
Citation: Alimi, R.; Fisher, E.; Nahir,

K. In Situ Underwater Localization of

Magnetic Sensors Using Natural

Computing Algorithms. Sensors 2023,

23, 1797. https://doi.org/10.3390/

s23041797

Academic Editors: Sylvain Girard

and Galina V. Kurlyandskaya

Received: 7 December 2022

Revised: 29 January 2023

Accepted: 1 February 2023

Published: 5 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

In Situ Underwater Localization of Magnetic Sensors Using
Natural Computing Algorithms
Roger Alimi 1,*, Elad Fisher 1,2 and Kanna Nahir 1

1 Technology Division, Soreq NRC, Yavne 81800, Israel
2 Hatter Department of Marine Technologies, University of Haifa, Haifa 3498838, Israel
* Correspondence: roger@soreq.gov.il

Abstract: In the shallow water regime, several positioning methods for locating underwater mag-
netometers have been investigated. These studies are based on either computer simulations or
downscaled laboratory experiments. The magnetic fields created at the sensors’ locations define an
inverse problem in which the sensors’ precise coordinates are the unknown variables. This work
addresses the issue through (1) a full-scale experimental setup that provides a thorough scientific
perspective as well as real-world system validation and (2) a passive ferromagnetic source with
(3) an unknown magnetic vector. The latter increases the numeric solution’s complexity. Eight
magnetometers are arranged according to a 2.5 × 2.5 m grid. Six meters above, a ferromagnetic object
moves according to a well-defined path and velocity. The magnetic field recorded by the network
is then analyzed by two natural computing algorithms: the genetic algorithm (GA) and particle
swarm optimizer (PSO). Single- and multi-objective versions are run and compared. All the methods
performed very well and were able to determine the location of the sensors within a relative error of
1 to 3%. The absolute error lies between 20 and 35 cm for the close and far sensors, respectively. The
multi-objective versions performed better.

Keywords: magnetometers; underwater sensing; genetic algorithm; particle swarm optimization

1. Introduction

Underwater sensors arrays have been widely used for various applications such as
scientific exploration, sea disaster investigation, and military purposes [1–4]. Figure 1
shows a schematic view of this kind of deployment.

Sensors 2023, 23, 1797. https://doi.org/10.3390/s23041797 www.mdpi.com/journal/sensors

Article

In Situ Underwater Localization of Magnetic Sensors Using

Natural Computing Algorithms

Roger Alimi 1,*, Elad Fisher 1,2 and Kanna Nahir 1

1 Technology Division, Soreq NRC, Yavne 81800, Israel; eladfi@soreq.gov.il (E.F.);

kannana@soreq.gov.il (K.N.)
2 Hatter Department of Marine Technologies, University of Haifa, Haifa 3498838, Israel
* Correspondence: roger@soreq.gov.il

Abstract: In the shallow water regime, several positioning methods for locating underwater mag‐

netometers have been investigated. These studies are based on either computer simulations or

downscaled laboratory experiments. The magnetic fields created at the sensors’ locations define an

inverse problem in which the sensors’ precise coordinates are the unknown variables. This work

addresses the issue through (1) a full‐scale experimental setup that provides a thorough scientific

perspective as well as real‐world system validation and (2) a passive ferromagnetic source with (3)

an unknown magnetic vector. The latter increases the numeric solution’s complexity. Eight magne‐

tometers are arranged according to a 2.5 × 2.5 m grid. Six meters above, a ferromagnetic object moves

according to a well‐defined path and velocity. The magnetic field recorded by the network is then

analyzed by two natural computing algorithms: the genetic algorithm (GA) and particle swarm op‐

timizer (PSO). Single‐ and multi‐objective versions are run and compared. All the methods per‐

formed very well and were able to determine the location of the sensors within a relative error of 1

to 3%. The absolute error lies between 20 and 35 cm for the close and far sensors, respectively. The

multi‐objective versions performed better.

Keywords: magnetometers; underwater sensing; genetic algorithm; particle swarm optimization

1. Introduction

Underwater sensors arrays have been widely used for various applications such as

scientific exploration, sea disaster investigation, and military purposes [1–4]. Figure 1

shows a schematic view of this kind of deployment.

Figure 1. Schematic view of underwater sensor deployment [3].

Citation: Alimi, R.; Fisher, E.; Nahir,

K. In Situ Underwater Localization

of Magnetic Sensors Using Natural

Computing Algorithms. Sensors

2023, 23, 1797. https://doi.org/

10.3390/s23041797

Academic Editors: Sylvain Girard

and Galina V. Kurlyandskaya

Received: 7 December 2022

Revised: 29 January 2023

Accepted: 1 February 2023

Published: 5 February 2023

Copyright: © 2023 by the authors. Li‐

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con‐

ditions of the Creative Commons At‐

tribution (CC BY) license (https://cre‐

ativecommons.org/licenses/by/4.0/). Figure 1. Schematic view of underwater sensor deployment [3].

Sensors 2023, 23, 1797. https://doi.org/10.3390/s23041797 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23041797
https://doi.org/10.3390/s23041797
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23041797
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23041797?type=check_update&version=2

Sensors 2023, 23, 1797 2 of 13

Acoustic, optical, or RF sensing technologies are commonly used. The challenging task
is the precise location estimation for the deployed network, due to the special underwater
medium, as well as the lack of GPS data. This is critical to enable the system to provide an
accurate description of any investigated phenomenon. Unfortunately, common localization
solutions do not provide a satisfactory response to this crucial issue.

In the shallow water regime, solutions for the location of the underwater sensor are
often divided into two main categories [5]. Range-based schemes estimate the locations of
sensors by using inter-sensor measurements and the prior knowledge of the locations of a
few reference sensors [6,7]. Range-free schemes are much simpler, but the location output
they supply cannot be very precise [8,9]. Several positioning methods using magnetic
technologies have been investigated. The magnetic fields generated at the sensors location,
given a known object trajectory, define an inverse problem, in which the precise positions
of the sensors are the variables of the equation system.

