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Abstract: The electrocardiogram (ECG) is the standard method in clinical practice to non-invasively
analyze the electrical activity of the heart, from electrodes placed on the body’s surface. The ECG
can provide a cardiologist with relevant information to assess the condition of the heart and the
possible presence of cardiac pathology. Nonetheless, the global view of the heart’s electrical activity
given by the ECG cannot provide fully detailed and localized information about abnormal electrical
propagation patterns and corresponding substrates on the surface of the heart. Electrocardiographic
imaging, also known as the inverse problem in electrocardiography, tries to overcome these limitations
by non-invasively reconstructing the heart surface potentials, starting from the corresponding body
surface potentials, and the geometry of the torso and the heart. This problem is ill-posed, and
regularization techniques are needed to achieve a stable and accurate solution. The standard approach
is to use zero-order Tikhonov regularization and the L-curve approach to choose the optimal value
for the regularization parameter. However, different methods have been proposed for computing
the optimal value of the regularization parameter. Moreover, regardless of the estimation method
used, this may still lead to over-regularization or under-regularization. In order to gain a better
understanding of the effects of the choice of regularization parameter value, in this study, we first
focused on the regularization parameter itself, and investigated its influence on the accuracy of
the reconstruction of heart surface potentials, by assessing the reconstruction accuracy with high-
precision simultaneous heart and torso recordings from four dogs. For this, we analyzed a sufficiently
large range of parameter values. Secondly, we evaluated the performance of five different methods
for the estimation of the regularization parameter, also in view of the results of the first analysis.
Thirdly, we investigated the effect of using a fixed value of the regularization parameter across all
reconstructed beats. Accuracy was measured in terms of the quality of reconstruction of the heart
surface potentials and estimation of the activation and recovery times, when compared with ground
truth recordings from the experimental dog data. Results show that values of the regularization
parameter in the range (0.01–0.03) provide the best accuracy, and that the three best-performing
estimation methods (L-Curve, Zero-Crossing, and CRESO) give values in this range. Moreover, a
fixed value of the regularization parameter could achieve very similar performance to the beat-specific
parameter values calculated by the different estimation methods. These findings are relevant as they
suggest that regularization parameter estimation methods may provide the accurate reconstruction
of heart surface potentials only for specific ranges of regularization parameter values, and that using
a fixed value of the regularization parameter may represent a valid alternative, especially when
computational efficiency or consistency across time is required.

Keywords: electrocardiographic imaging; inverse problem; regularization parameter; zero-order
Tikhonov regularization

1. Introduction

In cardiology, the electrocardiogram (ECG) is a common and well-established method
to measure the electrical activity of the heart, by placing electrodes on the body’s surface.
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However, even with extensive training, it may be difficult to use the ECG to directly de-
termine the underlying mechanism of certain arrhythmia, or to localize the origin of an
arrhythmic event [1]. Over the past few decades, electrocardiographic imaging (ECGI) has
been developed as a more refined, non-invasive technology to enhance the conventional
ECG, by providing more detailed numerical and visual information on the electrical func-
tioning of the heart of a patient. ECGI aims at reconstructing the heart surface potentials,
starting from the corresponding body surface potentials, and the geometry of the torso and
the heart. Estimated heart surface potentials are subsequently used to visualize activation
and recovery patterns on the epicardium, thereby facilitating the study of arrhythmogenic
substrates and arrhythmia in patients [2]. At its core, ECGI involves solving an inverse
problem, and the way in which this inverse problem is solved has an impact on the quality
and the properties of the computed solution.

To formulate the ECGI inverse problem, we start from the forward model of electrocar-
diology, which assumes an instantaneous and linear relationship between the heart surface
potentials Ht and the corresponding body surface potentials Bt, at any given moment in
time t [3]:

Bt = AHt. (1)

Here, Bt is a vector of potentials at NB body surface electrodes and Ht a vector of
potentials at NH epicardial nodes (mesh points), both at time t. The NB × NH matrix A
is a patient-specific transfer matrix that captures the geometry and conductivity relation
between the heart and body surface (typically obtained from a CT or MRI scan) [4,5].
Commonly, both geometries are modeled to be static and A as time-invariant, and the
torso volume conductor is assumed to be homogeneous. In this study, the matrix A is
computed from the recorded patient’s geometry with software available from the SCIrun
software repository [6], which uses an implementation of the Boundary Element Method
(BEM) [7,8].

