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Abstract: The original EEG data collected are the 1D sequence, which ignores spatial topology
information; Feature Pyramid Networks (FPN) is better at small dimension target detection and
insufficient feature extraction in the scale transformation than CNN. We propose a method of FPN and
Long Short-Term Memory (FPN-LSTM) for EEG feature map-based emotion recognition. According
to the spatial arrangement of brain electrodes, the Azimuth Equidistant Projection (AEP) is employed
to generate the 2D EEG map, which preserves the spatial topology information; then, the average
power, variance power, and standard deviation power of three frequency bands (α, β, and γ) are
extracted as the feature data for the EEG feature map. BiCubic interpolation is employed to interpolate
the blank pixel among the electrodes; the three frequency bands EEG feature maps are used as the G,
R, and B channels to generate EEG feature maps. Then, we put forward the idea of distributing the
weight proportion for channels, assign large weight to strong emotion correlation channels (AF3, F3,
F7, FC5, and T7), and assign small weight to the others; the proposed FPN-LSTM is used on EEG
feature maps for emotion recognition. The experiment results show that the proposed method can
achieve Value and Arousal recognition rates of 90.05% and 90.84%, respectively.

Keywords: biological signal processing; emotion recognition; EEG feature map; feature pyramid
networks; long short-term memory

1. Introduction

Emotion is a state that integrates a variety of complex feelings, thoughts, and behaviors
of people. It includes the psychological response to external or self-stimulation, as well
as the physiological response accompanying the psychological response [1]. EEG signals
of people are directly generated by the nerve center. The nerve center is closely related
to mood change and can better express the subtle changes of the emotional state. It can
not only directly reflect the mood state of people, but also respond to the characteristics
of real-time emotional changes [2,3]. The emotion recognition research based on EEG has
become one of the topics of research that focuses on human–computer interaction.

In recent years, with the rapid development of deep learning algorithms, more and
more scholars have applied them to the field of EEG emotion recognition, with some
achievements [4,5]. Huang E et al. proposed the Dual-Stream Convolutional Neural
Network to use the extracted time-domain features and frequency-domain features for
linear weighted fusion for classification training, which improved the classification accuracy
of subjects [6]. Li Chang et al. applied multitask learning in deep learning technology
to EEG emotion recognition and verified the effectiveness of their methods on a DEAP
dataset [7,8]. The independent subject emotion recognition algorithm of the Dynamic
Empirical Convolutional Neural Network was proposed by Liu Shuaiqi et al., and combines
the advantages of empirical mode decomposition and differential entropy. The accuracy
of this algorithm is 3.53% higher than the existing emotion recognition methods [9]. Jiang
HP et al. proposed the CSP_VAR_CNN (CVC) emotion recognition system, which is
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based on the convolutional neural network (CNN) algorithm to classify emotions of EEG
signals; the average accuracy reaches 69.84%, which is 0.79% higher than that of the CVS
system [10]. Zhang et al. thresholded the continuous emotional trajectories, and then
classified emotions through the emotional classification framework of long short-term
memory networks, which improved the classification accuracy [11]. Song TF et al. used
Dynamical Graph Convolutional Neural Networks for emotion recognition on SEED and
DREAMER databases, in which the average recognition accuracy was 90.4% on the SEED
database, and 86.23% and 84.54% for Valence and Arousal classifications on the DREAMER
database, respectively [12]. Chakravarthi et al. proposed automated CNN-LSTM with
ResNet-152 algorithm; its recognition accuracy on a SEED-V EEG dataset reached 98% [13].

When collecting EEG signals, all electrodes are not on the same plane, and each
channel is in a different spatial position [14]. Therefore, EEG signals contain not only
time-domain information but also spatial topology information between each channel.
This spatial information corresponds to different subarea functions of the brain, which has
specific significance and is closely related to the final EEG signal category [15,16]. However,
research shows that the original EEG signal can be spatially converted by certain methods
to retain its spatial topology information. Li et al. designed a hybrid model, which used
CNN to extract the spatial feature information of the EEG signal, and then inputed it into
RNN to extract EEG timing information. The accuracy of emotion recognition was 72.06%
and 74.12%, respectively [17].

