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Abstract: In recent years, frequency-modulated continuous wave (FMCW) radar has been widely
used in automatic driving, settlement monitoring and other fields. The range accuracy is determined
by the estimation of the signal beat frequency. The existing algorithms are unable to distinguish
between signal components with similar frequencies. To address this problem, this study proposed
an enhanced root-MUSIC algorithm based on matrix reconstruction. Firstly, based on the sparsity
of a singular value vector, a convex optimization problem was formulated to identify a singular
value vector. Two algorithms were proposed to solve the convex optimization problem according to
whether the standard deviation of noise needed to be estimated, from which an optimized singular
value vector was obtained. Then, a signal matrix was reconstructed using an optimized singular
value vector, and the Hankel structure of the signal matrix was restored by utilizing the properties of
the Hankel matrix. Finally, the conventional root-MUSIC algorithm was utilized to estimate the signal
beat frequency. The simulation results showed that the proposed algorithm improved the frequency
resolution of multi-frequency signals in a noisy environment, which is beneficial to improve the
multi-target range accuracy and resolution capabilities of FMCW radar.

Keywords: root-MUSIC; frequency estimation; sparse; matrix reconstruction; FMCW radar

1. Introduction

Radar is an electronic device that uses electromagnetic waves to detect targets. According
to the working mode of radar, radar usually has two basic types: continuous wave (CW)
and pulse. Continuous wave (CW) radar is a relatively low-complexity radar system and
uses only the difference between the carrier frequencies of the transmitter and receiver to
estimate the velocity of the target. However, CW radar cannot measure the distance to the
target [1]. Frequency-modulated continuous wave (FMCW) radar is a continuous wave radar
that uses a specific signal to modulate the frequency of the transmitted signal. The signal
processing of FMCW radar is performed in a low frequency band after mixing, and thus,
FMCW radar systems are capable of estimating the range, Doppler, and angle of their targets.
FMCW radar has the characteristics of large bandwidth, low power consumption, small size
and high precision [2], and it has been widely used in military and civil applications [3,4].

In an FMCW system, the range/Doppler migration and the velocity ambiguity are
two well-known problems encountered during high-speed moving target detection [5].
Therefore, the range of the targets cannot be determined by a simple beat frequency estimate.
When there is no range migration, i.e., the target movement within the coherent processing
interval (CPI) is less than the range resolution bin, the range of the targets are determined
by a simple beat-frequency estimate.

Therefore, the estimation accuracy of the signal beat frequency determines the range
accuracy of FMCW radar [6]. When there are multiple targets, the signal beat frequency
is a multi-frequency signal. There are basically two ways to estimate the frequencies of a
multi-frequency signal: time-domain methods and frequency-domain methods [7,8]. The
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frequency-domain methods are based on the fast Fourier transform (FFT) [9,10]. Due to
the problems of fence effect and spectrum leakage, the frequency estimation accuracy of
the FFT algorithm is low, and frequencies that are very close cannot be distinguished. The
chirp-Z transform (CZT) algorithm is an improved algorithm of the FFT algorithm [11]. It
can refine some frequency bands to improve the accuracy of frequency estimation. The CZT
algorithm has the advantages of high frequency estimation accuracy and good anti-noise
performance, but it still has the problem of fence effect, such as the FFT algorithm, and its
frequency estimation accuracy is determined by multiple refinements. Time-domain meth-
ods include the linear prediction method [12], subspace-based algorithms [4,13–16], and
so on. The subspace-based algorithms include the multiple signal classification (MUSIC)
algorithm [13–15], the estimating signal parameters via rotational invariance techniques
(ESPRIT) algorithm [4,16], etc., which use the relationship between the signal subspace and
frequency to estimate frequency. Compared with other algorithms, the subspace-based
algorithms haveigher frequency resolution ability and higher estimation accuracy for multi-
frequency signals. Subspace-based algorithms also have some disadvantages, such as
poor anti-noise performance and high computation complexity. In [17], the root-MUSIC
algorithm was utilized to estimate the frequency of harmonic signals. Unfortunately, the
frequency estimation accuracy of this method was affected by noise. In order to reduce the
influence of noise on the frequency estimation accuracy, ref [18] proposed the principal
components analysis (PCA) algorithm to reduce the dimension of the data, which effec-
tively improved the frequency estimation accuracy. Based on the low rank characteristics
of the signal matrix, ref [19] proposed the nuclear norm to restore the signal matrix, which
improved the anti-noise performance of the algorithm. Although the above methods were
able to reduce the influence of noise on the accuracy of frequency estimation, they were
unable to distinguish signals with close frequencies.

