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Abstract: The last decade’s developments in sensor technologies and artificial intelligence applica-
tions have received extensive attention for daily life activity recognition. Autism spectrum disorder
(ASD) in children is a neurological development disorder that causes significant impairments in
social interaction, communication, and sensory action deficiency. Children with ASD have deficits in
memory, emotion, cognition, and social skills. ASD affects children’s communication skills and speak-
ing abilities. ASD children have restricted interests and repetitive behavior. They can communicate in
sign language but have difficulties communicating with others as not everyone knows sign language.
This paper proposes a body-worn multi-sensor-based Internet of Things (IoT) platform using ma-
chine learning to recognize the complex sign language of speech-impaired children. Optimal sensor
location is essential in extracting the features, as variations in placement result in an interpretation of
recognition accuracy. We acquire the time-series data of sensors, extract various time-domain and
frequency-domain features, and evaluate different classifiers for recognizing ASD children’s gestures.
We compare in terms of accuracy the decision tree (DT), random forest, artificial neural network
(ANN), and k-nearest neighbour (KNN) classifiers to recognize ASD children’s gestures, and the
results showed more than 96% recognition accuracy.

Keywords: autism spectrum disorder; sign language; gesture recognition; speech-impaired; IoT;
artificial neural network; decision tree; random forest; k-nearest neighbors

1. Introduction

Autism spectrum disorder (ASD) is a complex neurological developmental disorder
characterized by significant impairment in social interaction, communication, and ritualistic
behavior [1]. According to the 2015 World Health Organization statistics, more than 5% of
the world’s population suffers from hearing impairment. The burden on society increases
due to deaf workers because their unemployment rate is about 75% [2]. About 1 out
of 200 children is diagnosed with ASD, and boys are four to five times more affected
than girls [3]. Biao et al. [4] stated that according to the Centers for Disease Control and
Prevention (CDC), about 1 in 59 children has ASD. Maenner et al. [5] discussed in the recent
CDC estimates that in eight-year-old children, 23 out of 1000 (i.e., 1 in 44) meet the criterion
of ASD, which is an increase from the prior estimates. Areeb et al. [6] reported in their
article that according to the 2011 census, in India, about 2.7 million people cannot speak,
and 1.8 million are deaf. Each ASD child has his/her specific needs. ASD symptoms are
usually seen in a child aged one to two years. ASD children often experience problems with
social contact, have an association, and lack social interaction, social behavior, or physical
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activity. ASD children have difficulties communicating with other people. These children
require extra care because they often do not understand other people’s actions. These
children are challenging to understand and face difficulty in speech and communication.
Ramos-Cabo et al. [7] studied the impact of gesture types and cognition in ASD. In this
paper, we propose a hand- and head-worn sensors-based system to recognize the sign
language of autistic children to communicate the message to non-ASD people.

Autistic people can communicate in sign language, which is not easy to understand [8,9]
because only deaf and mute people understand sign language. It is difficult for people
to learn sign language until it becomes necessary, or they must encounter ASD people
regularly [10]. Padden, in the article [11], identified that there are 6909 spoken languages
and 138 sign languages. Sign language focuses on the arms, hands, head, and body
movements to construct a significantly gesture-based language. Providing the proper
facilitation to disabled people is essential because a considerable portion of our society
consists of autistic hearing-impaired people. Traditional and non-technical solutions offered
to these people are cochlear implants, writing, and interpreters. A cochlear implant is
not an inclusive solution, as 10.1% of people having cochlear implants still have hearing
problems [12]. It is frustrating to use writing as a mode of communication because of its
ambiguity and slowness. A sensor added to the body requires tight-fitting garments that
upset the solace level to avoid relative advancement. In contrast, handwriting rates are 15 to
25 WPM (words per minute), usually a person’s second language. Autistic people also use
interpreters, but this involves privacy issues, and they charge a high hourly rate. Finding
an interpreter for a person with specialized vocabulary is also challenging. Ivani et al. [13]
designed and implemented an algorithm to automatically recognize small and similar
gestures within a humanoid–robot therapy called IOGIOCO for ASD children. Wearable
computing provides proactive support in collecting data from the user context. Wrist-worn
sensor modules are used for collecting the gestures data and recognizing gestures of the
ASD children [14]. Borkar et al. [15] designed a glove of flex sensors pads to sense various
movements, specifically the curve movements of fingers. The device is designed smartly
to sense the resistance and action by the hand. Most of the literature is focused on hand
movements only and is limited in recognizing complex gestures which involve multiple
kinds of body movement. In this article, we propose a fusion-based IoT platform where
multiple sensors are placed on different body locations for complex gesture recognition of
ASD children.

