environment, to construct
the dynamic equation of the uncertain supply-chain inventory system, update the unknown
parameter data, and correct the inventory quantity of each link of the supply-chain system
in real-time for better design of robust controllers. Secondly, using the collected real-time
data to simulate in the virtual space, the optimal control inputs are analyzed in real-time to
help the enterprise managers to formulate the most reasonable production plans and issue
the corresponding instructions through the decision-making level to realize the production
scheduling of the supply-chain system.
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Figure 8. Real-time robust optimization principle based on supply-chain digital twins.

By using the digital twin for real-time robust optimization of the supply-chain system
in complex environments, the supply-chain system, the twin data, and the virtual simula-
tion entity are connected as a whole, and the production plan of the supply-chain system
in the complex environments can be optimized in real-time, as shown in Figure 9.
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Figure 9. Real-time robust optimization flow chart of supply-chain digital twins.
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According to Figure 9, we can obtain the real-time robust optimization based on the
supply-chain digital twins, and it can be divided into the following steps:

1. We construct the supply-chain digital twins by combining our supply chain state-space
equation of the uncertain supply chain with digital twin technology;

2. The use of relevant sensors are used to collect twin data, including supply chain
operation, status, and environmental conditions;

3. Based on the twin data collected in real-time, the parameters of the supply-chain
system under the virtual simulation environment are updated and corrected, mainly
including the real-time inventory quantity and unknown parameters A and B of the
supply-chain enterprises;

4. The modified parameters are used for virtual simulation to develop the optimal
production decision;

5. The optimal production decision is transmitted to the company manager through the
data transmission layer.

From the above steps, it can be seen that the most critical step for real-time robust opti-
mization of the supply-chain digital twins is step 3, which can make real-time corrections
to the relevant parameters in the simulation environment to ensure that better production
decisions can be obtained. According to the Equation (16), the controller input is related to
the current enterprise inventory x and the state feedback control matrix K, so the supply-
chain digital twins are used to make corrections from these two aspects. In this paper, we
take advantage of the real-time data acquisition feature of the supply-chain digital twin to
determine the parameters E1 and E2 in real-time. In this paper, the parameters E1 and E2
are corrected in real-time by taking advantage of the real-time data acquisition feature of
the supply-chain digital twins, and let the corrected parameters be Ẽ1 and Ẽ2.

In summary, we can obtain the dynamic equation of the supply-chain system after the
correction using the supply-chain digital twins as

x̃(k + 1) = Ãx̃(k) + B̃ũ1(k) + D1ω(k)
ỹ(k) = x̃(k)
z̃(k) = C1 x̃(k)
ũ1(k) = K̃x̃(k)
K̃ = −(α−1ẼT

2 Ẽ2 + B̄T JB̄)−1 · (α−1ẼT
2 Ẽ1 + B̄T J Ā).

(40)

4. Simulation and Comparative Analysis

To verify the real-time robust optimization of perishable supply-chain system by
constructing the digital twins of the supply-chain, this paper conducts a comparative
simulation study based on the production and sale of a cake in the market, which contains
multiple upstream producers, and its processing flow is shown in Figure 10. From the initial
production of fresh milk at the cow production base to the downstream milk processor to
produce raw dairy products, the raw dairy products are sent to the downstream cream
processing manufacturer to produce cream, and finally the cream is made into cake products
by the cake processor for sale. The structure is in line with the single-chain chain supply-
chain system marketing model, and the processed products are also a type of perishable
product, which is fully consistent with the needs of this paper to study the object of
perishable supply-chain system.
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Farm Production Site

Original 
Dairy

Milk Processor

Cream

Cream processor

Cake 

Cake processor

Figure 10. Production process of a cake product.
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Based on a cake processing process, to verify the applicability and superiority of
the proposed method, two kinds of simulation experiments are conducted for the cake
supply-chain system: traditional robust optimization based on the state-space equation
and real-time robust optimization based on the digital twins of the supply-chain. Firstly,
we obtain the relevant parameters of the cake supply chain system and construct the state-
space equation of the supply-chain system. Secondly, we determine the variation range of
the unknown parameters and give the performance parameter γ according to the previous
experience, and use the Theorem 2 proposed in this paper to find out the state feedback
matrix H∞ control of the supply-chain system under different simulation situations. Finally,
using the inventory quantity as the control index, we analyze the trend of inventory
quantity and inventory costs of the supply-chain system under complex environments.

From Figure 10, we can see that the upstream processors of the cake are 3, that is,
we take n = 3 in this paper. By analyzing the production–sales–storage data and making
reasonable data assumptions about the cake supply-chain system, we can obtain the initial
parameters of the three-stage supply-chain system model of the cake as follows:

Ā =

 0.79 0 0
0 0.86 0
0 0 0.91

 B̄ =

 0.95 − 1 0
0 0.91 − 1
0 0 0.89



D =

 0
0
−1

 D1 =

 −1.35
−1.13
−1


C1 =

[
1.51 ; 1.32 ; 1.18

]
d = [1.06].