Based on the above research, the work of this paper was as follows:
(1) To solve the problem that the original EEG cannot retain spatial information, we

proposed an EEG feature map generation method based on AEP, which can retain the
spatial topological information of EEG. It transformed a 1D data sequence to a 2D color
image, which had a more intuitive visual effect.

(2) To solve the problem of data redundancy, we only used three frequency bands (α,
β, and γ) of data, distributed the weight proportion for channels, assigned large weight to
strong emotion correlation channels (AF3, F3, F7, FC5, and T7), and assigned small weight
to the others.

(3) We proposed to use FPN-LSTM on the EEG feature map. FPN was better at
small dimension target detection and insufficient feature extraction in the scale transfor-
mation. Compared with LSTM, CNN, KNN, and CNN-LSTM, FPN-LSTM obtained better
recognition results based on the experiments of this paper.

2. Materials and Methods
2.1. Generation of EEG Feature Map Based on AEP
2.1.1. EEG Feature Selection

A large number of studies show that the electrical signal activity of cortical neurons
is relatively weak. In order to analyze the characteristics of EEG signals, the FFT method
is used to convert EEG signals to a frequency domain. EEG signals are divided into five
basic rhythms δ (0–4 Hz), θ (5–8 Hz), α (9–13 Hz), β (14–30 Hz), and γ (≥31 Hz) according
to different frequency bands. Different rhythms represent different states of each person;
the representative characteristics of the five basic rhythms are shown in Table 1.

It can be seen from Table 1 that the three rhythms of α (9–13 Hz), β (14–30 Hz), and
γ (≥31 Hz) are most closely related to emotion, so in this paper, the three rhythms are
selected as the frequency bands of the EEG feature maps, and the average power, variance
power, and standard deviation power are used as the feature samples of each frequency
band, so as to build the EEG feature map dataset.
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Table 1. Representative characteristics of five basic rhythms.

Rhythm Frequency
(Hz) Representative Characteristics

δ 0~4
It is commonly seen in the EEG of infants with
brain hypoplasia, and in the deep sleep of adults
with some brain diseases.

θ 5~8 It is often found in the state of exhaustion and
deep thinking.

α

Slow 9~10 Before going to sleep, consciousness gradually
moves towards a fuzzy brain state.

Medium 10~11
Relaxed and focused. The body is in a
comfortable state, and the mind is particularly
active and can always inspire.

Fast 12~13 In a state of high concentration and alertness.

β

Slow 14~16 In a state of concentration and ease.

Medium 16.5~20 In the state of receiving various external
information and thinking.

Fast 20.5~30 In a state of agitation or excitement.

γ ≥31 In a state of happiness, stress relief, or thought.

2.1.2. EEG Feature Map

The placement position of electrodes for collecting EEG signals according to the
international 10–20 standard is shown in Figure 1, where Figure 1a is the distribution map
of skull top electrodes, Figure 1b is the distribution map of skull side electronics, and
Figure 1c is the electrode distribution plan of 64 active AgCl electrodes according to the
International 10–20 System, and among this the red contents are 32 electrode distribution.
In this paper, the sampling frequency is 512 Hz, and the red electrode is 32 channels of
collected electrodes.
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Figure 1. Electrode distribution diagram [18]. (a) Vertex electrodes distribution diagram; (b) Cranial
electrodes distribution diagram; (c) 64-channel electrode distribution map of the International 10–20 System.