In this paper, an enhanced root-MUSIC algorithm that combined the matrix recon-
struction with the root-MUSIC algorithm were proposed. The frequency components of
the signal were independent of each other, so the signal matrix was a low-rank matrix.
The rank of the matrix was equal to the number of non-zero singular values of the matrix,
from which the singular value vector of the signal matrix was sparse. Under the influence
of noise, the singular value vector of the signal matrix was no longer sparse. In order to
restore the sparsity of singular value vectors, a convex optimization problem was formu-
lated to optimize the singular value vector. In order to obtain the singular value vector,
we proposed two algorithms to solve this optimization problem according to whether the
standard deviation of noise needed to be estimated or not. One algorithm was used to
estimate the standard deviation of noise, and the other solved the optimization problem
directly without the standard deviation of noise estimation. The signal matrix was recon-
structed by utilizing the optimized singular value vector. Since the anti-diagonal elements
of the Hankel matrix were equal, the Hankel structure of the signal matrix was restored by
averaging the anti-diagonal elements. Then, the conventional root-MUSIC algorithm was
utilized to estimate the frequencies of the signals based on the eigenvalue decomposition
of the covariance matrix constructed from this reconstructed signal matrix. Finally, the
simulation results showed that the proposed algorithm had a more accurate frequency
estimation and a better frequency resolution for multi-frequency signals, than existing
algorithms, in a noisy environment.

This paper is organized as follows. Section 2 introduces the signal model for the FMCW
radar range and the frequency estimation method, based on the root-MUSIC algorithm. The
enhanced root-MUSIC algorithm based on matrix reconstruction is proposed in Section 3.
In Section 4, the performance of the algorithm is simulated and analyzed. The conclusion
is provided in Section 5.

2. Signal Model Furthermore, Related Works

In this section, the signal model is firstly described. Then, the frequency estimation
algorithm based on the root-MUSIC algorithm is described.
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2.1. Signal Model

The transmitted FMCW signal can be expressed, as follows [20]:

stx(t) = Atx exp
(

j2π( f0t +
ξ

2
t2) + ϕtx

)
, (1)

where Atx is the amplitude of the transmitted signal, ϕtx is the initial phase, f0 is the initial
frequency, ξ is the slope of the FMCW chirp, ξ = B/Tc, B is the bandwidth, and Tc is
modulation period.

The transmitted signal is reflected by the target to obtain the received signal, as follows [20]:

srx(t) = Arx exp
(

j2π( f0(t− τ) +
ξ

2
(t− τ)2) + ϕrx

)
, (2)

where Arx is the amplitude of the received signal, ϕrx is the phase of the received signal, τ
is the delay between the transmitted FMCW signal and the received signal, τ = 2R/c, R is
the distance between the target and radar, and c is the speed of electromagnetic waves.

After mixing the transmitted signal and the received signal and then conducting a
low-pass filtering of the mixed signal, the obtained signal beat frequency can be expressed,
as in [20]:

s(t) =
Atx Arx

2
exp

(
j(2πξtτ + 2π f0τ − πξτ2 − ϕrx + ϕtx)

)
. (3)

Since τ is small, the term of τ2 can be ignored, so the signal beat frequency is expressed as:

s(t) =
Atx Arx

2
exp(j(2πξtτ + 2π f0τ − ϕrx + ϕtx)) =

Atx Arx

2
ejψ(t), (4)

where ψ(t) is the phase of the signal beat frequency, ψ(t) = 2πξtτ + 2π f0τ − ϕrx + ϕtx, fc

is the signal beat frequency, and fc =
1

2π
dψ(t)

dt = ξτ.
Figure 1 shows the principle of frequency offset generated by distance. According to

τ = 2R/c, the distance between the target and the radar can be expressed as:

R =
c · fc

2ξ
. (5)

Figure 1. Schematic diagram of frequency offset generated by distance.
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2.2. Frequency Estimation Algorithm Based on the Root-MUSIC Algorithm

When FMCW radar is used for the range in the case of multiple targets, the signal beat
frequency of the radar is composed of multiple frequency components. Assuming there are
D targets, the discrete signal beat frequency can be expressed as:

s(n) =
D

∑
i=1

Ai exp(j(2π
fin
fs

+ ϕi)), n = 0, 1, · · · , P− 1, (6)

where Ai, ϕi and fi are, respectively, the amplitude, phase and frequency of the signal
beat corresponding to the i th target, fs is the sampling frequency, and P is the number
of samples.

When considering Gaussian white noise, the signal beat frequency can be expressed as:

x(n) = s(n) + z(n), (7)

where z(n) is Gaussian white noise with zero mean and variance σ2.
In order to use the root-MUSIC algorithm for frequency estimation, we used x(n) to

construct a M× L Hankel matrix X:

X =


x(0) x(1) · · · x(L− 1)
x(1) x(2) · · · x(L)

...
...

. . .
...

x(M) x(M + 1) · · · x(P− 1)

, (8)

where L = P−M + 1.
Then, X can be expressed as:

X = AS + N, (9)

where A = [a(w1), · · · , a(wD)], a(wi) =
[

1 exp(wi j) · · · exp(wi j(M− 1))
]T is the

frequency vector, wi = 2π fi/ fs, S = [s1, · · · , sD]
T , si = [ Ai exp(jϕi) Ai exp(j(wi + ϕi))

· · · Ai exp(j(wi(L− 1) + ϕi))]
T , and N is the noise matrix.