It is known that the robust sub-optimization parameter γ = 1.20 of the cake supply-
chain system is taken in this paper, and the range of variation of the relevant parameters of
the three-level supply-chain system can be obtained through previous investigations and
expert experience as follows:

ω(k) =
1

1 + k2

A∗(k) =

 0.08 sin(k) 0 0
0 0.06 sin(k) 0
0 0 0.02 sin(k)



B∗(k) =

 0 0 0
0 0.05 sin(k) 0
0 0 0.07 sin(k)

.

According to Theorem 2, the matrix inequality (41) can be constructed, and the proof
procedure is shown in Appendix A. By solving inequality (41), we can obtain the state feedback
control law K for uncertain perishable supply-chain systems in complex environments. ĀT J Ā− P ĀJB̄T

B̄T J Ā B̄T JB̄

 α−1ET
1 E1 + CT

1 C1 α−1E1ET
2

α−1ET
2 E1 α−1ET

2 E2

−1

+

[
I ∗
∗ I

]
< 0

J = (P−1 − γ−2D1DT
1 − αHHT)−1

(41)

In this paper, we take γ = 1.20, α = 0.1, and use the LMI toolbox to solve matrix
inequality (41), and we can obtain the state feedback matrix K as

K =

 −0.6295 5.2289 2.8302
−0.2908 2.4152 −1.3072
0.3018 −2.5072 1.3570

× 10−2.
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A robust H∞ controller for a perishable supply-chain system in a complex environ-
ments is designed using the solved state feedback matrix K, and a conventional robust
optimization simulation experiment based on the state-space equation of the uncertain
supply-chain is conducted with the following initial parameters

x(0) =

 8
5
6

 u(0) =

 0
0
0

.

According to the above experimental conditions, the comparison of the change of
inventory levels, production levels, and inventory costs of each link of the cake supply
chain system under the two simulation conditions is shown in Figure 11, Figure 12, and
Figure 13, respectively.

(a) (b)

Figure 11. Comparison chart of inventory under different experimental conditions. (a) Without
supply-chain digital twins; (b) With supply-chain digital twins.

(a) (b)

Figure 12. Comparison chart of production levels under different experimental conditions. (a) With-
out supply-chain digital twins; (b) With supply-chain digital twins.
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(a) (b)

Figure 13. Comparison chart of inventory costs under different experimental conditions. (a) Without
supply-chain digital twins; (b) With supply-chain digital twins.

By analyzing Figure 11, we can find that the simulation process can update the relevant
parameters in real-time due to the existence of the supply chain digital twins, which can
develop a more reasonable production strategy compared with the traditional robust
optimization, and greatly reduce the inventory fluctuation in each link of the cake supply-
chain system. When the supply-chain system is stable, the inventory quantity of each link
of the supply-chain system will gradually converge to 0, maintaining the dynamic stability
of production and sales, ensuring market demand, and reducing the inventory costs of
the enterprise caused by inventory. Through Figure 12, we can also find that the real-time
robust optimization based on the digital twins of the supply-chain can help companies
develop smoother production strategies, while the production strategies developed by the
traditional robust optimization are more volatile. Since the inventory cost of each link of
the cake supply-chain system is proportional to the inventory quantity, we can find that
the trend of the change curve of inventory costs are the same as the trend of the change of
inventory quantity in Figure 13.

In order to better reflect the fluctuation trend of inventory quantity and production
quantity of different links of the supply-chain system under different simulation conditions,
this paper introduces the moving standard deviation index, where the moving standard
deviation is defined as the standard deviation of each sampling point in the operation
of the supply chain system to obtain the moving standard deviation. According to the
definition, the moving standard deviation of inventory and the moving standard deviation
of production for each link of the cake supply-chain system under two simulation conditions
can be calculated as shown in Figures 14 and 15.

Figure 14. Moving standard deviation of inventory in different parts of the cake supply-chain system.
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Figure 15. Moving standard deviation of production in different parts of the cake supply-chain system.

From the analysis of Figure 14, we can see that compared with the traditional robust
optimization, the real-time robust optimization based on the supply chain digital twins
can reduce inventory fluctuation, reduce the production storage pressure and avoid the
waste of resources in the enterprise. Similarly, Figure 15 reflects that with the help of real-
time updating of the parameters of the supply-chain digital twins, the virtual simulation
environment can formulate more reasonable production strategies based on the operation
status of the supply-chain system, reduce the number of production fluctuations, and
reduce the waste of resources and cost increase caused by the production.