The inverse problem amounts to recovering the heart surface potentials Ht from the
recorded body surface potentials Bt and an available estimate of the transfer matrix A. Due
to attenuation and dispersion in the torso volume conductor, as well as the fact that the
number of nodes NH used to create the heart mesh is generally larger than the number of
body surface electrodes NB, this inverse problem is ill-posed. [9,10] (An inverse problem is
well-posed, in the sense of Hadamard, if and only if there exists a solution that is unique,
and that depends continuously on the initial conditions [11]. It is called ill-posed otherwise.)
A complicating and somewhat related issue is that the solution algorithm may also be ill-
conditioned, making the computed solution for Ht highly sensitive to small perturbations
in the measurements Bt, to the extent of becoming inaccurate. Regularization techniques
dealing with the ill-posedness and the solution’s sensitivity to noise and perturbations
can be employed to stabilize (or regularize) the ECGI solution [10,11]. This involves the
inclusion of a penalty term into the optimization procedure:

Ĥt = arg min
Ht

(D(Bt, AHt) + µR(Ht)), (2)

where D is a distance measure, R is the penalty operator, and µ ≥ 0 is the regularization
parameter. For D, usually, the squared distance induced by the L2-norm is used, and we
will do the same in this paper. For R, different choices have been employed in the literature,
such as the squared L2-norm (ridge regression or zero-order Tikhonov regularization) or
the L1-norm (lasso regression). Weighted norms are also an option. In first- or second-
order Tikhonov regularization, the squared L2-norm is applied to the first- or second-order
spatial derivatives of Ht, instead of directly to Ht. Since differentiation is a linear operator,
for discretized problems, this amounts to choosing a corresponding weighted norm. It is
also possible to include a combination of several regularization terms, such as in elastic net
regression, which convexly mixes the squared L2-norm and the L1-norm.

In this study, we will focus our attention on the influence of the regularization pa-
rameter on the accuracy of ECGI, when using zero-order Tikhonov regularization. Several
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methods have been proposed in the literature for the estimation of the optimal value of
the regularization parameter µ. In [12], fourteen different regularization techniques were
assessed and compared for the ECGI of patients with atrial fibrillation (AF) in a simulation
study. Of the approaches not requiring invasive measurements, zero-order Tikhonov reg-
ularization performed similarly to more complex techniques. Five different methods for
computing the regularization parameter µ were assessed in [13] in the context of solving
the inverse problem through the Method of Fundamental Solutions, which were then
compared with the results obtained via the BEM. It was found that the choice of the best
regularization method and regularization parameter estimation method depend on the
particular scenario being considered. In [14], the authors analyzed zero-order Tikhonov
regularization and L1-norm regularization, several different methods for computing the
transfer matrix A, as well as five methods for choosing µ, all based on generalized singular
value decomposition, both on simulated and experimental data. Similar to [13], they found
that the choice of the best regularization parameter estimation method depends on the
choice of the regularization method for solving the inverse problem and on whether the
interest is in epicardial potential reconstruction or pacing site localization.

In addition to the different performance of the available methods, the ECGI reconstruc-
tions may also suffer from over-regularization [15] or under-regularization, regardless of
the method used to compute an optimal value for the regularization parameter. In current
practice, one often only experiences such effects while observing the reconstruction results,
without a prior understanding of the potential effect of certain regularization parameter
values on the solution of the inverse problem. At the same time, some regularization
parameter estimation methods may display a lack of robustness, convergence, or efficacy
in specific circumstances [16]. By turning the attention to the regularization parameter
itself, it may be easier to observe the influence of different choices of parameter values on
the reconstructed solutions, and consequently to assess the values provided by different
regularization parameter estimation methods.