Wearable sensors, the Internet of Things (IoT), machine learning, and deep learning
have gained a significant role in daily life. IoT integrates the actuators, sensors, and
communication technologies to acquire the data, control the environment, and access
statuses at any time and anywhere [16–18]. Features are extracted from sensor data and
then classified by different classification techniques. Placing the sensors at an optimal
location is essential, as the variation affects the classification. Avoiding relative movement
sensors appended to the body requires the utilization of tight-fitting garments which upsets
the solace level [19]. A gesture-based recognition system is the best possible solution which
enables mute people to move quickly through society. A sensor-based recognition system
has advantages over other recognition approaches. The benefits are that the sensors are
portable, easy to use, low power, low cost, durable and safe to use, and easy to install [20].
Some of the gestures of these people are complex, and they require a particular interpreter,
so there is a need for a system that efficiently translates the gestures of mute and deaf
people.

The overall contributions of the paper can be summarized as follows:

• ASD children have difficulties in communication skills and they suffer from a speech
disorder. We proposed a multi-sensor body-worn area sensor network for complex
sign language recognition of ASD children focusing on helping the ASD children to
convey their message to non-ASD people.
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• We acquired and built a dataset of ten complex gestures of ASD children’s sign
language, performed twenty times each using the designed flex sensors glove, ac-
celerometers, and gyroscope placed at hand and head position.

• We extracted statistical measures as features from the sensors data both in time and
frequency domains to reduce the processing time and improve accuracy.

• A performance comparison of machine learning algorithms to select the algorithm
with the highest accuracy, precision, and recall for efficient recognition of ASD gestures
was carried out.

• A real-time implementation is tested on Raspberry-PI systems on a chip to demonstrate
the system.

The rest of the paper is organized as follows. Section 2 briefly introduces the related
works and the background of sensors, IoT, and machine learning techniques about activ-
ities and gesture recognition. The proposed methodology for body-worn sensors-based
IoT platform for ASD children’s gestures acquisition, feature extraction, and recognition
algorithms is discussed in Section 3. Section 4 discusses the results, and finally we conclude
the research in Section 5.

2. Related Work

Body area sensor network (BASN), also termed wireless body area network (WBAN),
is a network for portable processing devices. BASN devices can be incorporated into the
body as an implant, attached to a body at a fixed position or in combination with devices
that people can carry in multiple positions, such as pockets, in the hand, or in carrying
bags [21]. There is always a trend toward narrowing devices; body area networks consist
of multiple mini sensor networks, and collectively these sensor networks are called body
central units (BCUs). Larger smart devices (tabs and tablets) and associated devices play
a significant role in serving as data centers or data portals, and provide a user interface
to view and manage BASN applications on-site [22]. WBAN can use WPAN (wireless
personal area network) technology as long-distance installation [23]. IoT makes it possible
to connect portable devices implanted in the human body to the internet. In this way,
healthcare professionals can access a patient’s data online, using the internet, regardless
of the patient’s location. TEMPO 3.1 (tech-medical sensitive observation) allows wireless
transmission in six degrees, in a portable form, to capture and processes the precise and
accurate platform of third-generation body area sensors. TEMPO 3.1 is designed for user
and researcher use, allowing motion capture applications in BASN networks [24].