The covariance matrix RX is calculated from matrix X and can be expressed as:

RX = E[XXH ] = ARSAH + σ2I, (10)

where RS = E[SSH ] is the covariance matrix of the matrix S, and σ2 is the variance of noise.
The eigenvalue decomposition of the covariance matrix can be used to obtain the

signal subspace ES and the noise subspace EN .

RX =
[

ES EN
]


λ1 0 · · · 0

0 λ2
. . .

...
...

...
. . . 0

0 0 0 λM


[

EH
S

EH
N

]
, (11)

where λ1, · · · λD is the eigenvalues of the signal subspace ES, and λD+1 = λD+2 = · · · =
λM = σ2 is the eigenvalues of the noise subspace EN .

Since the signal subspace and the noise subspace are orthogonal, we knew that

AHEN = O. (12)

Based on (12), we derived

a(w)HEN = 0, w = w1, w2 · · ·wD. (13)
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Based on (13), we constructed the polynomial

f (w) = pH(w)ENEH
Np(w) = 0, (14)

where p(w) = [1, exp(−jw), · · · exp(−jw(M− 1))].
After solving (14), the estimate ŵi can be obtained. Then, the signal frequency can be

estimated as:
f̂i =

fs

2π
ŵi. (15)

Based on the relationship between frequency and distance in (5), the distance between
target and radar was estimated as follows:

R̂i =
c · f̂i
2ξ

. (16)

To summarize, the frequency estimation algorithm based on the root-MUSIC algorithm
was summarized in Algorithm 1.

Algorithm 1 Frequency Estimation Algorithm Based on the Root-MUSIC Algorithm

Require:
Original noisy signal x(n), n = 0, 1, · · · , P− 1
Dimension of the Hankel matrix M and L (L = P−M + 1)
The number of the target D

Ensure: the distance between target and radar R̂i
1. Construct a Hankel matrix X by (9)
2. Calculate the covariance matrix of the reconstructed matrix: RX = E[XXH ]
3. Take eigenvalue decomposition for RX and obtain EN
4. Solve f (w) = pH(w)ENEH

Np(w) = 0
5. Calculate f̂i =

fs
2π wi, i = 1, 2, · · · , D

6. Calculate R̂i =
c· f̂i
2ξ , i = 1, 2, · · · , D

3. The Proposed Enhanced Root-MUSIC Algorithm Based on Matrix Reconstruction
for Frequency Estimation

In this section, the optimization problem for the enhanced root-MUSIC algorithm
based on matrix reconstruction is formulated. Then, we propose two algorithms to solve
this optimization problem.

3.1. Optimization Problem Formulation for Enhanced Root-MUSIC Algorithm Based on Matrix
Reconstruction

When the noise in the matrix X is relatively strong or the number of samples P is
small, the frequency resolution of the root-music algorithm are significantly reduced, and it
is difficult to distinguish the close frequencies. In order to improve the performance of the
root-MUSIC algorithm, we decided to reconstruct the matrix X to mitigate the noise in X.

The matrix S1 can be obtained by stacking s(n).

S1 =


s(0) s(1) · · · s(L− 1)
s(1) s(2) · · · s(L)

...
...

. . .
...

s(M) s(M + 1) · · · s(P− 1)

 = AS. (17)

Obviously, S1 is a low-rank Hankel matrix, and its rank is D. The singular value
decomposition (SVD) of S1 can be expressed as:

S1 = USΣSVS
H , (18)
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where US and VS are unitary matrix, ΣS is a diagonal matrix, and ΣS = diag(σ1, σ2,
· · · σD, 0, · · · , 0).

Based on matrix ΣS, the singular value vector can be obtained as:

l = [σ1, σ2, · · · , σD, 0, · · · , 0, 0]. (19)

When considering the noise, the SVD in (8) can be expressed as:

X = UXΣXVX
H , (20)

where UX and VX are unitary matrix, ΣX is diagonal matrix, and ∑X = diag(
√

σ1
2 + σ2,√

σ22 + σ2, · · · ,
√

σD2 + σ2, σD+1, · · · , σM), σD+1 = σD+2 = · · · = σM = σ.
Based on σD+1 = σD+2 = · · · = σM = σ, the singular value vector was constructed as

follows:
t = [σ1, σ2, · · · , σD, σD+1 − σM, · · · , σM−1 − σM, 0]
=
[√

σ1
2 + σ2,

√
σ22 + σ2, · · · ,

√
σD2 + σ2, 0, · · · , 0

]
.

(21)

At this time, there was an error of between the singular value vector t and the theoreti-
cal value I.

‖t− l‖2 =

√√√√ D

∑
i=1

(
√

σi
2 + σ2 − σi)

2

=

√√√√ D

∑
i=1

(2σi
2 + σ2 − 2σi

√
σi

2 + σ2)

≤

√√√√ D

∑
i=1

(σ2) =
√

Dσ.