In this study, we take the viewpoint that in order to acquire more insight into the
effects of the choice of regularization parameter µ, it makes sense to focus on the regular-
ization parameter itself rather than to focus on comparing the performance of methods for
choosing µ, as they all work well in some circumstances and less well in others. In line
with these observations, the two objectives of this study were (A) to first investigate the
influence of the regularization parameter on epicardial potential reconstruction accuracy
(by focusing on zero-order Tikhonov regularization, and on a sufficiently large range of
parameter values), and (B) to then analyze the performance of different regularization
parameter estimation methods, in terms of the accuracy of the ECGI solution and in view
of the results under (A). To achieve this, in this study, we examined the reconstruction
accuracy with high-precision simultaneous heart (ground truth) and torso recordings
from intact animals (instrumented anesthetized dogs) [17]. We analyzed three different
ranges with varying order of magnitude for the regularization parameter, and five common
methods of calculating an optimal value of the regularization parameter: (1) the L-Curve
method [18,19], (2) the Generalized Cross-Validation (GCV) method [20], (3) the Compos-
ite Residual and Smoothing Operator (CRESO) method [21], (4) the Zero-Crossing (ZC)
method [22], and (5) the U-Curve method [23]. Finally, we investigated the effect of using
a fixed value of the regularization parameter on all cardiac beats. This is relevant, since a
better understanding of the influence of a regularization parameter value on the accuracy of
the reconstruction of epicardial potentials may help to assess which regularization parame-
ter estimation methods can provide acceptable performance under which circumstances (or
specific applications). Moreover, focusing on well-chosen fixed values of the regularization
parameter may be desirable when computational efficiency or consistency across time
(across multiple cardiac beats) is required.

The paper is structured as follows. In Section 2, we briefly introduce the inverse
problem in electrocardiography, the selection of the parameter range to be investigated,
and the five most common methods of estimating an optimal value of the regularization
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parameter. In Section 3, we describe the experimental data, and the experiments and
analyses that we performed to achieve the objectives of this study. Results are presented in
Section 4 and discussed in Section 5. Finally, we provide some conclusions in Section 6.

2. Materials and Methods
2.1. The Inverse Problem in Electrocardiography

Tikhonov regularization [24] is the most widely used regularization procedure in
ECGI. It uses a sum of squares of errors to measure the quality of a solution, and trades
it off against a squared L2-norm penalty on the reconstructed epicardial potentials Ht to
promote the regularity of the solution:

Ĥt = arg min
Ht

J(Ht)

J(Ht) =‖AHt − Bt‖2
2 + λ2‖ΓHt‖2

2.
(3)

For consistency with most of the ECGI literature, the regularization parameter µ is
replaced by λ2 (and with a slight abuse of terminology, λ is also referred to as a regu-
larization parameter). The matrix Γ represents a regularization operator (unity, gradient,
or Laplacian), and λ the regularization parameter. In this paper, zero-order Tikhonov
regularization is used, also known as ridge regression, which means that Γ is chosen to be
the identity matrix, giving preference to solutions with smaller (unweighted) norms [25].

The solution of (3) is obtained by setting the gradient of J(Ht) to zero [26],∇J(Ht) = 0,
and solving the resulting square linear system of equations for Ht. Once λ is chosen,
the solution of (3) is given by

Ĥt = (AT A + λ2 I)−1 AT Bt. (4)

2.2. Choice of the Regularization Parameter λ

As mentioned, there exist different methods for estimating the regularization param-
eter value λ. Additionally, the reconstruction results can be sensitive to different values
of λ. Using a large λ will lead to over-regularization, and overly smooth reconstruction
results. A small λ, on the other hand, has little effect on the inverse problem, and the
results may still be highly sensitive to noise. One can analyze the different approaches for
computing the regularization parameter λ, and then dismiss those that consistently yield
over-regularization or under-regularization. In this respect, it is important to perform a
sensitivity analysis, in order to investigate how different values of λ can affect the inverse
solution. In [17], the L-Curve method was employed on the same data as in this study in
order to determine an optimal value for λ. Since λ is computed per time instant during
one heart beat, but a certain degree of coherence between the reconstructions within a
single beat is generally desirable (e.g., to compute activation or repolarization times), the
median λ generated by the L-Curve method among all time instants per single beat was
used in [17]. The values encountered for λ were around 0.01 for all heart beats. Follow-
ing up on this result, we decided to focus our sensitivity analysis of λ on the following
three consecutive intervals: 0.001–0.009 (low-regularization; stepsize: 0.001), 0.01–0.09
(medium-regularization; stepsize: 0.01), 0.1–1.0 (high-regularization; stepsize: 0.1).

Additionally, we analyzed five different methods for estimating the regularization
parameter λ at a given time instant, namely (1) the L-Curve method [18,19], (2) the Gener-
alized Cross-Validation (GCV) method [20], (3) the Composite Residual and Smoothing
Operator (CRESO) method [21], (4) the Zero-Crossing (ZC) method [22], and (5) the U-
Curve method [23].