Human gesture recognition uses ambient sensors, cameras, wearable sensors, and
mobile sensor-based systems. Ambient sensors, used in an external or local frameworks,
are installed in the environment and have no physical contact with the concerned person.
These sensors include radar, RF signals, event (switch based), and pressure sensors [25,26].
The systems have the main advantage of allowing ignoring the existence of the sensors
within the user environment, and not pertaining to privacy leakage issues. For example, to
monitor the older person’s activity, sensors can be installed in a living room or anywhere
in the home [27]. Cameras also achieve gesture detection, in addition to ambient sensors.
The cameras are placed in a limited area to provide images or videos of human activities to
implement the fall detection algorithm [28]. Zheng et al. [29] proposed a large-vocabulary
sign language recognition system using an entropy-based forward and backward matching
algorithm to segment each gesture signal. They designed a gesture recognizer consisting of
generating a gesture and a semantic-based voter. The candidate gesture generator aims to
provide candidate gesture designs based on a three-branch convolutional neural network
(CNN). Han et al. [30] proposed three-dimensional CNN for concurrently modeling the
spatial appearance and temporal evolution for sign language recognition. They used RGB
video to recognize the signs. To reduce risks and improve the quality of life at home, it
can be monitored by determining daily life activities (ADL) using RGB-D cameras [31].
Camera surveillance does not attract many people as it raises privacy concerns in general.
The camera is especially suitable for living rooms; however, it is difficult to place a camera
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in a living room due to privacy. Recently, electronic devices (such as smartphones) are
becoming a daily de facto tool. Mobiles have many integrated sensors such as GPS locators,
gyroscopes, and accelerometers [32,33]. These sensors provide data both remotely and
accurately. In addition to many advantages, reception based on portable sensors also has
disadvantages. Keeping the smartphone in pockets reduces the effectiveness of recognizing
certain activities such as writing, eating, and cooking [34]. In addition, women tend to keep
their phones in their bags, almost losing mobile connection to their bodies [35,36]. We can
eliminate all these problems and achieve greater efficiencies by installing wearable sensors
on desired body parts.

Wearable devices give opportunities for innovative services in health sciences, along
with predictive health monitoring by persistently collecting data of the wearer [37]. Wear-
able sensors provide precise and accurate data by installing them on the desired muscles
of the limb, thereby ensuring a better and more correct method of gesture recognition
system [38]. This system comprises body-worn sensors by the person for data acquisition
purposes. The systems contain body-worn accelerometers, gyroscopes, flex sensors, pe-
dometers, and goniometers [39]. The sensors are installed at different body parts, such as
the hip, wrist, ankle, arm, or thigh, to recognize gestures performed by these muscles [40].
The advantage of using wearable sensors is that data collected by these sensors have greater
efficiency, can monitor multiple muscles’ movement, and above all, are effortless to use for
the affected person [41]. The study on gesture recognition has found that the location of sen-
sors depends primarily on the purpose of data collection. The accuracy of the observation
depends on the position of the sensor installed on the body [42]. It also shows that different
gestures, which include movement, posture, or activity, are best controlled by placing a
sensor on the ankle, hip, or pocket [43]. On the other hand, exercises related to upper
body parts require sensors placed on the chest, neck, arms, or elbows for better recognition
accuracy [44]. The system proposes the optimal location for the sensor network to be placed
on different muscles to provide better accuracy. Li Lang et al. [45] designed SkinGest using
five strain sensors and machine learning algorithms such as k-nearest neighbor (KNN) and
support vector machine (SVM) to recognize the numerical sign language for 0–9. They used
ten subjects to acquire data. Zhang et al. designed WearSign for sign language translation
using the inertial and ElectroMyoGraphy sensors [46]. Table 1 shows the literature review
related to wearable sensors.

The sensor data is collected using different sampling frequencies depending on the
nature of the recognizing activities. The data is divided into segments of time series, called
window size. Zappi et al. [47] performed several related tasks and collected data from an
accelerometer with a frequency of 50 Hz and proposed a two-step selection and acquisition
method. The acquisition phase received 37 functions with a one-second window size and
overlapping of half a second. They used the relief-F function for the selection algorithm to
select 7 attributes specific to 37 in the selection step [48]. First, they used a low-pass filter to
pre-process the signal to eliminate the DC component, then recover the processed data to
gain the desired properties (min, max, average RMS value, STD, average, and maximum
frequency). Classifiers are one of the best methods that use functional data for testing
and training. Training data generally include functions that are not labeled. The classifier
learning algorithm adjusts the parameters to create a model or run a hypothesis. Now
this template can provide a label to new inputs [49]. The most used classifiers techniques
used for the classification of data are random forest (RF), KNN, SVM, multilayer receiver
perception (MLP), artificial natural network (ANN), and decision tree. Table 2 shows the
literature review related to different algorithms.
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Table 1. Literature review focused on wearable sensors used for gestures and activity recognition.