(22)

Due to the limited number of samples, there was an error between the obtained
singular value and the theoretical value. At this time, σD+1 ≥ σD+2 ≥ · · · ≥ σM. Therefore,
t can be expressed, as follows:

t = [σ1, σ2, · · · , σD, σD+1 − σM, · · · , σM−1 − σM, 0]. (23)

From (23), we found that the singular value vector was no longer a sparse vector.
Based on the sparsity of the singular value vector, we formulated a convex optimization
problem to reconstruct the singular value vector of the matrix, which restored the low rank
properties of the matrix and reduced the interference of noise on the matrix. To achieve this
aim, this convex optimization problem was formulated, as follows:

min ‖l‖0
s.t.‖t− l‖2 ≤ β,

(24)

where β is used to constrain the influence of noise on the singular values, and β =
√

Dσ.
We obtained the optimal singular value vector l by solving the convex optimization

problem (24), and the solution methods are proposed in the next subsection. Based on the
estimated l, the matrix X was reconstructed, as follows:

X1 = UXΣX1VX
H , (25)

where ΣX1 = diag(l).
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However, the reconstructed matrix X1 was no longer a Hankel matrix. In order to
restore the Hankel structure of the matrix X1, the elements on the anti-diagonal of the
matrix were obtained by averaging the anti-diagonal elements of X1.

X2(i, j) =

k−1
∑

i+j=k,i=1
X1(i, j)

k− 1
, k = 2, 3, ..., P + 1, i + j = k. (26)

Following the procedure from (8) to (16), the conventional root-MUSIC algorithm was
then applied to the reconstructed matrix X2 to estimate the distance between the target and
the radar.

3.2. Enhanced Root-MUSIC Algorithm Based on Matrix Reconstruction

The convex optimization problem (24) was NP-hard [21]. Since l1 norm was the
optimal convex approximation of the l0 norm [21,22], (24) was relaxed to solve the l1 norm
minimization problem, as follows:

min ‖l‖1
s.t.‖t− l‖2 ≤ β.

(27)

Theoretically, β =
√

Dσ. To solve (27), we proposed two solution methods according
to whether the standard deviation of noise needs to be estimated. The first solution method
required the standard deviation of noise σ. When σ was known, we directly solved (27) to
estimate the optimal singular value vector l. However, the standard deviation of noise σ
was unknown in most cases. Therefore, we firstly estimated σ as:

σ̂ =

√√√√√ M
∑

i=D+1
σi2

M− D
. (28)

Based on (21), the energy of the noise was distributed across all singular value vectors.
Because the signal length was limited, there was an error between the obtained singular
value and the theoretical value. At this time, σ1 ≥ σ2 ≥ · · · ≥ σD ≥ σD+1 ≥ · · · ≥ σM.
When the standard deviation of the noise was estimated by (29), the noise energy distributed
on the first D singular values could not be estimated, resulting in loss and making the
estimated value less than the actual value.

In order to compensate for the estimation error of the standard deviation of the noise
σ̂, we considered that β = k

√
Dσ̂, k > 1, where k is a compensation coefficient. We used

CVX toolbox [23] in MATLAB to solve (27) and obtain the optimal singular value vector l.
The proposed enhanced root-MUSIC algorithm obtained by (27) added the signal matrix
reconstruction process between the first and second steps of Algorithm 1. The specific steps
were summarized in Algorithm 2.

To solve (24) using the above method, the standard deviation σ of the noise was
required. When the standard deviation σ of the noise was known, the above methods
effectively estimated the singular value vector l. However, when the standard deviation
σ of the noise was not known and needed to be estimated, the estimation performance of
Algorithm 2 degraded due to the estimation error of the standard deviation σ of the noise.



Sensors 2023, 23, 1829 8 of 16

Algorithm 2 Enhanced Root-MUSIC algorithm via solution of (27)

Require:
Original noisy signal x(n), n = 0, 1, · · · , P− 1
Dimension of the Hankel matrix M and L (L = P−M + 1)
The number of the target D

Ensure: the distance between target and radar R̂i
1. Construct a Hankel matrix X by (8)
2. Take singular value decomposition for X; thus, UX, VX and ΣX can be obtained by
using (20)
3. Construct the singular value matrix t, t = [σ1, σ2, · · · , σD, σD+1 − σM, · · · , σM−1 − σM, 0]
4. Estimate the standard deviation of noise σ̂
5. Use CVX toolbox to solve (27) to obtain the optimal singular value vector l
6. Let ΣX1 = diag(l), and reconstruct the signal matrix X1 = UXΣX1VX

H

7. Reconstruct the Hankel matrix by (26)
8. Calculate the covariance matrix of the reconstructed matrix: RX = E[X2X2

H ]
9. Perform steps 3–6 of Algorithm 1

In order to reduce the impact of σ on the estimation performance of Algorithm 2, we
utilized the Lagrange multiplier method to solve (27), and the optimization problem in (27)
was reformulated as:

min λ‖l‖1 + ‖t− l‖2, (29)

where λ is a regularization parameter, which is used to control the sparsity of the singular
value vector.