2.2.1. L-Curve Method

The L-Curve method [18,19] is the most popular method for estimating the regular-
ization parameter λ in ill-posed problems [26]. It involves a log-log plot of the regularized



Sensors 2023, 23, 1841 5 of 16

solution norm versus the corresponding residual norm for all valid regularization parameters:

L(λ) = {(‖AĤt,λ − Bt‖2, ‖Ĥt,λ‖2), λ > 0} (5)

This plot is expected to show an L-shape (referred to as the L-Curve). The point
of maximum curvature of the L-Curve (known as the “L-corner”) represents a trade-off
between the solution norm and residual norm and is selected to be an optimal value for
λ [27]. Figure 1a shows an example of an L-Curve plot, with the L-corner of the plot
indicated, and the corresponding value λ = 0.035874.
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Figure 1. Graphical illustration of the outputs of the five methods included in this study for the
estimation of the regularization parameter λ. The red points represent the optimal value of λ for
each method. In order to present the different curves clearly, only part of the x-axis is shown. (a) L-
Curve: log-log plot of the regularized solution norm ‖H‖2 versus the corresponding residual norm
‖AH − B‖2 across the full range for λ ∈ [10−6, 0.44]. (b) GCV: G(λ) curve for λ ∈ [10−15, 0.44].
(c) CRESO: C(λ) curve for λ ∈ [10−2, 0.44]. (d) ZC: B(λ) curve for λ ∈ [10−6, 0.44]. (e) U-Curve:
log-log plot of the U(λ) curve for λ ∈ [10−3, 4.44].

2.2.2. Generalized Cross-Validation Method

The Generalized Cross-Validation (GCV) method [20] is a popular method for estimat-
ing the regularization parameter in problems with discrete data and stochastic noise [28].
The regularization parameter λ is estimated by minimizing the weighted prediction er-
rors G(λ) when using all “leave-one-out” (ordinary cross-validation) regularized solu-
tions [29,30]:

G(λ) =
‖(I − A(λ))Bt‖2

2

[ 1
NB

Tr(I − A(λ))]2
(6)

with A(λ) = A(AT A + λ2 I)−1 AT . According to Equation (4), Equation (6) can also be
written as

G(λ) =
‖AĤt,λ − Bt‖2

2

[ 1
NB

Tr(I − A(λ))]2
(7)

With singular value decomposition applied to matrix A, A = UΣVT , the trace term is
estimated by

Tr(I − A(λ)) = NB − r +
r

∑
i=1

λ2

σ2
i + λ2

. (8)
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Here, r is the rank of transfer matrix A, and σi is the i-th singular value of A aris-
ing from diagonal matrix Σ with σi arranged in descending order. Thus, G(λ) can be
expressed as

G(λ) =

r

∑
i=1

λ4(uT
i Bt)

2

(σ2
i +λ2)2 +

NB

∑
i=r+1

(uT
i Bt)2

[ 1
NB

(NB − r +
r

∑
i=1

λ2

σ2
i +λ2 )]

2
, (9)

where ui is the i-th column of orthogonal matrix U. Figure 1b shows an example of a
G(λ) curve, also indicating the estimated value λ = 2.5119× 10−10 corresponding to the
minimum of G(λ).

2.2.3. Composite Residual and Smoothing Operator Method

In the Composite Residual and Smoothing Operator (CRESO) method [21], λ > 0 is
chosen to be the value corresponding to the first local maximum of C(λ), defined as the
difference between the derivative of the solution squared norm and the derivative of the
residual squared norm C(λ) [26]:

C(λ) =
d

dλ2

(
λ2‖Ĥt,λ‖2

2 − ‖AĤt,λ − Bt‖2
2

)
. (10)

However, to boost performance, we deviated from the standard in other references
and decided to adopt the last local maximum in this paper, since our experiments showed
that it achieves considerably better reconstruction results than the first local maximum in
our application. Figure 1c shows an example of a C(λ) curve, indicating the estimated
value λ = 0.019801 corresponding to the last local maximum of C(λ).