Considering the spatial distribution of electrode positions and combining with the
International 10–20 system 64-channel electrode distribution map, the three-dimensional
spatial data of EEG were converted into two-dimensional image data, while retaining the
spatial topology information of EEG signals. In this paper, the AEP method was used
to transform a 1D EEG signal into a 2D EEG feature map, which was from a spherical
coordinate system to a Cartesian coordinate system. The human head is a sphere-like
structure, which is called the natural reference surface. AEP eliminates map distortion
caused by a natural reference plane and maps each position of the brain surface to the cor-
responding position in the projection plane. Another definition of AEP is the mathematical
transformation equation that converts 3D electrode coordinates to 2D grid coordinates.
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The real spatial position was mapped to a 2D plane through projection, and the original
features of the spatial position were retained. The specific implementation is as follows:

Step 1, the Cartesian coordinate system coordinates of each electrode channel in 3D
space are (x, y, z), and then transforming (x, y, z) to spherical coordinates (polar coordi-
nates), obtaining the parameters of r, e, and a, the equations are shown as follows:

r =
√

x2 + y2 + z2 (1)

e = arctan
z√

x2 + y2
(2)

a = arctan
y
x

(3)

in which, r is the radius of the point in polar coordinates after projection, e is the elevation,
a is the azimuth.

Step 2, converting the polar coordinates obtained into rectangular coordinates (X, Y):

X = (r × tan e)× cos a (4)

Y = (r × tan e)× sin a (5)

Step 3, calculating the position information of each coordinate system of all acquisition
channels according to the above steps, and drawing the distribution diagram of channels
in 2D Cartesian coordinate system.

After the electrode distribution position of the 2D EEG matrix map was obtained by
the above method, the eigenvalues of each subject of α, β, and γ frequency bands were
taken as the data of the EEG matrix map and the blank pixels among the electrodes were
completed by the Bicubic interpolation algorithm. Then, the EEG matrix maps of three
frequency bands were used as the data of the R, G, and B channels for the EEG feature map,
so as to obtain the EEG feature color image with spatial information. This image is shown
in Figure 2.

2.2. FPN-LSTM Feature Extraction Network

FPN is a feature extractor designed according to the concept of a feature pyramid,
which is a feature enhancement network. It aims at improving the feature extraction
method of CNN, so that the output features can better represent the feature information of
each dimension of the input image. The FPN has three basic processes:

(1) The bottom-up path, namely, the bottom-up generation of features of different
dimensions, is used to construct a higher-resolution layer from a semantic-rich layer.
The layer constructed in this way has high resolution, rich semantic, and repeated up-
sampling and down-sampling. Therefore, a lateral connection is constructed between the
reconstruction layer and the corresponding feature map, so that the detector can better
predict the location.

(2) The top-down path, that is, top-down feature complement enhancement. Upsam-
pling (interpolation method) is used, i.e., on the basis of the original image pixels, the
appropriate interpolation algorithm is used to insert new elements among pixels, so as to
expand the size of the original image. By analyzing the feature map, the size of the feature
map sampled is the same as that of the next layer.

(3) Lateral connection, which fuses the upsampling results with the bottom-up gener-
ated feature map, is the correlation expression between the network layer features and the
final output features of each dimension.

In this paper, in order to solve the problem that CNN’s translation of the target remains
unchanged and cannot adapt to scale transformation, there is a problem of insufficient
feature extraction during scale transformation. Using FPN to improve CNN-LSTM, the
comparison process between FPN-LSTM and CNN-LSTM is shown in Figure 3.
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Figure 3 is divided into two parts. One part is the original network CNN-LSTM used
in this paper, which is composed of three convolution layers with convolution kernel size of
3 × 3, three ReLU function layers, three maximum pooling layers, LSTM, a full connection
layer, and Softmax classifier. The other part is the FPN-LSTM network proposed in this
paper. The processing process of EEG feature map is as follows:

First, the EEG feature map of 16 × 16 × 3 was transformed into 8 × 8 × 16 after two times
of 5 × 5 convolution, and then 3 × 3 convolution was used to transform it into 6 × 6 × 32.
Second, 1 × 1 convolution was used to transform the number of channels to be fused into 128,
and the EEG feature maps of different scales were fused by concat. Then, a 5 × 5 pooled kernel
was used to transform the feature map into 2 × 2 × 128. Finally, the features were entered
into the LSTM network to extract the features of EEG timing information, and the classification
results were output by Softmax.