Callmer et al. [5] utilize triaxial magnetometers and a friendly vessel with a known
magnetic dipole to silently localize the sensors. In Yu et al. [10], a solenoid coil carrying
a direct current is employed as a magnetic source carried by a boat. This moves along
a predetermined trajectory above the sensor field. Using the magnetic measurements,
the localization problem is translated into a multi-objective optimization problem. A
non-dominated sorting genetic algorithm is used to compute the sensor positions.

Other studies are based on either computer simulations or downscaled laboratory
experiments [11–15].

For instance, Bian et al. [11] proposes an oscillating magnetic field-based indoor
and underwater positioning system. The magnetic approach generates a bubble-formed
magnetic field that is unaffected by environmental variation, unlike radio-wave-based
positioning modalities. The proposed system achieves 13.3 cm for the 2D underwater
positioning mean accuracy and 19.0 cm for the 3D underwater positioning mean accuracy.
In [12], the authors use a magnetic field gradient optimization to localize. The magnetic
source in the localization system is a direct current solenoid coil. An objective function is
established by measuring the magnetic source’s magnetic field in different positions. A
multi-swarm particle swarm optimization with a dynamic learning strategy determines
the sensor position vector. Recently, John et al. [13] designed an extensible modular multi-
sensor platform prototype that can detect and localize objects with different properties in
all environments. Their prototype detects and localizes objects using magnetic, acoustic,
and electrical sensors. Although the system is ready for underwater measurements, data
fusion algorithms are still being developed.

In [14], the authors derive an approximate equation to calculate the external magnetic
field of a three-core armored underwater cable based on seafloor environments and the
cable structure. Underwater cable localization uses a dual three-axis magnetic sensor array
and beetle swarm optimization (BSO) algorithm. An optimization algorithm replaces
analytical geometry, and a magnetic flux-density amplitude fitness function improves
underwater cable localization. Although quite promising, the results are only based on
simulations. Zhang et al. recently conducted real-world experiments (1.5 m depth in a
water tank and 9 m depth in a shallow sea) [15]. An electric field induced by a standard
current source is used for real-time underwater equipment location. Stationary or moving
underwater equipment is tracked and located in shallow and deep seas (9 m) under noisy
conditions. A real-time position is estimated using an extended Kalman filter. Although
not based on magnetometers, this system is an interesting competitor despite the fact that
it exhibits errors larger than ours (0.5–0.7 m vs. 0.25–0.35 m).

As far as resolution methods are concerned, Philippeaux et al. [16] uses a genetic
algorithm. The field tests appear promising after extensive magnetic field modeling and
an algorithm simulation. The simulation matches the field tests. Only preliminary in-
water testing of the system has been conducted. In [17], Hu et al. present a practical
localization algorithm that uses magnetic field vector and gradient tensor data to determine
the center coordinates and magnetic moments of multiple underwater magnetic objects.

Sensors 2023, 23, 1797 3 of 13

The Levenberg–Marquardt algorithm is used. Hou et al. perform an interesting machine
learning approach [18]. They present an Auto Mobile Base Simultaneous localization and
mapping (AMB-SLAM) online navigation algorithm based on an artificial neural network
(ANN) and measurements from randomly distributed beacons of low-frequency magnetic
fields. Their simulations show that a setup of unsophisticated low-cost magnetic beacons
can produce geometrically consistent feature maps and an accurate trajectory for AUVs’
underwater navigation.

The present work addresses several issues that have not been addressed previously.
First, we construct a full-scale experimental setup that provides comprehensive scientific
insight as well as a real-life system validation. In addition, instead of the active coil used
in previous studies, we use a passive ferromagnetic source. Finally, the magnetic vector
moment of the source is a part of the unknown that the algorithms solved.

The algorithms we have developed provide results that closely match reality in this
type of scenario. In order to reproduce more faithfully realistic conditions, we have
voluntarily disturbed one of the testing events. Even in this case, the results are still reliable.
We also present a comparison between two classes of meta-heuristics, GA and PSO, for
which single- and multi-objective implementations are considered.

2. Experimental Setup and Methodology

Our setup consists of eight vector magnetometers arranged on the ground according to
the grid shown in Figure 2. The geometry is chosen to imitate a shallow water deployment
in the vicinity of a harbor entrance. Six meters above, a plastic tube is attached on the
laboratory ceil. Within the tube, a non-ferromagnetic winch-drive activated by a pulley
allows for the motion of the ferromagnetic object. The velocity is motor-controllable from
the ground. The only unknown variable remains the moment of the moving object, which
we let the algorithms calculate together with the coordinates of the sensors.

Sensors 2023, 23, 1797 3 of 13

coordinates and magnetic moments of multiple underwater magnetic objects. The Leven‐

berg–Marquardt algorithm is used. Hou et al. perform an interesting machine learning

approach [18]. They present an Auto Mobile Base Simultaneous localization and mapping

(AMB‐SLAM) online navigation algorithm based on an artificial neural network (ANN)

and measurements from randomly distributed beacons of low‐frequency magnetic fields.

Their simulations show that a setup of unsophisticated low‐cost magnetic beacons can

produce geometrically consistent feature maps and an accurate trajectory for AUVs’ un‐

derwater navigation.

The present work addresses several issues that have not been addressed previously.

First, we construct a full‐scale experimental setup that provides comprehensive scientific

insight as well as a real‐life system validation. In addition, instead of the active coil used

in previous studies, we use a passive ferromagnetic source. Finally, the magnetic vector

moment of the source is a part of the unknown that the algorithms solved.

The algorithms we have developed provide results that closely match reality in this

type of scenario. In order to reproduce more faithfully realistic conditions, we have vol‐

untarily disturbed one of the testing events. Even in this case, the results are still reliable.

We also present a comparison between two classes of meta‐heuristics, GA and PSO, for

which single‐ and multi‐objective implementations are considered.

2. Experimental Setup and Methodology

Our setup consists of eight vector magnetometers arranged on the ground according

to the grid shown in Figure 2. The geometry is chosen to imitate a shallow water deploy‐

ment in the vicinity of a harbor entrance. Six meters above, a plastic tube is attached on

the laboratory ceil. Within the tube, a non‐ferromagnetic winch‐drive activated by a pul‐

ley allows for the motion of the ferromagnetic object. The velocity is motor‐controllable

from the ground. The only unknown variable remains the moment of the moving object,

which we let the algorithms calculate together with the coordinates of the sensors.