Ref. No. Dataset Details Extracted Features Types of Sensor

[50] 20 numbers, 20 alphabets

Mean value, standard dev,
percentiles. and

correlation frequency
domain (energy, entropy)

5 capacitive touch sensors

[43] 200 words, 10 iterations

Mean, standard dev,
kurtosis, skewness,

correlation, range, spectral
energy, peak frequencies,
cross-spectral densities,

and spectral entropy

2 accelerometers

[51] 35 gestures, 20 trials each
5 persons

Mean value, variance,
energy, spectral, entropy,

and FFT

2 accelerometers,
1 gyroscope

[52] Arabic alphabets, 20 trails

Average, standard dev, the
time between peaks,

binned distribution, and
average resultant

acceleration

2 accelerometers,
2 gyroscopes

[53] 50 letters, 50 iterations
Mean, median, standard

deviation, frequency
domain, time domain

5 flex sensors

[49] 20 gestures, 4 persons,
20 iterations

Mean, variance, energy,
spectral entropy, and

discrete FFT

2 accelerometers,
1 gyroscope

[8] English alphabets Mean, standard deviation,
average 1 accelerometer

Table 2. Literature review related to algorithms.

Ref. No. Paper Proposal Hardware/Software Datasets Applied Algorithms Accuracy

[54]

This paper proposes an
electronic system

equipped with wearable
sensors for gesture

recognition to interpret
abnormal activities of
the children to their
parents through a
machine learning

algorithm.

Flex Sensor, Arduino,
mpu6050, Bluetooth Alphabets, 20 iterations KNN 95%

[55]

This work provides ICT
solutions for autistic

children by examining a
person’s voice, body
language, and facial

expressions to monitor
their behavior while
performing gestures.

Accelerometer, PC, RGB
camera

40 gestures, 10 persons,
10 repetitions Parallel HMM 99%
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Table 2. Cont.

Ref. No. Paper Proposal Hardware/Software Datasets Applied Algorithms Accuracy

[56]

This article presents the
links between known

attention processes and
descriptive indicators,

emotional and
traditional gestures,

and nonverbal gestures
between ASDs in

attention processes and
gestures.

Flex sensor, MPU 6050,
contact sensor, Arduino,

Bluetooth, PC
1300 words HMM 80%

[57]

This paper has
proposed a system in
which the recognition

process uses a wearable
glass and allows these
children to interpret
their gestures easily.

RGB camera, PC 26 postures, 28,000
images

HAAR cascade
algorithm 94.5%

[58]

This paper presented
the idea to analyze the

development of
conventional gestures
in different types of

children, such as
typical ASD children.

RGB camera, PC English and Arabic
alphabets

BLOB, MRB, least
difference, GMM 89.5%, 80%

[59]

This paper presented
the IoT-based system

called” Wear Sense” to
detect the atypical and
unusual movements

and behaviors in
children who have

ASD.

Capacitive touch sensor,
R-pi, Python

36 gestures, 30 trials
each Binary detection system 86%

3. The Proposed Body-Worn Sensors-Based IoT Platform for ASD Children Gesture
Recognition

The article aims to develop a body-worn multi-sensor-based IoT platform to recognize
ASD children and convert sign language to voice and text messages. Figure 1 shows the
system architecture proposed for the sign language translator that explains the complete
system operation. The proposed system consists of the following modules:

• Body-worn sensors interfacing platform
• Pictorial overview of gestures and data acquisition
• Sampling, windowing, and features extraction
• Classification/recognition algorithms
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Figure 1. The proposed architecture for body-worn sensors-based IoT platform for ASD children’s
gestures recognition.

3.1. Body-Worn Sensors Interfacing Platform

We use body-worn sensors placed in three positions. (1) At the head position, in a
head cap, an MPU6050 sensor module is installed. (2) At an elbow position, an MPU6050
sensors module is installed. For the fingers movements and bending, we use Flex sensors.
An MPU6050 sensors module consists of an accelerometer and gyroscope of 3-axis. For the
Flex sensors, we designed a glove, as shown in Figure 2, to place the Flex sensors in order
to acquire finger-bending movement. The flex sensors can be used as variable resistors,
and their resistance is proportional to the bend in the fingers. When the fingers bend, the
resistance increases and vice versa. The flex sensor has flat resistance of 25 kΩ. Depending
on a bend, the value can increase up to 125 kΩ. Fixed resistors uses flex sensors in series.
Equation (1) shows the voltage divider rule, which calculates the flex resistance.