In this case, the standard deviation σ of noise estimate was not needed. We used
the CVX toolbox [23] in MATLAB to solve (29) in order to obtain the optimal singular
value vector l. The proposed enhanced root-MUSIC algorithm obtained by(29) added the
signal matrix reconstruction process between the first and second steps of Algorithm 1. The
specific steps were summarized in Algorithm 3.

To summarize, the proposed enhanced root-MUSIC algorithm based on matrix re-
construction for estimating the signal beat frequency in FMCW radar had two solution
methods, both of which reduced the effect of the noise on the frequency estimation ac-
curacy. Therefore, the proposed enhanced root-MUSIC algorithms had better estimation
performance than the standard root-MUSIC algorithm.

Algorithm 3 Enhanced Root-MUSIC algorithm via solving (27)

Require:
Original noisy signal x(n), n = 0, 1, · · · , P− 1
Dimension of the Hankel matrix M and L (L = P−M + 1)
The number of the target D

Ensure: the distance between target and radar R̂i
1. Construct a Hankel matrix X by (8)
2. Take singular value decomposition for X; thus, UX, VX and ΣX can be obtained by
using (21)
3. Construct the singular value matrix t, t = [σ1, σ2, · · · , σD, σD+1 − σM, · · · , σM−1 − σM, 0]
4. Use CVX toolbox to solve (29) in order to obtain the optimal singular value vector l
5. Let ΣX1 = diag(l), and then reconstruct the signal matrix X1 = UXΣX1VX

H

6. Reconstruct the Hankel matrix by (26)
7. Calculate the covariance matrix of the reconstructed matrix: RX = E[X2X2

H ]
8. Perform steps 3–6 of Algorithm 1
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4. Simulations and Analysis

In this section, the simulation results are presented to verify the performance of the
proposed enhanced root-MUSIC algorithms (Algorithms 2 and 3). Firstly, we compared
the above two algorithms with the root-MUSIC algorithm (Algorithm 1). Then, we com-
pared the proposed algorithms with the existing methods, including the FFT algorithm,
the CZT algorithm [24], the MUSIC algorithm, the ESPRIT algorithm, the PCA-MUSIC
algorithm [18], and the WNNM ESPRIT algorithm [19]. The performance of all algorithms
was evaluated by 2000 independent Monte Carlo iterations for each signal-to-noise ratio
(SNR) in MATLAB. In all test cases, the simulation parameters were set as shown in Table 1.

Table 1. Simulations parameters.

Parameters Value

Bandwidth B/MHz 999.47055
Speed of electromagnetic waves c/(km/s) 299709

Modulation period Tc/s 0.011
Sampling frequency fs/kHz 92.7835

Initial frequency f0/kHz 100
Signal length P 1024

SNR/dB 0–20
M 100
L 925

Multiple refinements of CZT algorithm 60
Search times of MUSIC algorithm 5000

Regularization parameter λ 0.6
Compensation coefficient k 3.3

Simulation times K 2000

The root-mean-square error (RMSE) was used to verify the performance of the algo-
rithm. It was expressed, as follows:

RMSE =

√
∑K

I=1 (R̂i − Ri)
2

K
. (30)

4.1. Performance Comparison of Two Enhanced Root-MUSIC Algorithms

We compared the performance of the two enhanced root-MUSIC algorithms
(Algorithms 2 and 3) with the conventional root-MUSIC algorithm (Algorithm 1) for the
single-target scenario and the multi-target scenario, respectively. The essence of the FMCW
radar range is the estimation of the signal beat frequency. When setting the simulation
parameters, we first determined the frequency of the signal and then calculate the theoreti-
cal range value, which led to the fact that the distance between the target and the radar
was not an integer. We set the signal beat frequency to 5500 Hz, and the corresponding
distance between the radar and the target was 9.1011 m. Considering that in a multi-target
scenario, in addition to the targets with longer distances, there were likely to be targets
with similar distances, three frequency components of the signals were set. Based on the
sampling frequency and the signal lengths determined in Table 1, we calculated the fre-
quency resolution of the FFT algorithm at 90.6089 Hz. In order to enable the FFT algorithm
to distinguish similar frequency components, we set the frequency differences of similar
frequency components at 100 Hz. We set the signal beat frequency of the target nearest to
the radar at 5100 Hz, and the other target’s signal beat frequency was 5200 Hz.The distances
corresponding to the two signal beat frequencies were 8.4392 m and 8.6047 m, respectively.
By using these signal frequency settings, we believed that the performance of the various
algorithms could be fully verified.

In a single-target scenario, we assumed that the distance between the target and the
radar was 9.1011 m while the signal beat frequency was 5500 Hz. Figure 2 shows the RMSE
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values of the distance estimations versus the SNR values of all three algorithms when
R = 9.1011 m.

As shown in Figure 2, the RMSE values of the two enhanced root-MUSIC algorithms
(Algorithms 2 and 3) were smaller than that of the root-MUSIC algorithm under different
SNR values, and the two enhanced root-MUSIC algorithms (Algorithms 2 and 3) had
similar performances in a single-target scenario.

Figure 2. The RMSE values of the distance estimations versus the SNR values of all three algorithms
in a single-target scenario.