Figure 2. Top and side views of the experimental setup used in the experiment. Note the point O in

red, which is the center of the searching box used in both GA and PSO.

Natural computing or nature‐inspired algorithms refer to a wide class of computa‐

tional paradigms in which selected features of natural phenomena or behaviors are stud‐

ied and imitated to solve complex mathematical systems [19]. Two important subclasses

are evolutionary algorithms and swarm intelligence [20]. The former is inspired by the

Darwin theory of evolution; the latter is based on emergent properties of the collective

behavior of a large number of small, simple agents. Among evolutionary algorithms, the

genetic algorithm (GA) is one of the more well‐studied ones that has been implemented

in a wide variety of applications [21]. Among the swarm intelligence schemes, we choose

Figure 2. Top and side views of the experimental setup used in the experiment. Note the point O in
red, which is the center of the searching box used in both GA and PSO.

Natural computing or nature-inspired algorithms refer to a wide class of computational
paradigms in which selected features of natural phenomena or behaviors are studied
and imitated to solve complex mathematical systems [19]. Two important subclasses are
evolutionary algorithms and swarm intelligence [20]. The former is inspired by the Darwin
theory of evolution; the latter is based on emergent properties of the collective behavior
of a large number of small, simple agents. Among evolutionary algorithms, the genetic
algorithm (GA) is one of the more well-studied ones that has been implemented in a wide
variety of applications [21]. Among the swarm intelligence schemes, we choose particle

Sensors 2023, 23, 1797 4 of 13

swarm optimization (PSO), which is also a well-known algorithm that has proven itself in
a large range of scientific problems [22].

2.1. Physical Problem

We assume the dipole approximation of a ferromagnetic object moving on a straight
line at constant velocity [23]. This motion deforms the ambient magnetic field recorded
by the sensor. The signal shape depends on the trajectory parameters, the magnetic
moment of the moving object, and the position of the sensor. The components of the field,
Bx, By, and Bz, are given by Equation (1):Bx

By
Bz

 =
µ0

4πR5

∣∣∣∣∣∣
3x2 − R2 3xy 3xz

3yx 3y2 − R2 3yz
3zx 3zy 3z2 − R2

∣∣∣∣∣∣
Mx

My
Mz

, (1)

where x = xsensor − xobject (likewise for y and z); R is the distance between the sensor and
the object; Mx, My, and Mz are the object moment components; and µ0 is the vacuum
magnetic permeability.

In our situation, the geometric parameters of the trajectory are known, including
velocity and direction. The sensors’ positions are the main unknowns. Since the moving
object is not a controllable magnet or beacon, we cannot assume given values for the
moment vector that we must consider as additional variables in the optimization problem.
The latter then includes six parameters: three for the sensor position and three for the
moment. Since the trajectory is known, there is no other coupling term between the fields
measured by the sensors. Hence, each sensor is treated separately.

The algorithm looks for the set of variables that minimizes an error functional ex-
pressing the difference between the calculated and measured fields. The proximity of the
graphs of two 2D functions is estimated by considering how well the graphs superpose, e.g.,
evaluate, the cross correlation of the functions. This is achieved using the normalized dot
product of the two functions. If P and Q are the curves we compare, the cross-correlation
fitness, fcc, can be written using Equation (2):

fcc =
P · Q

max[P · P, Q · Q]
, (2)

where

P · Q =
length(P)

∑
i=1

Pi · Qi. (3)

For each sensor, when the errors coming from the three axis curves are summed into
one single expression, we have a single-objective scheme. When each sensor axis error is
treated separately, we refer to it as multi-objective optimization. The error to minimize
is a 3D function of the three axis errors. Although more computationally complex, it has
the advantage of benefitting more from the spatial information provided by the vector
magnetometer. For both GA and PSO, we have tested both single- and multi-objective
versions.

In its most general form, a multi-objective optimization (MO) problem consists of
finding, in a set of admissible solutions, a subset of solutions minimizing (or maximizing)
its objectives. The main issue in MO is the definition of order (sorting) of two vectors in
a space that has the dimension of the number of objectives to optimize. Such a relation
is called dominance, and it serves to define a Pareto front. Consider a vector, f(u), of the
decision vector, u, having n variables or objectives. The MO problem can be expressed as
minimizing the value of f for every variable:

minf(u) = (f1(u), f2(u), . . . , fn(u))), u ∈ Ω (4)

Sensors 2023, 23, 1797 5 of 13

Then, f can be interpreted as a mapping of the decision space to the objective space.
Next, the dominance relation is defined in the decision space (for a minimization problem).
Given two vectors, u and v, u dominates v if and only if f (u) is not larger than f (v) for
any objective, and it is less for at least one objective. u and v are equivalent if and only
if f (u)and f (v) are the same for all objectives; u and v cannot be compared if and only if
neither dominates the other nor are they not equivalent. The dominance relation is noted
≺ and is formally defined by

f(u) ≺ f(v) i f

∀i ∈ { 1, 2, . . . , n}, fi(u) ≤ fi(v), ∧∃i, fi(u) < fi(v) . (5)

Given the dominance relation, the Pareto optimal set, ρ∗, is defined as the set of all
Pareto optimal vectors, where a vector is called optimal if and only if it is not dominated by
any other vector of the decision space. Formally speaking:

ρ∗ = { u ∈ Ω ¬∃v ∈ Ω, f(u) ≺ f(v)} . (6)

The image set of ρ∗ in the objective space is called a Pareto front:

ρ f ∗ = {f(u) | u ∈ ρ∗} . (7)

Solving the MO problem means finding solutions that are closed to the Pareto front
and are uniformly distributed. Figure 3a–c show the Pareto front formation and evolution
for one of our Multi Objective Genetic Algorithms (MOGA) runs.