In summary, in order to reflect the effectiveness and superiority of real-time robust
optimization based on the supply-chain digital twins, a comprehensive comparison of the
simulation results in two different cases is presented in Table 1.

Table 1. Comparison of different performance parameters in two simulation cases.

Simulation Situation
Cake

Supply-Chain
Link

Whether
Shortage

Adjusting
Duration [day] MMSDI [ton] MMSDP [ton]

Traditional robust
optimization ( without digital twins)

Milk processor Yes 50 2.9314 2.9402
Cream processor Yes 60 1.6925 1.9254
Cake processor No 60 2.0991 1.4389

Real-time robust
optimization ( with digital twins)

Milk processor No 30 2.5605 0.8759
Cream processor No 40 1.5825 0.8309
Cake processor No 60 1.7869 0.7886

MMSDI: maximum moving standard deviation of inventory; MMSDP: maximum moving standard
deviation of production.

5. Conclusions

In this paper, a solution based on supply-chain digital twins is proposed for the real-
time robust optimization of a perishable supply-chain system in complex environments.
The state-space of the supply-chain system is constructed based on the logical relation-
ship of its operation, and the digital twin technology is used to build the supply-chain
digital twins. The experimental results show that, compared with the traditional robust
optimization, the real-time robust optimization solution based on supply-chain digital
twins can update the relevant parameters in real-time based on the twin data generated
from the operation state of the supply-chain system, which can help enterprises to for-
mulate more appropriate production–storage–sales strategies to meet the market demand
while reducing the enterprise’s inventory, reducing the waste of resources, and effectively
help perishable supply chain system enterprises to adapt to the complex, volatile, and
fluctuating market environments.

This paper provides a theoretical basis and feasible means for the managers of per-
ishable supply-chain system enterprises to cope with the complex market environments.
However, there are still some research deficiencies in this paper. The research on the supply-
chain system does not consider the time-lag problem when the products are shipped, and
further research can be conducted by introducing time-lag parameters. In addition, this
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paper considers that the supply-chain inventory system model is mainly linear, but there
are many nonlinear factors in the real environment, so we can add relevant nonlinear
relationships for further research in the future.
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Appendix A

In order to be able to prove Equation (41) in the main text, the following lemma needs
to be introduced.

Lemma A1 ([43]). For an uncertain closed-loop system as shown in Equation (A1), if there exists
a state feedback u(k) = Kx(k) and a reversible symmetric positive definite matrix P ∈ Rn×n, the
following inequalities hold simultaneously:{

x(k + 1) = (Ac + HGEc)x(k) + B1ω(k)

y(k) = Cx(k)
(A1)

BT
1 PB1 < γ2 I

(Ac + HGEc)
T(P−1 − γ−2B1BT

1 )
−1(Ac + HGEc)− P + CTC < 0

(A2)

Lemma A2 ([44]). (Schur complementary lemma) (Ref.) For a symmetric matrix S =


S11 S12

ST
12 S22

,

the following conditions are equivalent.

(1)S < 0

(2)S11 < 0, S22 − ST
12S−1

11 S12 < 0

(3)S22 < 0, S11 − S12S−1
22 ST

12 < 0

According to the Lemmas A1 and A2, the proof of Equation (41) is as follows:
From Lemma A1 it follows that

(P−1 − γ−2B1BT
1 )
−1 = P + PB1(γ

2 I − BT
1 PB1)

−1BT
1 P. (A3)

Then we can get

L = P + PD1(γ
2 I − DT

1 PD1)
−1DT

1 P = (P−1 − γ−2D1DT
1 )
−1, (A4)
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then
J = L + LH(α−1 I − HT LH)−1HT LT = (L−1 − αHHT)−1

= (P−1 − γ−2D1DT
1 − αHHT)−1.

(A5)

From Theorem 2 and Lemma A1 we can get the form of transforming the two condi-
tions in Lemma 2 into matrix inequalities as shown below: ĀT J Ā + α−1ET

1 E1 + CT
1 C1 − P (α−1ET

2 E1 + B̄T J Ā)T

α−1ET
2 E1 + B̄T J Ā α−1ET

2 E2 + B̄T JB̄


=

 ĀT J Ā− P ĀJB̄T

B̄T J Ā B̄T JB̄

+

 α−1ET
1 E1 + CT

1 C1 α−1E1ET
2

α−1ET
2 E1 α−1ET

2 E2

 < 0.

(A6)

Then Equation (A6) can be transformed into ĀT J Ā− P ĀJB̄T

B̄T J Ā B̄T JB̄

 α−1ET
1 E1 + CT

1 C1 α−1E1ET
2

α−1ET
2 E1 α−1ET

2 E2

−1

+

[
I ∗
∗ I

]
< 0 (A7)

That is, we can obtain the proof of Equation (41).
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