In a multi-target scenario, we assumed that the distances between the target and the
radar were 8.4392 m, 8.6047 m and 9.1011 m, while the signal beat frequency was 5100 Hz,
5200 Hz and 5500 Hz, respectively. Figure 3 shows the RMSE values of distance estimations
versus the SNR values of all three algorithms when R = 8.4392 m. Figures 4 and 5 show
the corresponding results when R = 8.6047 m and R = 9.1011 m, respectively.

As shown in Figures 3–5, the RMSE values of the two enhanced root-MUSIC algo-
rithms (Algorithms 2 and 3) were much smaller than that of the root-MUSIC algorithm
(Algorithm 1) under different SNR values, which indicated the proposed algorithms signifi-
cantly improved the frequency resolution of multi-frequency signals in a noisy environment.
There were signal components with similar frequencies that were affected by the noise,
and the signal components with similar frequencies were, at times, detected as a single
component. The noise, at times, was wrongly detected as a signal component, which
resulted in the performances shown in Figures 3 and 5 being worse than those in Figure 4.
When the SNR value was larger than 15, the root-MUSIC algorithm (Algorithm 1) no longer
detected the noise as a signal component. Therefore, the frequencies corresponding to the
three signal components were then correctly estimated, so the performance was greatly
improved. When the SNR value was higher than 12 dB, the proposed Algorithm 2 was
basically identical with the proposed Algorithm 3. In general, the proposed Algorithm 3
had better anti-noise performance than the proposed Algorithm 2.

In summary, the range accuracy of the two enhanced root-MUSIC algorithms
(Algorithms 2 and 3) was higher than that of the conventional root-MUSIC algorithm
(Algorithm 1). In a single-target scenario, the proposed two algorithms (Algorithms 2
and 3) had similar performances. In a multi-target scenario, the proposed two enhanced
root-MUSIC algorithms (Algorithms 2 and 3) were able to distinguish between the targets
with close ranges while the conventional root-MUSIC (Algorithm 1) had a large error in its
range values. Compared with Algorithm 2, Algorithm 3 was less affected by the noise.
Overall, proposed Algorithm 3 had the highest range accuracy.
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Figure 3. The RMSE values of the distance estimations versus the SNR values of all three algorithms
when R = 8.4392 m.

Figure 4. The RMSE values of the distance estimations versus the SNR values of all three algorithms
when R = 8.6047 m.

Figure 5. The RMSE values of the distance estimations versus the SNR values of all three algorithms
when R = 9.1011 m.
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4.2. Performance Comparison of Existing Algorithms
4.2.1. Estimation Performance for a Single-Target Scenario

In some applications, radar is applied to single-target ranges. In this case, the signal
beat frequency is a single-frequency signal. We assumed that the distance between the
target and the radar was 9.1011 m while the signal beat frequency was 5500 Hz. Figure 6
shows the RMSE values of the distance estimations versus the SNR values of various
algorithms when R = 9.1011 m.

As shown in Figure 6, the RMSE values of the distance estimations of proposed
Algorithms 2 and 3 were smaller than those estimated by other algorithms under different
SNR values. Due to the fence effect, the RMSE values of the distance estimations of the FFT
algorithm and the chirp-Z transform (CZT) algorithm were basically stable. Similar to the
frequency-domain method, the performances of the MUSIC algorithm and its improved
algorithm were related to search times. With increased search times, the performance
of the MUSIC algorithm and its improved algorithm were improved, but it increased
the computational complexity. The performances of the proposed Algorithms 2 and 3
were better than those of the ESPRIT algorithm and its improved algorithm in a single-
target scenario. Overall, the proposed Algorithms 2 and 3 had the best performances in a
single-target scenario.

Figure 6. The RMSE values of the distance estimations versus the SNR values of various algorithms
in a single-target scenario.

4.2.2. Estimation Performance for a Multi-Target Scenario

In this simulation, we assumed that there were three targets that needed to be mea-
sured at the same time. The distances between the targets and the radar were 8.4392 m,
8.6047 m and 9.1011 m while the corresponding frequencies were 5100 Hz, 5200 Hz and
5500 Hz, respectively. Figure 7 shows the RMSE values of the distance estimations versus
the SNR values of the various algorithms when R = 8.4392 m. Figures 8 and 9 show the
corresponding results when R = 8.6047 m and R = 9.1011 m, respectively.

As shown in Figures 7 and 8, the RMSE values of the MUSIC algorithm, the ESPRIT
algorithm and their improved algorithms were larger than other algorithms under low SNR
values. Since these were affected by the noise, there were large errors in the estimations of
the signal subspace and the noise subspace, which meant it could not distinguish close fre-
quencies. Similar to a single-target scenario, the RMSE values of the distance estimations of
the FFT algorithm and the CZT algorithm were stable. As shown in Figures 7 and 8, the per-
formance of proposed Algorithm 2 was better than the CZT algorithm when the SNR value
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was larger than 10 dB. In Figure 9, the RMSE value of proposed Algorithm 2 was smaller
than that of the CZT algorithm. Overall, the proposed algorithms (Algorithms 2 and 3)
and the CZT algorithm had better performances. However, the CZT algorithm still had
the problem of the fence effect, so its performance was not improved when as the SNR
values increased. The proposed algorithms (Algorithms 2 and 3) had the problem of high
computational complexity, which indicated they could not be applied in real-time applica-
tions. For a scenario with a high range accuracy, proposed Algorithm 3 was the best choice.
The RMSE values of the distance estimations by proposed Algorithm 3 were the smallest
under different SNR values, which indicated proposed Algorithm 3 could estimate close
frequencies effectively.