Vout = Vin

(
R1

R1 + R2

)
(1)

where Vout = voltage of flex sensor, Vin = 5 V (in this case); R1 = resistance of flex sensor
and R2 = fixed resistance. MPU6050 is the motion sensor used in this paper to measure the
linear and angular motion of the head and hand. This module has a three-axis embedded
accelerometer and three-axis gyroscope sensors. The accelerometer and gyroscope of
the MPU6050 both provide continuous output over time. For sending the data to the
controller using the I2C communication protocol, the values are digitized using a 16-bit
analog/digital converter. The ADC samples the data with a specific frequency (fs) and then
quantizes these samples. We used the sampling frequency of 50 Hz for the accelerometer
and gyroscope. The data from the sensors is collected by Arduino, which is then sent
to the Raspberry Pi using Bluetooth. Data from the motion sensor is compiled using the
I2C protocol, and data from the flex sensor is collected at the analog input (ADC). I2C is
a two-wired bidirectional serial communication protocol used to send and receive data
between two more electronic circuits.

Figure 2. Placement of flex sensors in glove for hand gesture data.
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3.2. Pictorial Overview of Gestures and Data Acquisition

In this article, we acquire the data of ASD children by installing motion sensors at
elbow and head positions, and a flex sensors glove for finger bending. Figure 3 shows the
pictorial overview images taken from Pakistan sign language (PSL) and clearly depicts that
each gesture involves multiple parts of the body. We installed multiple sensors on different
body parts. We collected the data for ten gestures from ten ASD children from MPU1,
MPU2, and flex1 through flex4, and assigned labels as GST-1–GST-10 as shown in Table 3.
Each ASD child performed each gesture 20 times. Figure 4 shows the sensors’ response for
two cycles performed by an ASD subject for the gesture of GST-1: alarm clock. We consider
the 200 samples in a cycle, i.e., 4 second to complete each gesture. The Figure 4 clearly
depicts that the sensors’ responses have a similar nature with little variation in amplitude
and time.

Table 3. Information about the gestures.

Gesture Label Gesture Label

Alarm clock GST-1 Brilliant GST-6
Beautiful GST-2 Calm GST-7

Bed GST-3 Skull GST-8
Bedroom GST-4 Door Open GST-9

Blackboard GST-5 Fan GST-10

Figure 3. Pictorial overview of different gestures performed.
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Figure 4. Two cycles of sensor response for acquiring the gesture alarm clock.

3.3. Sampling, Windowing, and Features Extraction

The sampling rate and windowing for feature extraction play a leading role in the
gesture recognition process. The accelerometer, gyroscope, and flex sensor data is acquired
at 50 Hz. Four seconds for the non-overlapping sliding windows approach is used for
features . The features are extracted using the data window of 200 samples. We extract the
features such as standard deviation, mean, minimum, and maximum values of accelerome-
ters and flex sensors. The RMS feature is only used for the gyroscope, and the remaining
features are only for accelerometers. Table 4 shows the statistical measures used to extract
the features for classifying and recognizing ASD children’s gestures. We use a feature
vector of 58 for each gesture.

3.4. Classification and Recognition Using Machine Learning Algorithms

Raspberry-PI is used as a platform to extract the features and use the machine learning
libraries to recognize the gesture. We used the KNN, decision trees, random forest, and
neural networks. We explain the algorithms in the following subsections.
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Table 4. Feature extraction from time-series data of multiple sensors

Features Name Description Equations

Mean Mean value calculation for accelerometer and
gyroscope

µ =
1
N

N

∑
i=1

Sxi (2)

Standard deviation Finds the sensor’s data spread around the
mean.

σ =

√√√√ 1
N

N−1

∑
i=0

(Sxi − µ)2 (3)

Skewness The measure for the degree of symmetry in the
variable distribution.

Skx =
∑N

i=1(Sxi − µ)3

(σx)3 (4)

Kurtosis The measure of tailedness in the variable
distribution.

Ktx =
∑N

i=1(Sxi − µ)4

(Nσ)4 (5)

Maximum value Calculates the maximum value of the
accelerometer (x,y,z).

Accmax = maxSxi (6)

Minimum value Shows the minimum value of the
accelerometer (x,y,z).