Sensors 2023, 23, 1797 5 of 13

Then, f can be interpreted as a mapping of the decision space to the objective space.
Next, the dominance relation is defined in the decision space (for a minimization prob-
lem). Given two vectors, u and v, u dominates v if and only if f(u) is not larger than f(v)
for any objective, and it is less for at least one objective. u and v are equivalent if and only
if f(u)and f(v) are the same for all objectives; u and v cannot be compared if and only if
neither dominates the other nor are they not equivalent. The dominance relation is noted ≺ and is formally defined by 𝒇 𝒖 ≺ 𝒇 𝒗 𝑖𝑓 ∀𝑖 ∈ 1,2, … , 𝑛}, 𝑓 𝒖 ≤ 𝑓 𝒗 ,∧ ∃𝑖, 𝑓 𝒖 < 𝑓 𝒗 . (5)

Given the dominance relation, the Pareto optimal set, 𝜌∗, is defined as the set of all
Pareto optimal vectors, where a vector is called optimal if and only if it is not dominated
by any other vector of the decision space. Formally speaking: 𝜌∗ = 𝒖 ∈ Ω ¬∃𝒗 ∈ Ω, 𝒇 𝒖 ≺ 𝒇 𝒗 } . (6)

The image set of 𝜌∗ in the objective space is called a Pareto front: 𝜌𝑓∗ = 𝒇 𝒖 | 𝒖 ∈ 𝜌∗} . (7)

Solving the MO problem means finding solutions that are closed to the Pareto front
and are uniformly distributed. Figure 3a–c show the Pareto front formation and evolution
for one of our Multi Objective Genetic Algorithms (MOGA) runs.

(a) (b) (c)

Figure 3. Pareto front dynamics in multi-objective optimization of the genetic algorithm. (a–c) refer
to 5, 15, and 50 generations of the GA, respectively.

2.2. Genetic Algorithm
Genetic algorithms encode potential solutions on a simple chromosome-like struc-

ture and apply recombination operators to preserve critical information. They apply the
principal concept of “survival of the fittest” on genes achieving best results. An imple-
mentation of a genetic algorithm begins with a population of random chromosomes. Each
chromosome is a possible solution, which carries six genes, one for each variable of the
magnetic equation: three for the sensor position and three for the moment. These struc-
tures are evaluated and reproductive opportunities are allocated in such a way that those
chromosomes that represent a better solution are given more chances to reproduce than
others. Mutation operators are applied to guarantee good exploration of the solution
space.

For multi-objective GA, we used a modified version of the fast, elitist Non Selective
Genetic Algorithm (NSGAII) algorithm [24]. This algorithm is based on a classification of
individuals into several levels. Since, as we shall see later, the NSGAII produces the best
solution, we provide a more detailed description of the algorithm here.

Figure 3. Pareto front dynamics in multi-objective optimization of the genetic algorithm. (a–c) refer
to 5, 15, and 50 generations of the GA, respectively.

2.2. Genetic Algorithm

Genetic algorithms encode potential solutions on a simple chromosome-like structure
and apply recombination operators to preserve critical information. They apply the princi-
pal concept of “survival of the fittest” on genes achieving best results. An implementation
of a genetic algorithm begins with a population of random chromosomes. Each chromo-
some is a possible solution, which carries six genes, one for each variable of the magnetic
equation: three for the sensor position and three for the moment. These structures are eval-
uated and reproductive opportunities are allocated in such a way that those chromosomes
that represent a better solution are given more chances to reproduce than others. Mutation
operators are applied to guarantee good exploration of the solution space.

For multi-objective GA, we used a modified version of the fast, elitist Non Selective
Genetic Algorithm (NSGAII) algorithm [24]. This algorithm is based on a classification of
individuals into several levels. Since, as we shall see later, the NSGAII produces the best
solution, we provide a more detailed description of the algorithm here.

The NSGA algorithm does not fundamentally differ from classical genetic algorithms.
No choice is imposed on the genetics operators of mutation, crossing, selection, or insertion.

Sensors 2023, 23, 1797 6 of 13

The only difference is at the level of the implementation of the assignment operator of the
adaptation value of individuals. We have upgraded the classical GA operators by using
an adaptive and dynamic mutation mechanism. Moreover, the crossover was modified
by adding a simulated annealing moderating process. Finally, we update the size the
population according to the convergence of the best fitness values. These three additions
greatly increase the convergence rate of the algorithm without deteriorating the quality of
the final results.

This assignment operator is based on the rank of the Pareto set to which the solution
belongs. In this procedure, all the solutions of the first set are given with the same adap-
tation value. For all other sets, the adaptation value is equal to the smallest value of the
edge solution that precedes it, minus ε, which is a small positive number. This mechanism
prevents the situation in which two solutions belonging to two different sets have the
same adaptation value. The main disadvantage of this algorithm is the lack of elitism. The
NSGA-II algorithm fills this gap.

The presence of elites increases the chances of creating better children, leading to a
much faster convergence. In the case of single-criterion optimization problems, the elites
are easily identified. They have the best value with respect to the objective function. For
multi-criteria optimization problems, this statement is, of course, no longer valid.

In order to manage elites, the NSGA-II algorithm uses the rank of the Pareto set to
which the solution belongs. The elites are identified as the solutions that are part of the first
Pareto set. To manage diversity at the level of Pareto sets, the algorithm uses a particular
implementation of the selection operator called “crowded tournament”. In the crowded
distance assignment procedure, the density of the solutions surrounding a given solution
are evaluated. This value has the effect of reducing the chances of survival of a solution in
a region where several other solutions are concentrated.

In our scheme, the density is measured in the objective space and not in the decision
space. The method directly includes a normalization, which is essential when calculating
distances.

To summarize, the NSGA-II algorithm uses two populations: a parent population
P of size N and an offspring population Q, which consists of the set of individuals that
have been created by the application of the GA operators. At each iteration, the two
populations are combined in an intermediate population, R, and sorted to obtain the Pareto
sets. Finally, a new population P’ consists of the best Pareto sets of population R. To achieve
this, the solutions of the Pareto sets are included in the population, until the size becomes
greater than or equal to the size, N, of the initial population. If, following the addition
of the last possible set of Pareto, the population size is greater than N, then the last set is
sorted according to the crowded distance, and the solutions with the smallest distances are
eliminated until size N is achieved. The selection operator, crossing, and mutation are then
applied to P’ to create the new population, Q’, and so on. A basic flowchart of NSGA-II is
shown in Figure 4.