2.2.4. Zero-Crossing Method

The Zero-Crossing (ZC) method [22] chooses λ to be the smallest value such that
the residual squared norm and the contribution of the penalty term to the criterion are
both equal:

B(λ) := λ2‖Ĥt,λ‖2
2 − ‖AĤt,λ − Bt‖2

2 = 0. (11)

Figure 1d shows an example of a B(λ) curve, together with the estimated value
λ = 0.067403 corresponding to the first point where B(λ) = 0.

2.2.5. U-Curve Method

The U-Curve [23] is defined as the plot of the sum of the reciprocals of the regularized
solution squared norm and of the residual squared norm [23]:

U(λ) =
1

‖AĤt,λ − Bt‖2
2
+

1
‖Ĥt,λ‖2

2
(12)

The U-Curve is expected to have a U-shape, hence its name. The optimal λ is located
where U(λ) achieves its minimum value, while the sides of the curve correspond to regu-
larization parameters for which either the solution norm or the residual norm dominates.
Figure 1e shows an example of a U(λ) curve in which λ = 0.37471 corresponds to the
minimum of U(λ). A log-log plot is commonly used to display the U-shape clearly, as in
Figure 1e.

3. Analyses
3.1. Data

In this study, we used the same data set as in [17]. These experimental data were
obtained from four healthy anesthetized dogs. Unipolar potential recordings were obtained
through epicardial electrodes (with sampling frequency 1000 Hz). Two silicone bands
(99 electrodes) were implanted around the basal and mid-basal ventricular epicardium,
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and additional electrodes were placed at the LV apical epicardium, the LV endocardium,
the RV apical endocardium, and the right atrial endocardium (103 electrodes in total) after
thoracotomy. Simultaneous body surface potential recordings were obtained from body sur-
face electrodes attached to the chest (total number varying from 184 to 216, depending on
torso size; with sampling frequency 2048 Hz) [17]. Using a CT scan, the torso–heart geome-
try was digitized, including the body surface electrodes, the implanted electrodes, and the
ventricular epicardial surface (on average 1693 mesh nodes, mean node-to-node distance
4 mm). A total of 92 different beats were recorded from the four dogs, including 6 sinus
beats and 86 paced beats (only one beat included for each pacing site). On average, 60 epi-
cardial electrodes provided high-quality potential recordings [17]. After reconstruction of
the electrograms for all 92 beats, this resulted in 5488 pairs of recorded and reconstructed
electrograms for single beats. The (local) activation and recovery times were computed as
in [17].

3.2. Predefined Interval

For the five previously discussed methods, before determining the optimal regulariza-
tion parameter value λ, a range in which λ varies should be selected first. This choice of
interval for λ variation has an impact, since these methods for computing the optimal regu-
larization parameter are entirely data-driven and may not return a value for λ if the interval
is too narrow, or an undesirably small λ if the interval is too wide. In our experiments,
the predefined interval is set, by means of the singular values of the transfer matrix A,
to be [σround(r/2), σ1]. For the four dogs, the corresponding intervals are [5.1× 10−7, 0.2470],
[6.1× 10−5, 0.3457], [3.6× 10−5, 0.3429], and [1.2× 10−6, 0.4383], which appear to work
suitably well. The interval for the GCV method is chosen as [1× 10−30, σ1]. For the U-Curve
method, the wider interval [σround(r/2), 4.44] is used.

3.3. Statistical Analysis

For each epicardial electrode and each cardiac beat, the accuracy of the ECGI recon-
struction was assessed by comparing the recorded and the reconstructed potentials at the
corresponding (closest) virtual epicardial node. Performance was measured in terms of the
relative root-mean-squared error (RE) and the Pearson correlation coefficient (CC). Both
recorded and reconstructed epicardial potentials were normalized before computing the
RE, by means of Min–Max normalization, and the electrograms were aligned to maximize
their cross-correlation. The RE and the CC were also computed for activation times and
recovery times, estimated through the recorded and reconstructed potentials.

3.4. Analyses
3.4.1. Influence of the Regularization Parameter on the ECGI Inverse Solution

The influence of the regularization parameter λ on the ECGI inverse solution was
analyzed by measuring the CC and the RE for epicardial potentials, activation times, and re-
covery times, for all values of λ in the ranges defined in Section 2.2—namely, 0.001–0.009
(low-regularization; step: 0.001), 0.01–0.09 (medium-regularization; step: 0.01), 0.1–1.0
(high-regularization; step: 0.1). For each beat, different time instants can yield different
λ values. Therefore, for the reconstruction of a beat, we used the median λ from all time
instants of that beat (as in [17]).