It can be seen from Figure 3 that the FPN-LSTM network model integrates deep fea-
tures and shallow features, and improves the model feature extraction capability. Compared
with the CNN-LSTM model, it integrated the features of different scales and enhanced the
spatial topology information better. Therefore, FPN-LSTM can better extract the spatial and
time series feature information of EEG feature map. In this paper, the parameters of the
FPN-LSTM model were set as shown in Table 2.

Table 2. FPN-LSTM Parameters Setting.

Layer (Type) Kernel Size Number of Convolutional
Kernels

Number of
Parameters

Conv1 5 × 5 8 896
Conv2 5 × 5 16 18,496
Conv3 3 × 3 32 73,856
Pool 5 × 5 128 0

LSTM1 - 128 68,096
LSTM2 - 128 131,584
Desne1 - 100 1,683,850
Dense2 - 2 202

3. Experiments and Results

Emotion Analysis using Physiological singles (DEAP) dataset was used as the emotion
recognition dataset, which was the EEG signals of 32 healthy subjects (16 males and
16 females). The dataset form is shown in Table 3.

Table 3. The Data Form of DEAP.

Data Type Data Size Data Form

data 40 × 40 × 8064 video/trial × channel × data
labels 40 × 4 video/trial × label

3.1. EEG Feature Map Analysis

In this paper, the average power, variance power, and standard deviation power of
32 subjects’ EEG were extracted as the feature information of the EEG feature map. In
this experiment, the EEG feature maps presented by the 2nd (male) and 24th (female)
subjects under the same stimulus (10 experiments which were shown as the numbers
1–10 in Figure 4) were extracted and analyzed. The EEG feature maps of both subjects are
shown in Figure 4.
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(a) EEG feature maps of the 2nd subject (male); (b) EEG feature maps of the 24th subject (female).

It can be seen from Figure 4 that the EEG feature maps generated with average power
as the feature sample had better performance than the EEG feature maps generated with
variance power and standard deviation power as the feature sample; specifically, the edge
contour of the EEG feature map was clearer, the pixel blocks were evenly distributed and
brightly colored, and the EEG feature maps generated with the variance power as the
feature were relatively weak in the EEG feature maps generated with the three features.

There were obvious differences in the color presentation and distribution of the EEG
feature maps in Figure 4a,b, which indicated that men and women showed different
personal emotions even when stimulated by the same stimulus source, which also fully
showed the characteristics of individual differences in emotions.

EEG feature maps generated based on average power, standard deviation power,
and variance power were used for emotion recognition, and the influence of the above
three features on emotion recognition accuracy was analyzed. The feature maps based on
the above three features were separately used as classification data for detection, and the
emotion recognition accuracy is shown in Table 4.

Table 4. Recognition accuracy of different features.

Classification
Feature Type

Average Power/% Standard Deviation
Power/% Variance Power/%

Valence 89.98 82.56 71.36
Arousal 90.23 83.79 72.34

It can be seen from Table 4 that the EEG feature maps generated based on the average
power had achieved good recognition accuracy in terms of valence-arousal, which was
89.98% and 90.23%, respectively. It was 7.42% and 18.62% higher than standard deviation
power and variance power in Valence state, and 6.44% and 17.89% higher than the Arousal
state, respectively. It showed that the emotion classification results of EEG feature maps of
average power can obtain better results.
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3.2. EEG Channel Analysis

In order to improve the recognition accuracy, we proposed to strengthen the EEG
channel with stronger emotional correlation and weaken the EEG channel with a weaker
correlation. Therefore, the emotional correlation of the EEG channel data was tested.
Among the 32 EEG channels, AF3, F3, F7, FC5, and T7 had a strong correlation with
emotion [19], so we discussed the influence of the weight proportion (w) of the above
five channels on the recognition accuracy. Table 5 and Figure 5 showed the accuracy rate
of emotion recognition obtained by binary classification when AF3, F3, F7, FC5, and T7
channels were set with different weight proportions.