GA has already been used as an optimization technique for underwater sensor posi-
tioning [25]. However, in that study, GA was employed to calculate the best deployment
of the sensor nodes not the exact position of these nodes after deployment, as we show in
our work. In another important study, already cited above [10], GA was used to compute
the position of the sensor, given the known trajectory of a ferromagnetic object like in our
study. There are, however, two important differences. First, Yu’s paper reports a laboratory
reduced-scale setup, which is more similar to a computer simulation than to a real-world
full-scale experiment. Second, the authors use, as the source, a solenoid coil with a given,
controllable magnetic moment. This ideal setup reduces, by a factor of 2, the number of
unknown parameters (genes in GA terminology) and simplifies the search procedure. We
release this constraint by allowing any ferromagnetic object that is big enough to be used,
leaving the algorithm to compute, by itself, the source of the magnetic field. Later, we show
that this choice does not affect the ability of our GA to successfully determine the exact
position of the sensors.

Sensors 2023, 23, 1797 7 of 13

Sensors 2023, 23, 1797 7 of 13

Later, we show that this choice does not affect the ability of our GA to successfully deter‐

mine the exact position of the sensors.

Figure 4. Basic flowchart of the NSGA‐II algorithm.

2.3. Particle Swarm Optimization

In the PSO paradigm [22], the chromosomes of the GA are replaced by particles mov‐

ing in the space spanned by the 6 directions defined by the problem’s unknowns (the

genes in the GA). From a given position in the space, the new particle direction and am‐

plitude is computed as a weighted combination of its current inertia, its own best past

position, and the best past position of the swarm. This is usually understood as a compro‐

mise between pure individual and social behaviors.

A particle, i, is defined by its position vector, xi, and its velocity vector, vi. In every

iteration, each particle changes its position according to the new velocity, see Equations

(8) and (9):

 𝑣 𝜔𝑣 𝑐 𝑟 𝑥𝑏𝑒𝑠𝑡 𝑥 𝑐 𝑟 𝑔𝑏𝑒𝑠𝑡 𝑥 , (8)

 𝑥 𝑥 𝑣 ∙ 𝑡, (9)

where xbest and gbest denote the best particle position and best group position, respectively;

and the parameters ω, c1, c2, r1, and r2 are inertia weight, two positive constants, and two

random parameters within [0, 1], respectively. In the baseline particle swarm optimization

algorithm, ω is selected as unit, but an improvement of the algorithm is found in its inertial

implementation using ω ∊ [0.5 0.9]. Usually, maximum and minimum velocity values are

also defined, and initially the particles are distributed randomly to encourage the search

in all possible locations.

Figure 4. Basic flowchart of the NSGA-II algorithm.

2.3. Particle Swarm Optimization

In the PSO paradigm [22], the chromosomes of the GA are replaced by particles moving
in the space spanned by the 6 directions defined by the problem’s unknowns (the genes in
the GA). From a given position in the space, the new particle direction and amplitude is
computed as a weighted combination of its current inertia, its own best past position, and
the best past position of the swarm. This is usually understood as a compromise between
pure individual and social behaviors.

A particle, i, is defined by its position vector, xi, and its velocity vector, vi. In every
iteration, each particle changes its position according to the new velocity, see Equations (8)
and (9):

vt+1
i = ωvt

i + c1r1
(
xbestt

i − xt
i
)
+ c2r2

(
gbestt

i − xt
i
)

, (8)

xt+1
i = xt

i + vt+1
i · t (9)

where xbest and gbest denote the best particle position and best group position, respectively;
and the parameters ω, c1, c2, r1, and r2 are inertia weight, two positive constants, and two
random parameters within [0, 1], respectively. In the baseline particle swarm optimization
algorithm, ω is selected as unit, but an improvement of the algorithm is found in its inertial
implementation using ω ∈ [0.5 0.9]. Usually, maximum and minimum velocity values are
also defined, and initially the particles are distributed randomly to encourage the search in
all possible locations.

A position is “better” defined according to its fitness value. The fitness function is the
same functional error that is defined above. The multi-objective version is inspired by [26].

Sensors 2023, 23, 1797 8 of 13

3. Results and Discussion

Among the several events (the motion of the target above the grid) performed during
the experiments, we selected six of them for testing the algorithms. Events #1, #3, and #6 are
the reverse directions of events #2, #4, and #5, respectively. The velocities varied between
0.5 to 1.5 m/s. During event #6, a distractor was moved within the laboratory, creating a
degradation of the signal. We see the influence of it in the results. All four algorithms were
run: single- and multi-objective GA (NSGA-II) and single- and multi-objective PSO.

Some comments regarding the raw data are required before the experiment results
and analysis.

The distance between the sensors and the moving object is at least 6 m. The object
dimensions are not longer than 0.5 m in any dimension. In these conditions, we can
perfectly assume a dipole approximation for the magnetic field model. In this condition,
we know that the magnetic field should decay with a power of 3 of the distance between
the sensor and the source.

The total moment is around 10 Am2, as shown later. The magnetic field that the sensor
records at a distance of 6 m should be roughly 7 nT [23]. We employ three-axial fluxgate
sensors with an internal noise of about 0.25 nT rms (Mag634 by Bartington Instruments
Ltd., Oxon OX28 4GG, UK), which is an order of magnitude less than the anticipated signal
strength. We calculated an Signal to Noise Ratio (SNR) value of approximately 20, for most
events. This is more than sufficient to quantify the magnetic anomaly produced by the
moving object.

The sensors’ differences can be seen in two ways: first, in a slight but nevertheless
well-discernible difference in the field magnitude; second, in the changes in the phase as a
function of time (we use vector magnetometers). These variations enable the localization of
each sensor on its own, and our SNR enables a high absolute value precision.