Accmin = minSxi (7)

Entropy Essential for differentiating between activities. Entropy = − 1
N

N−1

∑
i=0

pxi logpxi (8)

Cosine Similarity To distinguish between activities that fluctuate
along an axis.

cos θ =
Sx . ∗ Sy

||Sx ||
∣∣∣∣Sy

∣∣∣∣ (9)

Root mean square Calculates the angular movement along the x,
y, and z axes, accordingly.

RMSx =

√√√√ 1
N

N

∑
i=1

Gxi (10)

Where Gxi is sample of x-axis gyroscope.

The absolute time difference between peaks
Computed by taking the absolute difference
between the maximum and minimum peak

times.

ATD =
∣∣tmaxpeak − tminpeak

∣∣ (11)

Frequency domain features
To find frequency domain features of

acceleration data based on fast Fourier
transform (FFT).

H(k) =
N−1

∑
n=0

x(n)e−j2π( kn
N ) (12)

Quartile Range To find the middle number between the
minimum and the median of the sample data.

Q1 = l +
h
f
(

n
4
− C) (13)

3.4.1. K-Nearest Neighbours (KNN) Algorithm

The KNN algorithm is one of the lazy methods used for learning, because the learning
(discovering the relationship between input features and the corresponding labels) begins
after a test input. The algorithm finds the similarities (distance) between the feature vectors,
sorts according to the similarity measure, and selects the Top-K neighbors. From the
training data, this algorithm finds the K number of adjacent samples that are like test
input samples. Mathematically, the similarity between the training samples and test data
can be calculated either by Euclidean, Manhattan, or Minkowski distance, as follows, by
Equations (14)–(16), respectively. Algorithm 1 shows the

D =

√
n

∑
i=1

(xi − yri )
2 (14)

D =
n

∑
i=1
|xi − yri | (15)
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D = (
n

∑
i=1
|xi − yri |

p)
1
p (16)

Algorithm 1 KNN Pseudocode

1: Assign (Tr, Cl, z)
2: Tr: training data, Cl: classes labels of T, z: unknown sample
3:
4: for j = 1 to n do
5: Find the distance: D(Tr(j), z) using either of Equations (14)–(16)
6: end for
7: Calculate the set K, which consists of the indexes for the lowest distance D(Tj, z)
8: Return majority label for ClK

3.5. Decision Tree

The fundamental structure of a decision tree includes a root node, a branch, and
a leaf node. The root node represents an attribute’s test, the branches give the test out-
comes/results, the leaf node gives the decision taken after considering the attributes (in
other words, leaf nodes give a class label), and internal sub-nodes signify the dataset
structures. It creates a tree type for the whole dataset and proceeds a single outcome at
each leaf node by minimizing errors. Two parameters play an important key role in the
formation of this algorithm’s structure: the attributes and attributes selection method. The
nodes are selected using various mechanism scuh as Gini-Index, entropy, and information
gain ratio. The pseudo-code of decision tree is Algorithm 2.

Algorithm 2 Decision Tree Pseudo-code

1: Create a node Nd
2: if tuples in X belongs to same class, Cls then
3: return Nd in the form of leaf node labeled as class Cls
4: else if attribute list is empty then
5: return Nd as leaf node labeled as majority class in X // based on majority voting
6: end if
7: Apply attribute-selection-method (X, attribute list) to find the “best” splitting criterion;

label node Nd with splitting criterion
8: Let Xi be the set of data tuples in X satisfying outcome i // a partition
9: for each outcome i of splitting criterion

10: // partitioning of data and growing of sub-trees related to each partition do
11: if Xi is empty then
12: Attaches a leaf labeled with the majority class in X to node Nd
13: else
14: Attach the node returned by generate-decision-tree (Xi, attribute list) to node

Nd
15: end if
16: end for
17: Return Nd

3.5.1. Random Forest Algorithms

The random forest method [60] is a classification method used to build multiple
decision trees and ultimately take many weak learners’ decisions. Often, pruning these
trees helps to prevent overfitting. Pruning serves as a trade-off between complexity and
accuracy. No pruning implies high complexity, high use of time, and the use of more



Sensors 2023, 23, 1672 12 of 19

resources. This classifier helps to predict the gesture. Algorithm 3 shows the pseudo-code
of random forest.

Algorithm 3 Random Forest Pseudocode

1: Randomly choose f features from n features f < n,
2: Calculate the node d using the finest split-point,
3: Divide nodes into child nodes using the best division point,
4: Repeat above steps from 1 to 3 until the number of nodes I has reached,
5: Build a random forest by repeating the above all steps N times to create t number

of trees.