Table 5. Recognition accuracy of different weight proportion.

Weight Proportion (w, 1 − w)
Accuracy

Valence/% Arousal/%

No weight set 85.64 86.31
(0.95, 0.05) 82.55 83.67
(0.90, 0.10) 84.25 85.42
(0.85, 0.15) 87.74 88.75
(0.80, 0.20) 90.05 90.84
(0.75, 0.25) 89.18 89.82
(0.70, 0.30) 87.12 87.65
(0.65, 0.35) 86.18 86.56
(0.60, 0.40) 85.87 86.01
(0.55, 0.45) 84.99 84.78
(0.50, 0.50) 82.35 81.65
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Figure 5. Comparison of EEG channel weight value.

As can be seen from Figure 5 and Table 5, when the weight value of the five channels
was set to 0.8, the emotion recognition accuracy was the highest, the recognition rate of
the Valence state reached 90.05%, and the Arousal state reached 90.84%. The recognition
accuracy without the weight proportion was close to w = 0.90, but the recognition rate
decreased when w increased gradually. Through data analysis, it can be seen that when
the data of the other channels were excessively weakened, the effective features of these
channels would be lost, which can lead to the reduction in recognition rate. Therefore, we
chose w = 0.80 as the weight proportion.

We extracted the two groups of poor EEG feature maps of two experiments and
compared the original EEG feature map with the new EEG feature map obtained by
applying w = 0.80, as shown in Figure 6.
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It can be seen from Figure 6 that the original EEG features map had lower contrast and
changed to higher contrast after setting w = 0.8, especially related to emotional EEG channel
position—its pixel brightness had improved, and the rest of the weakened EEG channel
position pixels did not show much change. Based on the above situation, it can be seen that
the enhanced channel effectively improves the proportion of effective features, and better
weakens the invalid features, so as to effectively improve the accuracy of emotion recognition.

3.3. Analysis of FPN-LSTM Emotion Recognition Results

The FPN-LSTM and CNN-LSTM models were used to test the EEG data of 32 subjects
in a DEAP EEG emotion database, and the Valence–Arousal emotion binary classification
was carried out. The experiment was carried out in 200 iterations to obtain the accuracy
and loss function data of the training set and test set, as shown in Figures 7 and 8.

Figures 7 and 8 showed the training and test results of the FPN-LSTM and CNN-LSTM
model. As can be seen from the figures, during the training process, the accuracy of both
training set and test set gradually improved, while the loss function gradually decreased;
FPN-LSTM and CNN-LSTM converged basically after 100 iterations. It can be seen from
Figure 7 that the accuracy of the CNN-LSTM model in the Valence state was stable at 0.95–1
for the training set and at 0.90 for the test set (Figure 7a); in the Arousal state, the training
set was stable at near 0.95, and the test set was stable at 0.85–0.90 (Figure 7c). The accuracy
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of the FPN-LSTM model in the Valence state for the training set and the test set was higher
than that of CNN-LSTM (Figure 8a); in the Arousal state, the accuracy of the training set
and the test set were higher than that of CNN-LSTM (Figure 8c). The losses of FPN-LSTM
in the Valence state and Arousal state were smaller than that of CNN-LSTM, which can be
seen from Figure 7b,d and Figure 8b,d.

Based on the above data, we drew the confusion matrix of CNN-LSTM and FPN-LSTM,
and the confusion matrix was 2 × 2. The emotion classification corresponding to Valence
was high valence–low valence, and the emotion classification corresponding to Arousal
was high arousal–low arousal, as shown in Figure 9.