Figure 7. The RMSE values of the distance estimations versus the SNR values of various algorithms
when R = 8.4392 m.

Figure 8. The RMSE values of the distance estimations versus the SNR values of various algorithms
when R = 8.6047 m.
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Figure 9. The RMSE values of the distance estimations versus the SNR values of various algorithms
when R = 9.1011 m.

5. Conclusions

In this paper, an enhanced root-MUSIC algorithm based on matrix reconstruction
was proposed. Based on the sparsity of the singular value vector, a convex optimization
problem was formulated to optimize the singular value vector. We proposed two different
algorithms to solve the convex optimization problem. The signal matrix was reconstructed
using the estimated singular value vector, and the Hankel structure of the signal matrix was
restored by utilizing the properties of the Hankel matrix. Then, the covariance matrix was
calculated by the reconstructed matrix, and the conventional root-MUSIC algorithm was
utilized to estimate the signal beat frequency based on the eigenvalue decomposition of the
covariance matrix. The simulation results showed that the performances of the two pro-
posed algorithms were much better than the traditional root-MUSIC algorithm. Compared
with other algorithms, the proposed algorithms still had more accurate frequency estima-
tions and better frequency resolutions in the presence of multi-frequency signals in a noisy
environment, which improved the multi-target range accuracy and resolution capabilities
of FMCW radar. However, the algorithms proposed in this paper had high computational
demands, which is the disadvantage of subspace-based algorithms. In the future, we will
consider reducing the amount of computation by down-sampling the signal matrix and
optimizing the calculations of the singular-value and eigenvalue decompositions, which
has practical significance for expanding the application of subspace-based algorithms.
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Abbreviations
The following abbreviations are used in this manuscript:

FMCW Frequency-Modulated Continuous Wave
FFT Fast Fourier Transform
MUSIC Multiple Signal Classification
ESPRIT Estimating Signal Parameters via Rotational Invariance Techniques
PCA Principal Components Analysis
SVD Singular Value Decomposition
RMSE Root-Mean-Square Error
CZT Chirp-Z Transform
SNR Signal-to-Noise Ratio

References
1. Figueroa, A.; Al-Qudsi, B.; Joram, N.; Ellinger, F. Comparison of two-way ranging with FMCW and UWB radar systems. In

Proceedings of the 2016 13th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 19–20
October 2016; pp. 1–6.

2. Wang, Z.; Li, Y.; Shao, S.; Li, S.; Xiao, J.; Wu, J. Improved Range Doppler Algorithm Based on Squint FMCW-SAR. In Proceedings
of the 2018 12th International Conference on Signal Processing and Communication Systems (ICSPCS), Cairns, Australia, 17–19
December 2018; pp. 1–5.

3. Kouzeiha, W.S.; Falou, A.E. Single and Double staircase FMCW waveforms for enhanced range and velocity resolutions. In
Proceedings of the 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rabat
and Kenitra, Morocco, 27–29 November 2019; pp. 1–4.

4. Akkar, S.; Harabi, F.; Gharsallah, A. Linear ESPRIT-Like Algorithms for Fast Directions of Arrival Estimation with Real Structure.
In Proceedings of the 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), Rabat and Kenitra, Morocco, 31 October–2
November 2019; pp. 1–4.

5. Xu, L.; Lien, J.; Li, j. Doppler—Range Processing for Enhanced High-Speed Moving Target Detection Using LFMCW Automotive
Radar. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 568–580.
[CrossRef]

6. Rizik, A.; Randazzo, A.; Vio, R.; Delucchi, A.; Chible, H.; Caviglia, D.D. Feature Extraction for Human-Vehicle Classification
in FMCW Radar. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS),
Genoa, Italy, 27–29 November 2019; pp. 131–132.

7. Ardeleanu, A.S.; Donciu, C. Frequency estimation based on variable frequency resolution concept. In Proceedings of the 2012
International Conference and Exposition on Electrical and Power Engineering, Iasi, Romania, 25–27 October 2012; pp. 792–797.

8. Liu, J.; Fan, L.; Jin, J.; Wang, X.; Xing, J.; He, W. An Accurate and Efficient Frequency Estimation Algorithm by Using FFT and
DTFT. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 2913–2917.

9. Zhijie, K.; Qile, C.; Zheng, S.; Pengfei, Z. High accuracy ranging method of FMCW detector based on Fourier coefficient
interpolation. In Proceedings of the 2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML), Online,
25–27 March 2022; pp. 431–435.