3.4.2. Performance of Different Regularization Parameter Estimation Methods

As already mentioned in Sections 1 and 2.2, we analyzed the performance of five dif-
ferent regularization parameter estimation methods, in terms of the accuracy of the ECGI
solution, and in view of the results of the previous analysis.

3.4.3. Effect of Using a Fixed Value of λ for All Beats

To understand the effect of using a fixed value of λ on all beats, we used a fixed λ for
all beats in a dog, selected from the optimal λ-range obtained from the first analysis.
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4. Results
4.1. Influence of the Regularization Parameter on the ECGI Inverse Solution

Figure 2 shows the boxplots of the CC and the RE between the recorded and the recon-
structed electrograms (two top panels), the measured and reconstructed activation times
(two middle panels), and the measured and the reconstructed recovery times (two bottom
panels), for all values of λ in the ranges 0.001–0.009, 0.01–0.09, and 0.1–1.0. In general,
it can be noticed that the mid-regularization range provides larger CC and smaller RE
values for reconstructed potentials and activation/recovery times. The best results are
achieved for λ ∈ [0.02, 0.1], [0.01, 0.03], [0.02, 0.03], respectively (with λ = 0.02 included in
all three intervals).
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Figure 2. Boxplots summarizing the influence of the regularization parameter on reconstructed
electrograms ((a), two top panels), activation times ((b), two middle panels), and recovery times
((c) two bottom panels). The best results are indicated with light blue boxplots. Whiskers range from
the end of the interquartile range to the furthest observation within the whisker length that is not
considered an outlier.

4.2. Performance of Different Regularization Parameter Estimation Methods

Figure 3 shows the λ values provided by all five methods analyzed in this study
(L-Curve, GCV, CRESO, ZC, and U-Curve), computed on the 92 beats available from the
four dogs. Figure 3a shows the scatter plots of λ values for all beats and each dog, and
Figure 3b–f show the corresponding distributions for the different methods. L-Curve,
CRESO, and ZC show comparable distributions, with median values around 0.01, which
lies in the medium-regularization range. The median for GCV was almost 0, with only two
beats yielding a λ greater than 0.01. The median for the U-Curve was 0.3, thus showing a
preference for a higher regularization range.
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Figure 3. Scatter plots (a) and violin plots (b–f) of λ values estimated by all five methods analyzed in
this study, and for all 92 beats from the four dogs. (a): Scatter plot of λ values from the five methods
included in this study, for all 92 beats from the four dogs (from top to bottom: L-Curve, GCV, CRESO,
ZC, U-Curve. (b): Violin plot of λ for L-Curve. (c): plot of λ for GCV. (d): plot of λ for CRESO.
(e): plot of λ for ZC. (f): Violin plot of λ for U-Curve.

Figure 4 shows the CC and RE for epicardial electrograms (top), activation times
(middle), and recovery times (bottom) for all five methods analyzed in this study.

In general, GCV gave the smallest CCs and largest REs for reconstructed electrograms
and activation/recovery times, followed by the U-Curve. L-Curve, CRESO, and ZC showed
similar performance, and they performed better than the other two methods in terms of
reconstructed potentials and activation/recovery times.
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Figure 4. Boxplots summarizing the performance of the five methods for estimating the regularization
parameter analyzed in this study. Performance is shown in terms of CC and RE for reconstructed
electrograms (a), activation times (b), and recovery times (c).
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4.3. Effect of Using a Fixed Value of λ for All Beats

The results of Section 4.2 suggest that L-Curve, CRESO, and ZC can achieve better
results than GCV and U-Curve in terms of reconstructed electrograms and activation/re-
covery times. The median values of λ for these three methods are around 0.01. This is
consistent with the results presented in Section 4.1, which showed that a value of λ = 0.01
can give high performance in terms of reconstructed electrograms and activation/recovery
times, compared to other λ values analyzed in this study. Consequently, we analyzed the
effect of using a fixed value of λ = 0.01 for all 92 beats. Figure 5a–c show the distributions
of CC and RE for electrograms, activation times, and recovery times for L-Curve, CRESO,
and ZC in comparison to the distributions of CC and RE when a fixed value of λ = 0.01
is used for all 92 beats. It can be noticed that using a fixed value of λ = 0.01 for all beats
provides comparable results to the performance of L-Curve, CRESO, and ZC, despite the
fact that these three methods compute an optimal value of λ for each beat. Figure 5d depicts
the relationship between electrograms, activation times, and recovery times, estimated
with either L-Curve, CRESO, or ZC, vs. a fixed value of λ = 0.01. It can be noticed that the
points are generally well concentrated around the identity line, thus confirming that the
results of L-Curve, CRESO, and ZC are very similar to the results obtained with a fixed
λ = 0.01.