3.5.2. Artificial Neural Network

This paper uses neural networks [61] for complex models and multi-class classification.
Neural networks are inspired by the brain, which is a network of neurons. The neuron
model consists of input with input weight (activation function), hidden layers, and output.
When input arrives, it is multiplied by the weight of the connection. During the time
of the training of the model, this weight is updated to reduce the error. The input layer
of the model does not process the input and passes it on to the nest layer, called hidden
layers. These layers process the signals and create an output delivered to the output layer.
The weight of the connection defines the influence of one neuron over the other. This
weight updates in the back-propagation process to reduce the error. Algorithm 4 shows the
neural networks.

Algorithm 4 The Neural Networks using Back-propagation Method Pseudocode

1: Initialize the weights and learning rate n with the appropriate values
2: Input: Enter the training data
3: Output: Obtain the output of the network
4: for Calculate the error do

E = Y− y (17)

∆ = φ
′
(w)E (18)

where
5: φ′ is the derivative of the leaf (output) node activation function,
6: y is the output from the leaf node,
7: Y is the actual output, and
8: w is the weight of the node.
9: Procreate the leaf node backward, and calculate the deltas of the next nodes

E(n) = WTδ (19)

∆(n) = φ
′
(w(n))E(n) (20)

10: end for
11: The above loop continuously runs until the hidden layer reaches the right next to the

input layer,
12: Weights adjustment will be carried out according to the learning rule as given below

∆zkl = αδkxl (21)

zkl = zkl + ∆zkl (22)

13: Repeat above 2 to 7 steps for each point.
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After the gesture is recognized, we send the gesture text message to the person/guardian’s
mobile for interaction.

4. Results and Discussion

This section discusses the sensors’ response and the results of classifiers. The inputs
to these classifiers are the features extracted from the original dataset. We used accuracy,
precision, and recall as a performance metrics to evaluate and compare the algorithms.

4.1. K-Nearest Neighbours (KNN) Algorithm Results

This classifier has several distances to use. Here, we have used three different distances:
Euclidean distance, Manhattan distance, and Minkowski distance. The value of K varied
between 1, 3, 7 and 9 to obtain maximum accuracy. The KNN classifier is applied to the
dataset with different K values and the distance measures as shown in Figure 5. The
maximum accuracy achieved with the KNN algorithm is 93.7% using Manhattan distance
at K = 3 and cross-validation of 10 folds. Table 5 shows the confusion matrix for maximum
accuracy of KNN.

Figure 5. The KNN algorithm accuracy using different K-values and distance measures.

Table 5. Confusion matrix for KNN classifier using Manhattan distance with the cross-validation
factor of 10%.

Actual /Predicted GST-1 GST-2 GST-3 GST-4 GST-5 GST-6 GST-7 GST-8 GST-9 GST-10

GST-1 193 2 0 0 1 2 0 0 2 0
GST-2 0 194 1 0 1 0 3 1 0 0
GST-3 0 0 188 6 2 2 2 0 0 0
GST-4 0 2 8 187 0 1 0 2 0 0
GST-5 0 2 2 0 176 5 11 2 2 0
GST-6 0 1 0 0 2 192 3 2 0 0
GST-7 0 0 1 0 11 10 177 1 0 0
GST-8 0 0 2 0 7 1 3 187 0 0
GST-9 0 0 0 0 2 0 0 0 192 6

GST-10 2 0 0 0 0 0 0 0 10 188

4.2. Decision Trees (J48) Results

The results from J48 classifiers are summarized in Table 6. We used different cross-
validations to check the effect of training the dataset size for accuracy. The maximum
accuracy achieved is for 90–10% for ten-fold cross-validation.



Sensors 2023, 23, 1672 14 of 19

Table 6. Results for J48 decision tree classifier.
.

Number of Iterations Cross-Validations (%) Accuracy (%)

1 5 86.1
2 10 87.91
3 15 86.6
4 20 87.7
5 25 87.7

The maximum accuracy obtained using this classifier is 87.912% at a cross-validation
of 10%. Table 7 shows the corresponding confusion matrix.

Table 7. Confusion matrix for J48 classifier with the cross-validation factor of 10%.