10. Jun, L.; Weitao, S.; Tong, L. Adaptive algorithm based on FFT for frequency estimation. In Proceedings of the 2013 2nd
International Conference on Measurement, Information and Control, Harbin, China, 16–18 August 2013; pp. 883–886.

11. Babaeian, K.; Modarres-Hashemi, M.; Zahabi, S.J.; Naahsh, M.M. A CZT- Based Algorithm for Improving Multi-Target Ranging
in FMCW Radar. In Proceedings of the 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April–2 May
2019; pp. 1465–1469.

12. Vizireanu, D.N. simple and precise real-time four point single sinusoid signals instantaneous frequency estimation method for
portable DSP based instrumentation. Measurement 2011, 44, 500–502. [CrossRef]

13. Wu, J.; Cui, H.; Dahnoun, N. An Improved Angle Estimation Algorithm for Millimeter-Wave Radar. In Proceedings of the 2022
11th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2022; pp. 1–4.

14. Chowdhury, M.W.T.S.; Mastora, M. Performance Analysis of MUSIC Algorithm for DOA Estimation with Varying ULA Pa-
rameters. In Proceedings of the 2020 23rd International Conference on Computer and Information Technology (ICCIT), Dhaka,
Bangladesh, 19–21 December 2020; pp. 1–5.

15. Jeong, S.H.; Won, Y.S.; Shin, D. Fast DOA Estimation Method based on MUSIC algorithm combined Newton Method for FMCW
Radar. In Proceedings of the 2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Detroit,
MI, USA, 15–16 April 2019; pp. 1–5.

16. Kim, S.; Oh, D.; Lee, J. Joint DFT-ESPRIT Estimation for TOA and DOA in Vehicle FMCW Radars. IEEE Antennas Wirel. Propag.
Lett. 2015, 14, 1710–1713. [CrossRef]

17. Yang, S.; Tan, X.; Wang, Y. Estimate the frequency of harmonic using the root-MUSIC algorithm. In Proceedings of the 2017 10th
International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China,
14–16 October 2017; pp. 1–5.

http://doi.org/10.1109/TAES.2021.3101768
http://dx.doi.org/10.1016/j.measurement.2010.11.001
http://dx.doi.org/10.1109/LAWP.2015.2420579


Sensors 2023, 23, 1829 16 of 16

18. Wang, Y. Application research of principal component analysis in direction of arrival estimation of uniform linear array. Master’
Thesis, Xidian University, Xi’an, China, 2020.

19. Zheng, S.Y.; Zhang, X.K.; Zong, B.F.; Li, J. GTD Model Parameters Estimation Based on Improved LS-ESPRIT Algorithm. In
Proceedings of the 2019 Photonics and Electromagnetics Research Symposium—Fall (PIERS—Fall), Xiamen, China, 17–20
December 2019; pp. 2282–2289.

20. Chu, W.; Liu, Y.; Li, X.; Lei, C. Phase Estimation and Correction of Nonlinear Sweep Frequency for Detecting Vehicle Targets
with FMCW Radar. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC),
Chengdu, China, 11–14 December 2020; pp. 1273–1277.

21. Cerutti-Maori, D.; Prünte, L.; Sikaneta, I.; Ender, J. High-resolution wide-swath SAR processing with compressed sensing. In
Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp.
3830–3833.

22. Li, L.; Liu, P.; Wu, J.; Wang, L.; He, G. Spatiotemporal Remote-Sensing Image Fusion With Patch-Group Compressed Sensing.
IEEE Access 2020, 8, 209199–209211. [CrossRef]

23. Guimaraes, D.A.; Floriano, G.H.F.; Chaves, L.S. A Tutorial on the CVX System for Modeling and Solving Convex Optimization
Problems. IEEE Lat. Am. Trans. 2015, 13, 1228–1257. [CrossRef]

24. Reshma, S.; Midhunkrishna, P.R.; Joy, S.; Sreelal, S.; Vanidevi, M. Improved Frequency Estimation Technique for FMCW Radar
Altimeters. In Proceedings of the 2021 International Conference on Recent Trends on Electronics, Information, Communication
and Technology (RTEICT), Bangalore, India, 27–28 August 2021; pp. 185–189.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.3011258
http://dx.doi.org/10.1109/TLA.2015.7111976

	Introduction
	Signal Model Furthermore, Related Works
	Signal Model
	Frequency Estimation Algorithm Based on the Root-MUSIC Algorithm

	The Proposed Enhanced Root-MUSIC Algorithm Based on Matrix Reconstruction for Frequency Estimation 
	Optimization Problem Formulation for Enhanced Root-MUSIC Algorithm Based on Matrix Reconstruction
	Enhanced Root-MUSIC Algorithm Based on Matrix Reconstruction

	Simulations and Analysis
	 Performance Comparison of Two Enhanced Root-MUSIC Algorithms
	Performance Comparison of Existing Algorithms
	Estimation Performance for a Single-Target Scenario
	Estimation Performance for a Multi-Target Scenario


	Conclusions
	References