It can be seen from Figure 9a,b that the recognition accuracy of high valence, low
valence, high arousal, and low arousal emotions using CNN-LSTM was higher than 85%,
of which the accuracy of low valence recognition was the highest (91.66%) and the accuracy
of high valence recognition was the lowest (85.86%); it can be seen from Figure 9c,d that
the recognition accuracy of high valence, low valence, high arousal, and low arousal
emotions using FPN-LSTM was higher than 87%, of which the recognition accuracy of
high arousal was the highest (93.27%) and that of high valence was the lowest (87.69%).
By comprehensive comparison of the two models, FPN-LSTM had an average increase of
1.29% in Valence and 2.20% in Arousal compared with CNN-LSTM. It showed that the
classification accuracy is significantly improved by using FPN-LSTM.
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4. Discussions

Based on the above experimental results, in order to further analyze the performance
of the method proposed in this paper, we compared the method proposed in this paper
with the previous studies that used a DEAP dataset. Table 6 showed the comparison results
between the method proposed in this paper and previous research methods.

Table 6. Comparison of the proposed method with previous studies.

Study Method Classification Test Accuracy
(%)

Reference [20] (2017) LSTM
1D EEG

Arousal 85.65
Valence 85.45

Reference [21] (2018) CNN
1D EEG + GSR

Arousal 76.56
Valence 80.46

Reference [22] (2019) LSTM − RNN
1D EEG

Arousal 74.38
Valence 81.10

Reference [23] (2020) KNN
1D EEG

Arousal 85.00
Valence 86.30

Reference [15] (2020) CNN − LSTM
2D EFM

Arousal 86.13
Valence 90.62

Reference [24] (2022) LSTM CNN
1D EEG

Arousal 69.50
Valence 65.90

Proposed method FPN − LSTM
2D EFM

Arousal 90.84
Valence 90.05

It can be seen from Table 6 that the recognition accuracy of the method proposed in
this paper in the Arousal state was higher than that of other literature in the table, and
the recognition accuracy in the Valence state also had great advantages, among which the
recognition accuracy of reference [15] in the Valence state was 0.57% higher than that of the
proposed method in this paper; the reason for this is the method in this paper weakened
the data of 27 channels when setting the weight proportion of EEG channels, and this
part of data had a certain influence on the Valence state, so the recognition rate of the
Valence state was slightly lower than the reference [15]; however, in the Arousal state, our
method was 4.71% higher than reference [15]. The data used in reference [20], reference [21],
reference [22], reference [23] and reference [24] were all 1D EEG data; in this paper, an EEG
feature map was generated and used as the input. The accuracy of emotion recognition in
the Valence and Arousal states were higher than the above four references.

In addition, we discussed the recognition accuracy of Valence and Arousal. It can be
seen that in reference [15], reference [21], reference [22] and reference [23], the recognition
accuracy of Valence was higher than that of Arousal, while in reference [20], reference [24]
and the method proposed in this paper, the recognition accuracy of Arousal was higher than
that of Valence. For this problem, we consider the following possibilities: (1) The influence
of other physiological signals such as electrocardiogram (EOG) and electromyogram (EMG).
In some studies, multi-source signals such as EEG, EOG, and EMG were used for emotion
recognition, and different signals had different representations of different emotions, which
further affected the recognition rate of the two emotions—namely, Valence and Arousal; (2)
Different labeling methods had influence on the recognition accuracy of valence and arousal;
(3) Channel selection was different. In order to improve the efficiency, many researchers chose
to use part of the channels, which were in high correlation with emotion. This had influence
on the recognition rate of Valence and Arousal. In this paper, emotion correlation analysis was
carried out on EEG channels. High weight was assigned to the channels with high emotion
correlation and low weight was assigned to the channels with low emotion correlation. This
may have influenced the recognition rate of Valence and Arousal.
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5. Conclusions

In this paper, it can be seen that the AEP and BiCubic interpolation method effectively
retained the spatial topology information of EEG signals; the weight proportion distribution
method for strong and weak channels of emotional correlation was proposed to improve
the weight of emotional features of strong correlation channels; the FPN-LSTM model is
proposed for emotion recognition, which can better integrate the features of different scales
in the EEG feature maps. In conclusion, this research has demonstrated that our method
achieved significantly better recognition accuracy and had good applicability in the field of
EEG emotion recognition.
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