Figure 5 displays the sensor-measured raw data. Keep in mind that the maximum
amplitude values for the near and distant sensors are different: [7.16 6.91 6.71 6.68] nT
for sensors #3, #5, #6, and #4, respectively, and [5.42 5.56 6.44 6.63] nT for sensors #1, #2,
#7, and #8, respectively. With just an amplitude variation, the sensors on the same side of
the trajectory display identical phases throughout each axis. For the sensors located on a
separate side of the trajectory, the x phase is the opposite.

Both PSO and GA require a bounded search space. For each sensor, a random point
was chosen inside a 5 × 5 m box centered on the point O, as shown in Figure 2. This box
has a width of 2 m and is centered on the floor level. The searching space is then defined
by a square of 10 m side around this initial point. The algorithm has almost no idea where
each sensor is localized when it starts searching.

Both the GA and PSO parameters were optimized using event #1 as the test case (an
arbitrary choice). The NSGAII algorithm was slightly modified during the ranking process,
and one population from the two generated from the optimal Pareto front was selected.
The algorithms were first run 10 times for each of the six events. From these runs, we chose
the best result according to the best fitness value. This procedure was repeated 10 times
in order to obtain some statistics. We then calculated the weighted error, relative to the
confidence of each run, and computed the median error for each coordinate.

Figure 6 shows the median error of all the sensors (deviation from their exact position),
and Table 1 looks at each sensor averaged over all events. Taken together, Figure 6 and
Table 1 compare the four algorithms.

Sensors 2023, 23, 1797 9 of 13

Sensors 2023, 23, 1797 9 of 13

Figure 5. Typical raw data recorded during one of the events.

Both PSO and GA require a bounded search space. For each sensor, a random point

was chosen inside a 5 × 5 m box centered on the point O, as shown in Figure 2. This box

has a width of 2 m and is centered on the floor level. The searching space is then defined

by a square of 10 m side around this initial point. The algorithm has almost no idea where

each sensor is localized when it starts searching.

Both the GA and PSO parameters were optimized using event #1 as the test case (an

arbitrary choice). The NSGAII algorithm was slightly modified during the ranking pro‐

Figure 5. Typical raw data recorded during one of the events.

Sensors 2023, 23, 1797 10 of 13

Sensors 2023, 23, 1797 10 of 13

cess, and one population from the two generated from the optimal Pareto front was se‐

lected. The algorithms were first run 10 times for each of the six events. From these runs,

we chose the best result according to the best fitness value. This procedure was repeated

10 times in order to obtain some statistics. We then calculated the weighted error, relative

to the confidence of each run, and computed the median error for each coordinate.

Figure 6 shows the median error of all the sensors (deviation from their exact posi‐

tion), and Table 1 looks at each sensor averaged over all events. Taken together, Figure 6

and Table 1 compare the four algorithms.

Table 1. Deviation from exact location (in m) for each sensor (averaged over the six events).

 GA PSO

 Single Multi Single Multi

Sensor #1 0.26 0.28 0.44 0.25

Sensor #2 0.32 0.29 0.57 0.40

Sensor #3 0.29 0.26 0.42 0.32

Sensor #4 0.28 0.31 0.44 0.22

Sensor #5 0.22 0.21 0.44 0.33

Sensor #6 0.25 0.22 0.42 0.17

Sensor #7 0.23 0.22 0.47 0.25

Sensor #8 0.24 0.21 0.43 0.24

Figure 6. Deviation from exact location (in m) for each event (averaged over the eight sensors).

An overall look at Table 1 and Figure 5 shows that the results are excellent. This is

particularly encouraging regarding the very large size of the search space. Figure 5 shows

that the algorithms were insensitive to the direction, velocity, and moment of the crossing

event. Event #6 shows a larger error due to the distractor presence, although its best me‐

dian location error was only 40 cm. This means that even in more realistic conditions, our

method can provide a precise and reliable location of the grid. Overall, the multi‐objective

optimization is the most appropriate method, either for the GA or PSO algorithm. A re‐

markably small averaged error (less than 30 cm) was found in both cases.

Figure 7 shows a more detailed view of the results, where each sensor’s performance

is shown for each event separately. Figure 7a shows the overall best results (obtained with

MOGA), while Figure 7b shows the overall worst results (obtained with Single Objective

Particle Swarm Optimization (SOPSO)).

Figure 6. Deviation from exact location (in m) for each event (averaged over the eight sensors).

Table 1. Deviation from exact location (in m) for each sensor (averaged over the six events).

GA PSO

Single Multi Single Multi

Sensor #1 0.26 0.28 0.44 0.25

Sensor #2 0.32 0.29 0.57 0.40

Sensor #3 0.29 0.26 0.42 0.32

Sensor #4 0.28 0.31 0.44 0.22

Sensor #5 0.22 0.21 0.44 0.33

Sensor #6 0.25 0.22 0.42 0.17

Sensor #7 0.23 0.22 0.47 0.25

Sensor #8 0.24 0.21 0.43 0.24

An overall look at Table 1 and Figure 5 shows that the results are excellent. This
is particularly encouraging regarding the very large size of the search space. Figure 5
shows that the algorithms were insensitive to the direction, velocity, and moment of the
crossing event. Event #6 shows a larger error due to the distractor presence, although
its best median location error was only 40 cm. This means that even in more realistic
conditions, our method can provide a precise and reliable location of the grid. Overall,
the multi-objective optimization is the most appropriate method, either for the GA or PSO
algorithm. A remarkably small averaged error (less than 30 cm) was found in both cases.

Figure 7 shows a more detailed view of the results, where each sensor’s performance
is shown for each event separately. Figure 7a shows the overall best results (obtained with
MOGA), while Figure 7b shows the overall worst results (obtained with Single Objective
Particle Swarm Optimization (SOPSO)).

Sensors 2023, 23, 1797 11 of 13
Sensors 2023, 23, 1797 11 of 13

(a) (b)

Figure 7. Deviation from exact location (in m) for each event and for each sensor. (a) and (b) are the

best (MOGA) and the worst (SOPSO) results, respectively.