Figure 6 shows the activation time maps of a beat for which L-Curve, CRESO, and ZC
achieved the highest CC, together with the corresponding maps when a fixed value of
λ equal either to 0.009, 0.01, 0.02, or 0.03 is used, for comparison. It can be noticed that
both λ = 0.01 and 0.02 achieve the highest CC among the four fixed λ values. Results
also show that the CC achieved with λ = 0.01 is comparable to those achieved with L-
Curve, CRESO, and ZC, and the activation maps are very similar upon visual inspection.
Moreover, all three methods achieve the highest CC for λ values very close to 0.01, thus
supporting the evidence of this being a suitable value to be chosen for the zero-order
Tikhonov regularization of the inverse problem in electrocardiography.
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Figure 5. Results summarizing the performance comparison between L-Curve, CRESO, and ZC
vs. when using a fixed value of λ = 0.01 for all 92 beats used in this study. (a): Violin plots of CC
(left) and RE (right) between measured and reconstructed electrograms for L-Curve, CRESO, ZC,
and when using a fixed value of λ = 0.01 for all 92 beats. Only the distributions are provided in this
plot, because of the large amount of time instants considered for the electrograms (5488). (b): Violin
plots of CC (left) and RE (right) between measured and reconstructed activation times for L-Curve,
CRESO, ZC, and when using a fixed value of λ = 0.01 for all 92 beats. (c): Violin plots of CC (left) and
RE (right) between measured and reconstructed recovery times for L-Curve, CRESO, ZC, and when
using a fixed value of λ = 0.01 for all 92 beats. (d): Upper-left: relation between activation times (AT)
estimated with either L-Curve, CRESO, or ZC vs. when using a fixed value of λ = 0.01. Upper-right:
similar, but for recovery times (RT). Lower-left: similar, but for electrograms.

Figure 6. Activation time maps of a beat from the fourth dog for which L-Curve, CRESO, and ZC
achieve the highest CC, together with the corresponding maps when a fixed value of λ equal either
to 0.009, 0.01, 0.02, or 0.03 is used. RV: right ventricle. LV: left ventricle.

5. Discussion

In this study, we analyzed the influence of the regularization parameter on the ac-
curacy of the inverse problem in electrocardiography when using zero-order Tikhonov
regularization. Importantly, we took the viewpoint that in order to acquire more insight
into the effects of the choice of regularization parameter λ, it makes sense to focus on the



Sensors 2023, 23, 1841 13 of 16

regularization parameter itself, rather than focusing on comparing the performance of
methods for choosing λ. For this purpose, we analyzed a sufficiently large range of param-
eter values, including low-regularization (0.001–0.009), medium-regularization (0.01–0.09),
and high-regularization (0.1–1). We analyzed the performance in terms of the reconstruction
of epicardial electrograms and estimation of activation and recovery times, by comparing
them with the ground truth available from the epicardial electrodes. Results showed
that medium regularization provides the best performance in general, with the λ range
(0.01–0.03) showing high performance for electrograms, activation times, and recovery
times (and with λ = 0.02 achieving the best performance). This is also in line with the
current results that we obtained on patients, for which optimal λ values around 0.01 were
also observed in human data (unpublished results).

