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Abstract: Defocus is an important factor that causes image quality degradation of optoelectronic
tracking equipment in the shooting range. In this paper, an improved blind/referenceless image
spatial quality evaluator (BRISQUE) algorithm is formulated by using the image characteristic
extraction technology to obtain a characteristic vector (CV). The CV consists of 36 characteristic
values that can effectively reflect the defocusing condition of the corresponding image. The image
is evaluated and scored subjectively by the human eyes. The subjective evaluation scores and CVs
constitute a set of training data samples for the defocusing evaluation model. An image database
that contains sufficiently many training samples is constructed. The training model is trained to
obtain the support vector machine (SVM) model by using the regression function of the SVM. In
the experiments, the BRISQUE algorithm is used to obtain the image feature vector. The method of
establishing the image definition evaluation model via SVM is feasible and yields higher subjective
and objective consistency.

Keywords: optoelectronic tracking equipment; image definition; defocus; BRISQUE algorithm;
support vector machine

1. Introduction

The image, which is an important carrier of information, has been widely used in
health, medical community, consumer electronics, etc. However, distortions are inevitably
induced during image acquisition, transmission, processing, and display. The distortions
cause the image quality degradation [1]. Evaluating, comparing, and optimizing the image
quality effectively has gradually become a research hotspot in many fields, such as visual
psychology, image processing, pattern recognition, and artificial intelligence [2–4].

Image distortion occurs, to a certain extent, in the process of acquisition, processing,
compression, transmission, and display. Therefore, it is necessary to establish objective and
effective quality assessment methods to evaluate the image quality [5–7]. At present, the
image quality assessment includes subjective assessment and objective assessment. Image
quality is evaluated by the subjective perception of the human eyes in a subjective evalua-
tion method. As an objective evaluation method of the image quality, the mathematical
models of image quality assessment are established [8,9].

The objective methods of image quality assessment include full reference image
quality assessment (FR-IQA), reduced reference image quality assessment (RR-IQA), and
no reference image quality assessment (NR-IQA), according to whether the reference image
is needed. In the paper, NR-IQA is used to evaluate the image quality [10,11].

The main factors which affect the quality of optical measurement images include
atmospheric disturbance, atmospheric extinction, optical diffraction of optical lens, defo-
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cusing, image motion, camera jitters, noise of image sensor, and so on. The image quality
assessment method of defocused image is mainly studied in this paper.

If the external noises can be ignored, defocus is an important factor in image blur in
the image tracking process of optoelectronic tracking equipment. To estimate the defocus
severity of optoelectronic tracking equipment, image quality is evaluated objectively via an
image quality evaluation algorithm [12,13]. At the same time, image characteristic values,
which reflect the image quality, are obtained. The values can provide a condition for
establishing the model for evaluating the focus performance based on the correlations
between image characteristic values and defocus state parameters.

The optical system of optoelectronic tracking equipment can be regarded as a low-
pass filter and an increase in the defocus is equivalent to a reduction in the filter cut-off
frequency [14–18].

This paper mainly studies image evaluation indices in the defocusing state of opto-
electronic tracking equipment and a method for obtaining the image characteristic values
based on the indices. The characteristic values that are obtained via an image evaluation
algorithm can be used to repair the image quality degradation that is caused by defocused
equipment. The result of the image evaluation algorithm should be consistent with the
subjective perception of the human eyes [19–21].

The causes of image blur also include interference factors, such as image motion of
equipment and data compression, in addition to the defocus of the imaging system. A gen-
eral referenceless image evaluation algorithm should be selected instead of a referenceless
image evaluation algorithm with known distortion [22–24].

Comparisons are performed from two aspects: the theory and the performance of the
evaluation algorithm. The main referenceless image quality evaluation algorithms that per-
form well are as follows: (1) Moorthy’s blind image quality index (BIQI) algorithm, which
is implemented in the wavelet domain [25]; (2) Moorthy’s distortion-identification-based
image verity and integrity evaluation (DIIVINE) algorithm, which is based on the BIQI
algorithm [7]; (3) Saad’s distortion-identification-based image verity and integrity evalu-
ation (DIIVINE) algorithm [26] and the BLIINDS-II improved algorithm [27]; (4) Mittal’s
BRISQE algorithm [28] and the natural image quality evaluator (NIQE) algorithm, which is
referenceless [29]; (5) Li’s general regression neural network (GRNN) algorithm [30]; and
(6) Lintao Han’s combining convolution and self-attention for image quality assessment
network [31].

Spatial distortion directly affects the visual quality of an image. By considering
effective spatial characteristics, image quality evaluation can achieve increased consistency
with subjective evaluation. At the same time, the characteristic values that are obtained via
spatial characteristic extraction lay the foundation for the study of building an evaluation
model for the defocused state.