The MOGA algorithm performs slightly better that the Multiple Objective Particle

Swarm Optimization (MOPSO) algorithm, although the best local solution was obtained

using MOPSO; this is encouraging, since it has a smaller number of free parameters. Still,

GA looks more stable, probably because of its ability through the mutation operator to

exit local minima and find a better optimum. Adding this kind of operator to MOPSO

should improve the performance toward errors of less than 20 cm.

As already mentioned, our methods do not suppose a known moment but rather

calculate it as a part of the global solution of the inverse problem. The results are shown

in Table 2. The values are consistent from sensor to sensor and from event to event, which

is a fact that gives us confidence in our calculation schemes. The results from events #1,

#3, and #6 show consistently higher values than those from events #2, #4, and #5. This can

be expected, since the same moment can have a different projection on the Earth’s mag‐

netic field according to its direction of motion.

Table 2. Calculated total moments (A m2) using the MOGA method.

Sensor #

1 2 3 4 5 6 7 8

Event #

1 9.05 9.35 8.42 8.69 9.55 9.61 9.05 9.04

2 8.64 7.9 8.22 8.18 8.02 8.15 8.25 7.73

3 9.23 9.02 9.18 8.59 8.17 8.52 8.68 8.89

4 7.89 8.17 8.25 8.21 7.75 7.87 7.96 7.88

5 8.4 8.08 7.86 8.01 7.96 8.18 8.12 7.82

6 9.21 8.84 9.25 8.76 8.48 9.01 9.16 9.4

4. Conclusions

A full‐scale experiment was performed that mimics the underwater positioning of

magnetic sensors. The position of eight magnetometers was successfully calculated,

where the signals generated by a known trajectory of a ferromagnetic object were solved

by two kinds of natural computing algorithms. Single‐ and multi‐objective versions of a

GA and a PSO were able to compute the position of the sensors, with an error of 25 cm

around their exact locations. This is a remarkable result regarding the realistic scale of the

setup and the almost blind initial guess locations.

Multi‐objective optimization seems to be the most appropriate heuristic technique,

despite its higher computation complexity. This is probably because, when looking for the

three coordinates of the sensors, the 3D information available in the signals must be taken

Figure 7. Deviation from exact location (in m) for each event and for each sensor. (a) and (b) are the
best (MOGA) and the worst (SOPSO) results, respectively.

The MOGA algorithm performs slightly better that the Multiple Objective Particle
Swarm Optimization (MOPSO) algorithm, although the best local solution was obtained
using MOPSO; this is encouraging, since it has a smaller number of free parameters. Still,
GA looks more stable, probably because of its ability through the mutation operator to exit
local minima and find a better optimum. Adding this kind of operator to MOPSO should
improve the performance toward errors of less than 20 cm.

As already mentioned, our methods do not suppose a known moment but rather
calculate it as a part of the global solution of the inverse problem. The results are shown in
Table 2. The values are consistent from sensor to sensor and from event to event, which is
a fact that gives us confidence in our calculation schemes. The results from events #1, #3,
and #6 show consistently higher values than those from events #2, #4, and #5. This can be
expected, since the same moment can have a different projection on the Earth’s magnetic
field according to its direction of motion.

Table 2. Calculated total moments (A m2) using the MOGA method.

Sensor #

1 2 3 4 5 6 7 8

Event #

1 9.05 9.35 8.42 8.69 9.55 9.61 9.05 9.04

2 8.64 7.9 8.22 8.18 8.02 8.15 8.25 7.73

3 9.23 9.02 9.18 8.59 8.17 8.52 8.68 8.89

4 7.89 8.17 8.25 8.21 7.75 7.87 7.96 7.88

5 8.4 8.08 7.86 8.01 7.96 8.18 8.12 7.82

6 9.21 8.84 9.25 8.76 8.48 9.01 9.16 9.4

4. Conclusions

A full-scale experiment was performed that mimics the underwater positioning of
magnetic sensors. The position of eight magnetometers was successfully calculated, where
the signals generated by a known trajectory of a ferromagnetic object were solved by two
kinds of natural computing algorithms. Single- and multi-objective versions of a GA and a
PSO were able to compute the position of the sensors, with an error of 25 cm around their
exact locations. This is a remarkable result regarding the realistic scale of the setup and the
almost blind initial guess locations.

Sensors 2023, 23, 1797 12 of 13

Multi-objective optimization seems to be the most appropriate heuristic technique,
despite its higher computation complexity. This is probably because, when looking for the
three coordinates of the sensors, the 3D information available in the signals must be taken
advantage of in the best way possible. MOGA generally performs better than MOPSO,
although the latter sometimes shows better local results.

Finally, we believe our methods can offer an answer to several open challenges listed
in [2], such as reliability, node mobility, and efficiency. Future work includes testing the
system in a true maritime environment and using a shallow water deployment of the
magnetometers. Several configurations can be considered, from relatively small-scale
applications involving securing harbor facilities to larger-scale deployments for monitoring
ship motion.

Author Contributions: Conceptualization, R.A. and E.F.; methodology, R.A. and E.F.; software, R.A.
and K.N.; validation, K.N.; writing—R.A.; writing—review and editing, R.A. and E.F.; supervision,
R.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to legal restrictions.

Acknowledgments: The helpful discussions with Eyal Weiss are gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Felemban, E.; Shaikh, F.K.; Qureshi, U.; Sheikh, A.; Qaisar, S.B. Underwater Sensor Network Applications: A Comprehensive

Survey. Int. J. Distrib. Sens. Netw. 2015, 11. [CrossRef]
2. Su, X.; Ullah, I.; Liu, X.; Choi, D. A Review of Underwater Localization Techniques, Algorithms, and Challenges. J. Sens. 2020,

2020, 6403161. [CrossRef]
3. Wang, H.; Wang, S.; Bu, R.; Zhang, E. A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor

Networks. Sensors 2017, 17, 1821. [CrossRef] [PubMed]
4. Cayirci, E.; Tezcan, H.; Dogan, Y.; Coskun, V. Wireless sensor networks for underwater surveillance systems. Ad Hoc Netw. 2006,

4, 431–446. [CrossRef]
5. Callmer, J.; Skoglund, M.; Gustafsson, F. Silent Localization of Underwater Sensors Using Magnetometers. EURASIP J. Adv. Signal

Process. 2010, 2010, 709318. [CrossRef]
6. Erol, M.; Vieira, L.F.M.; Caruso, A.; Paparella, F.; Gerla, M.; Oktug, S. Multi stage underwater sensor localization using mobile

beacons. In Proceedings of the 2nd International Conference on Sensor Technologies and Application, SENSORCOMM 2008, Cap
Esterel, France, 25–31 August 2008; pp. 710–714.