We then analyzed the performance of five different regularization parameter estima-
tion methods (L-Curve, Generalized Cross-Validation (GCV), Composite Residual and
Smoothing Operator (CRESO), Zero-Crossing (ZC), and U-Curve), in terms of the accuracy
of the ECGI solution. All methods estimate a λ value for each beat. L-Curve, CRESO, and
ZC showed the best performance in terms of the reconstruction of epicardial electrograms
and estimation of activation and recovery times. Additionally, all three methods estimated
λ values in the medium-regularization range (shown to be the best-performing range in
our first analysis), with a median λ value of around 0.01. U-Curve showed lower perfor-
mance and estimates of λ in the high-regularization range (median value of around 0.3).
GCV showed the lowest performance, with estimates of λ values very close to zero. We
assume that this may be due to the fact that GCV is designed for large-scale problems and
performs well when the number of mesh points approaches infinity. Therefore, for small or
medium-scale problems, it can provide very small values of λ, which renders the solution
too under-regularized (as shown in our results, and also in [14]). Similar results to ours
were reported in [31], in which L-Curve, ZC, and CRESO also showed similar performance.
Contrary to our results, in [26,32], it was found that the U-Curve performed better than
the L-Curve, which gave over-regularized solutions. This may be due to the fact that the
Method of Fundamental Solutions, instead of the Boundary Element Method, was used in
their study to solve the forward problem.

Finally, we analyzed the effect of using a fixed value of λ on all beats, and compared
the performance with that of L-Curve, ZC, and CRESO. For this, we chose a value of
λ = 0.01, this being the median value estimated by the three methods above, and also
a value within the optimal range identified by our first analysis (0.01–0.03). In general,
our results showed that for the data set used in this study, using a fixed λ of 0.01 could
provide comparable performance to L-Curve, ZC, and CRESO, despite this being applied
to different dogs, with different geometries (number of mesh points 3276, 1321, 1064,
and 1114, respectively, for the four dogs). This finding shows that using a fixed value
of λ = 0.01 when solving the inverse problem in electrocardiography with zero-order
Tikhonov regularization may be sufficient to provide acceptable accuracy of the solution,
in terms of reconstructed epicardial electrograms and estimated activation and recovery
times. Additionally, this finding suggests that the ECGI solution can show a certain degree
of stability across beats. This likely depends on specific conditions, and we may wonder
whether well-chosen values of λ can be selected for specific situations. This could be
an advantage in problems where coherence across time is desirable. When applying the
CRESO method, we used the last local maximum rather than the first. The reason for this
choice is that we noticed that for most time instants of each beat, only two local maxima
were generally present in the C(λ) curve, with the first local maximum giving a λ value
around 10−4 for almost all time instants, thus rendering the solution under-regularized.
However, using the second local maximum gave a median λ around 0.01 for all 92 beats.
This is consistent with the results reported in [31], where the second local maximum of the
CRESO method was also used, and failure in using the first local maximum was attributed
to geometry noise in the epicardial geometry.
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With the increasing importance in healthcare of cost-effective, continuous, easy to
deploy, and automated data analysis aimed at detecting a disease at an early stage and
at improving patient stratification, we believe that the results of this study represent a
relevant contribution to future remote monitoring ECGI solutions.

In this study, we only included data from animals, to have ground truth available
about epicardial potentials and be able to assess the accuracy of reconstruction. As the
data came from four different dogs with different geometries, we consider our findings
to be sufficiently robust, and we believe that they can provide an indication of what we
could expect in humans as well. As in [17], we only analyzed sinus rhythms and paced
beats, to obtain a clear understanding of the influence of the regularization parameter on
ECGI accuracy. We did not investigate any arrhythmia in this study, which is a much
more complex phenomenon and difficult to reconstruct, thus potentially making it more
challenging to achieve the objectives of this study. To what extent the findings of this study
extend to cardiac arrhythmia is an aspect that needs to be investigated in the future.

6. Conclusions

In this study, we investigated the influence of the regularization parameter on the
accuracy of the reconstruction of epicardial potentials, by assessing the reconstruction
accuracy with high-precision simultaneous heart and torso recordings from intact animals.
Results showed that values of the regularization parameter in the range (0.01–0.03) provide
the best accuracy, and the three best-performing estimation methods (L-Curve, Zero-
Crossing, and CRESO) provided values in this range. Moreover, when using a fixed value
of the regularization parameter, we could achieve comparable performance to the three best
methods. This suggests that using a well-chosen fixed value of the regularization parameter
with zero-order Tikhonov regularization may be sufficient to provide an acceptable solution
to the inverse problem in electrocardiography. These findings are relevant as they provide
insights into how to assess results from regularization parameter estimation methods in
the context of the inverse problem in electrocardiography, and may help to select a suitable
regularization parameter estimation method for a specific application. Moreover, focusing
on well-chosen fixed values of the regularization parameter may be an advantage when
computational efficiency or consistency across time (across cardiac beats) is desirable.
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