Ruderman et al. found that the luminance of natural image normalization tends to
follow a normal (Gaussian) distribution [32]. They posit that the distortion of an image
changes the statistical characteristics of the normalization coefficient. By measuring the
changes in the statistical characteristics, the distortion type can be predicted and the image
visual quality can be evaluated [33]. Based on this theory, Mr. Mittal put forward the
BRISQUE algorithm [28], which is based on the image spatial statistical characteristics.
Ronin Institute et al. apply a broad spectrum of statistics of local and global features to
characterize the variety of possible video distortions [34].

Based on the image defocus characteristics of optoelectronic tracking equipment in
this paper, an improved BRISQUE algorithm is used with image characteristic extraction
technology to obtain a characteristic value (CV). The CV includes 36 characteristic values
that effectively reflect the defocus condition of the image [35]. The image is evaluated by
the human eyes and scored subjectively. Subjective evaluation scores and feature vectors
constitute a set of training data samples of the defocus evaluation model. A sufficient
amount of training samples is obtained by calculating the CVs of the image database. Then,
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the evaluation model is obtained by using a machine learning method that is based on
SVM to train the samples [36].

Many studies have employed machine learning models for prediction or classification
in many fields. A convolutional neural network (CNN) is used for robust classification of
PV panel faults [37]. A support vector machine (SVM) has become a common method of
discrimination. In the field of machine learning, it is usually used for pattern recognition,
classification, and regression analysis. For example, CNN- and SVM-based models can
provide doctors with the detection of heart failure using electrocardiogram signals [38].
The SVM and general regression neural networks (GRNN) were used for the diagnosis
of malfunction [39]. The adaptive support vector machine (A-SVM) was introduced for
classification together with the ORICA-CSP method [40].

The defocused image sequences of the optoelectronic equipment are computed via the
BRISQUE algorithm to obtain the CVs. The CVs are inputted into the evaluation model
to calculate the prediction scores. The image sequences are evaluated by the human eyes
subjectively. By considering the subjective and objective consistency of the results of the
evaluation algorithm, the effectiveness of the evaluation algorithm is assessed.

2. Acquiring the CV via the Improved BRISQUE Algorithm

The image database is built and the CVs of image samples from the image database are
obtained via the improved BRISQUE algorithm, which is weighted by a Gaussian function.
The image samples are evaluated subjectively by the human eyes and used as SVM model
training samples.

2.1. Training Image Sample Selection and Database Establishment

Many preliminary studies and experiments have demonstrated that if an image se-
quence of the optoelectronic tracking equipment is used for training directly, the training
model will be inaccurate, which will lead to the failure of forecast evaluation. The main
reason is that it is impossible to cover various details because the target and background
tracking are too monotonous. Using public database images for training is proposed. We
have used three public databases, namely, Laboratory for Image & Video Engineering (IVE),
Categorical Subjective Image Quality (CSIQ), and Tampere Image Database (TID2013).
Table 1 lists the databases that are used in this article and their data types.

Table 1. Image databases for training the model.

Name Num. of Distorted Images Num. of Reference Images Image Type

IVE 235 10 Grey and color
images

TID2013 1700 25 Color images
CISQ 866 30 Color images

According to the defocus characteristics of the device tracking image, an image
database that includes images in a sequence that ranges from defocused to focused and
back to defocused is established and each image is subjectively evaluated and scored. The
scoring principle is that a severely defocused image is assigned a low score and a better
focused image has a higher score. The results of model training demonstrate that the size
of the database should exceed 1000 pictures and the quality of the database directly affects
the application stability.

2.2. BRISQUE Algorithm

Two important advantages of using the BRISQUE algorithm are that the image defini-
tion evaluation score that is obtained by the algorithm can effectively reflect the defocus
state, and the obtained image characteristic vector facilitates the subsequent training and
evaluation of the machine learning model.
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From an image, the BRISQUE algorithm is used to extract 36 characteristic values,
which include the variances of the image brightness and the mean value. These features
are called local normalized brightness statistical characteristics.

Given an intensity image I(i,j), an operation that subtracts the image mean can be
applied to the image to obtain the mean subtracted contrast normalized (MSCN) image Î(i,j):

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C
(1)

where i = 1, . . . , M and j = 1, . . . , N are spatial indices; M and N are the image height
and width, respectively; C is a constant that prevents instabilities from occurring when the
denominator tends to zero; and µ(i,j) and σ(i,j) are the local mean and standard deviation,
respectively, of I(i,j).

We model the statistical relationship between neighboring pixels using the empiri-
cal distributions of the pairwise products of neighboring MSCN coefficients along four
orientations: horizontal (H), vertical (V), main diagonal (D1), and secondary diagonal (D2).