7. Cheng, X.; Shu, H.; Liang, Q.; Du, D.H.-C. Silent positioning in underwater acoustic sensor networks. IEEE Trans. Veh. Technol.
2008, 57, 1756–1766. [CrossRef]

8. Wong, S.Y.; Lim, J.G.; Rao, S.; Seah, W. Multihop localization with density and path length awareness in non-uniform wireless
sensor networks. In Proceedings of the 2005 IEEE 61st Vehicular Technology Conference, Stockholm, Sweden, 30 May–1 June
2005.

9. Chandrasekhar, V.; Seah, W. An area localization scheme for underwater sensor networks. In Proceedings of the OCEANS
2006-Asia Pacific, Singapore, 16–19 May 2006.

10. Yu, Z.; Xiao, C.; Zhou, G. Multi-Objectivization-Based Localization of Underwater Sensors Using Magnetometers. IEEE Sens. J.
2014, 14, 1099–1106. [CrossRef]

11. Bian, S.; Hevesi, P.; Christensen, L.; Lukowicz, P. Lukowicz. Induced Magnetic Field-Based Indoor Positioning System for
Underwater Environments. Sensors 2021, 21, 2218. [CrossRef] [PubMed]

12. Zhou, G.; Wang, Y.; Wu, K.; Wang, H. Localization Approach for Underwater Sensors in the Magnetic Silencing Facility Based on
Magnetic Field Gradients. Sensors 2022, 22, 6017. [CrossRef] [PubMed]

13. John, F.; Schmidt, S.O.; Hellbruck, H. Multisensor Platform for Underwater Object Detection and Localization Applications. In
Proceedings of the OCEANS 2022, Hampton Roads, Hampton Roads, VA, USA, 17–20 October 2022.

14. Huang, W.; Pan, Z.; Xu, Z. Underwater cable localization method based on beetle swarm optimization algorithm. IEEE/CAA J.
Autom. Sin. 2022, 1–3. [CrossRef]

http://doi.org/10.1155/2015/896832
http://doi.org/10.1155/2020/6403161
http://doi.org/10.3390/s17081821
http://www.ncbi.nlm.nih.gov/pubmed/28786915
http://doi.org/10.1016/j.adhoc.2004.10.008
http://doi.org/10.1155/2010/709318
http://doi.org/10.1109/TVT.2007.912142
http://doi.org/10.1109/JSEN.2013.2287915
http://doi.org/10.3390/s21062218
http://www.ncbi.nlm.nih.gov/pubmed/33810141
http://doi.org/10.3390/s22166017
http://www.ncbi.nlm.nih.gov/pubmed/36015775
http://doi.org/10.1109/JAS.2022.106073

Sensors 2023, 23, 1797 13 of 13

15. Zhang, J.-W.; Yu, P.; Jiang, R.-X.; Xie, T.-T. Real-time localization for underwater equipment using an extremely low frequency
electric field. Def. Technol. 2022; in press. [CrossRef]

16. Philippeaux, H.; Dhanak, M. Real-Time Localization of a Magnetic Anomaly: A Study of the Effectiveness of a Genetic Algorithm
for Implementation on an Autonomous Underwater Vehicle. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston,
Charleston, SC, USA, 22–25 October 2018.

17. Hu, S.; Tang, J.; Ren, Z.; Chen, C.; Zhou, C.; Xiao, X.; Zhao, T. Multiple Underwater Objects Localization With Magnetic
Gradiometry. IEEE Geosci. Remote Sens. Lett. 2019, 16, 296–300. [CrossRef]

18. Hou, G.; Shao, Q.; Zou, B.; Dai, L.; Zhang, Z.; Mu, Z.; Zhang, Y.; Zhai, J. A Novel Underwater Simultaneous Localization and
Mapping Online Algorithm Based on Neural Network. ISPRS Int. J. Geo-Inf. 2019, 9, 5. [CrossRef]

19. Brabazon, A.; O’Neill, M.; McGarraghy, S. Natural Computing Algorithms; Springer Publishing Company, Inc.: New York, NY,
USA, 2015.

20. Bansal, J.; Singh, P.; Pal, N. Evolutionary and Swarm Intelligence Algorithms; Springer Nature: Cham, Switzerland, 2018.
21. Affenzeller, M.; Winkler, S.; Wagner, S.; Beham, A. Genetic Algorithms and Genetic Programming: Modern Concepts and Practical

Applications; Chapman & Hall/CRC: New York, NY, USA, 2009.
22. Clerc, M. From Theory to Practice in Particle Swarm Optimization. In Handbook of Swarm Intelligence: Adaptation, Learning, and

Optimization; Panigrahi, B.K., Shi, Y., Lim, M.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 8.
23. Weiss, E.; Alimi, R. Low-Power and High-Sensitivity Magnetic Sensors and Systems; Artech House: Boston, MA, USA; London, UK,

2018.
24. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
25. Iyer, S.; Rao, D.V. Genetic algorithm based optimization technique for underwater sensor network positioning and deployment.

In Proceedings of the IEEE Underwater Technology (UT), Chennai, India, 23–25 February 2015; pp. 1–6.
26. Coello, C.A.C.; Toscano-Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans.

Evol. Comput. 2004, 8, 256–279. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.dt.2022.06.014
http://doi.org/10.1109/LGRS.2018.2870839
http://doi.org/10.3390/ijgi9010005
http://doi.org/10.1109/4235.996017
http://doi.org/10.1109/TEVC.2004.826067

	Introduction
	Experimental Setup and Methodology
	Physical Problem
	Genetic Algorithm
	Particle Swarm Optimization

	Results and Discussion
	Conclusions
	References