Actual /Predicted GST-1 GST-2 GST-3 GST-4 GST-5 GST-6 GST-7 GST-8 GST-9 GST-10

GST-1 191 1 0 1 1 3 0 1 0 2
GST-2 0 183 2 6 3 1 4 1 0 0
GST-3 0 5 167 9 8 4 1 6 0 0
GST-4 0 5 12 167 3 5 2 6 0 0
GST-5 0 1 7 2 157 5 20 6 2 0
GST-6 3 4 2 7 3 172 8 1 0 0
GST-7 0 4 3 1 16 13 162 1 0 0
GST-8 2 4 6 7 4 3 5 169 0 0
GST-9 0 0 0 0 3 0 0 0 195 2

GST-10 3 1 0 0 0 0 0 0 1 195

4.3. Random Forest Results

The results in Table 8 show the output with changing cross-validation and maximum
depth.

Table 8. Results of RF classifiers with maximum depth and cross-validation factor.

Number of
Iterations

Cross
Validations (%)

Accuracy (%)

1 5 95.25
2 10 95.9
3 15 95.875
4 20 95.13
5 25 94.25

The maximum accuracy obtained is 95.9%. Table 9 shows the resulting confusion
matrix of this maximum accuracy.

Table 9. Confusion matrix of random forest with accuracy (95.9%).

Actual /Predicted GST-1 GST-2 GST-3 GST-4 GST-5 GST-6 GST-7 GST-8 GST-9 GST-10

GST-1 197 1 0 0 0 0 0 0 2 0
GST-2 0 195 0 1 0 0 1 3 0 0
GST-3 0 0 191 7 0 1 1 0 0 0
GST-4 0 0 4 195 0 1 0 0 0 0
GST-5 0 0 5 1 184 2 4 2 2 0
GST-6 0 2 1 0 1 194 1 1 0 0
GST-7 0 0 0 0 7 7 186 0 0 0
GST-8 0 0 2 1 4 1 2 190 0 0
GST-9 0 0 0 0 1 0 0 0 194 5

GST-10 2 0 0 0 0 0 0 0 6 192

4.4. Artificial Neural Network

We have applied the neural network with 70%, 15%, and 15% split for training,
validation, and testing, respectively, to show the highest accuracy. We used 100 neurons in



Sensors 2023, 23, 1672 15 of 19

the hidden layer and two different activation functions i.e., log-sigmoid and tan-sigmiod.
Figure 6 shows the convergence curve using cross entropy for both activation functions.
The tan-sigmoid shows early convergence with higher accuracy. Figures 7 and 8 show the
confusion matrices of log-sigmoid and tan-sigmoid, respectively.

Figure 6. The error convergence and optimization current using different activation functions and
neurons = 100.

Figure 7. Confusion matrix of neural networks using activation function log-sigmoid.
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Figure 8. Confusion matrix of neural networks using activation function tan-sigmoid.

4.5. Comparison of Classifiers

Figure 9 shows a bar graph for the comparison of different classifiers. The bars
represent the average accuracy of each classifier. The neural networks classifier with
tan-sigmoid has the highest average accuracy of all.

Figure 9. Performance Comparison Graph.

5. Conclusions

This article proposed a wearable sensors-based body area IoT system to acquire ASD
children’s gesture time-series data and use machine learning (ML) to recognize what they
are trying to say in sign language. This research is focused on the daily gesture recognition
of ASD children to communicate their message to non-ASD people without any hesitation.
The proposed system consists of wearable sensors such as accelerometers, gyroscopes,
and flex sensors modules, installed at the head, elbow, and hand–fingers positions. The
proposed system consists of acquiring the time-series data, sending the data through
BLE Bluetooth to a Raspberry-PI-based processing system to extract the features, and
recognizing the gesture using ML algorithms. Complex gestures involve the movement of
multiple body parts, so we use multiple sensors at the head, hand, and finger to acquire
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the motions. We use two motion sensor modules (one for the head and one for the hand
at the elbow) and four flex sensors (one for each finger) to collect the gesture response.
We collected data from sensors and extracted features of 200 samples for every gesture
performed. We have used different classifiers such as k-nearest neighbor, random forest,
decision tree, and neural networks to predict the gesture performed. On average, the
accuracy obtained is more than 90% for each gesture, and the maximum accuracy achieved
is 96% by the neural networks. Finally, the gesture predicted is displayed for the gesture to
verbal communication through the WiFi on the user’s smartphone.
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