H(i, j) = Î(i, j) Î(i + 1, j) (2)

V(i, j) = Î(i, j) Î(i, j + 1) (3)

D1(i, j) = Î(i, j) Î(i + 1, j + 1) (4)

D2(i, j) = Î(i, j) Î(i + 1, j− 1) (5)

The statistical properties of the MSCN coefficients are affected by the presence of
distortion. Quantifying these changes will make it possible to predict the type of distortion
that affects an image and its perceptual quality. According to [24], a generalized Gaussian
distribution (GGD) can be used to effectively capture a broader spectrum of distorted image
statistics. The GGD with zero means is expressed as follows:

f
(

x; α, σ2
)
=

α

2βΓ(1/α)
exp

(
−
(
|x|
β

)α)
(6)

where

β = σ

√
Γ(1/α)

Γ(3/α)
(7)

and Γ(·) is the gamma function:

Γ(a) =
∞∫
0

ta−1e−tdt a > 0 (8)

The shape parameter, which is denoted as α, controls the ‘shape’ of the distribution,
while σ2 control the variance. The parameters of the GGD (α,σ2) are estimated via the
moment-matching-based approach that was proposed in [41].

The appropriate values of α and σ are calculated via the moment-matching-based
method and are two of the 36 characteristic values to be obtained. The parameters (ν,σl,σr)
and η are calculated based on Equations (9) and (12) for the other four images: H, V, D1,
and D2.

f
(

x; α, σ2
)
=


ν

(βl+βr)Γ(1/ν)
exp

(
−
(
−x
βl

)ν)
, x < 0

ν
(βl+βr)Γ(1/ν)

exp
(
−
(
−x
βr

)ν)
, x ≥ 0

(9)

where

βl = σl

√
Γ(1/ν)

Γ(3/ν)
(10)
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βr = σr

√
Γ(1/ν)

Γ(3/ν)
(11)

η = (βr − βl)

√
Γ(2/ν)

Γ(1/ν)
(12)

The details of the calculation process are presented in [24]. Via Equations (2)–(12),
we obtain 16 + 2 = 18 characteristic values. The other 18 characteristic values must be
calculated in other ways. The original image is down-sampled with a sampling

The characteristic values of the down-sampled image are calculated by following the
given steps again and we obtain another 18 characteristic values. Now, the calculation of
the 36 characteristic values is complete.

2.3. Improved BRISQUE Algorithm That Is Weighted by a Gaussian Function

Preliminary model training and prediction studies demonstrate that the characteristic
values that were directly obtained via the BRISQUE algorithm cannot stably evaluate the
defocused image sequence. For this particular situation, an improved BRISQUE algorithm
that is weighted by a Gaussian function is selected in this paper.

The pixels of the training image are scanned by using a Gaussian function template
and the center pixel value of the template is replaced with the weighted average gray
value of the pixels in the neighborhood that is determined by the template. The template
parameters of the Gaussian function are shown in Table 2. The image that is obtained by
weighting the training image by the Gaussian function is denoted as VarI. The characteristic
values of the new image are calculated by following the specified steps and we obtain 36
characteristic values, which are the input of machine learning training.

Table 2. Template of the weighted Gaussian function.

Weightiness 1 2 3 4 5 6 7

1 0.000157 0.00099 0.003 0.0043 0.003 0.00099 0.000157
2 0.00099 0.0062 0.0187 0.027 0.0187 0.0062 0.00099
3 0.0043 0.027 0.0813 0.1174 0.0813 0.027 0.003
4 0.003 0.0187 0.0563 0.0813 0.0563 0.0187 0.003
5 0.00099 0.0062 0.0187 0.027 0.0187 0.0062 0.00099
6 0.000157 0.00099 0.003 0.0043 0.003 0.00099 0.000157
7 0.000157 0.00099 0.003 0.0043 0.003 0.00099 0.000157

3. Support Vector Machine Model and Training

SVM is one of the basic methods of machine learning and the most important branch
of machine learning theory [42–44]. It plays an important role in the practical applications
of machine learning. SVM, which is a supervised learning model, is commonly used for
pattern recognition, classification, and regression analysis.

This paper uses the regression function of SVM. The improved BRISQUE algorithm is
used to calculate the CVs and subjective evaluation scores of images in the image database
as the model training sample for obtaining the SVM model. The image definition CVs of
the image database, which are calculated via the improved BRISQUE algorithm, are the
independent variables. The scores of the subjective evaluation are the dependent variables.
The independent and dependent variables are used as model training samples to obtain the
SVM model. The image CVs of optoelectronic tracking equipment are input into the SVM
model and predicted to obtain image evaluation scores. By comparing with the subjective
evaluation of the human eyes, the accuracy and reliability of the evaluation are assessed.
If the evaluation result does not meet the requirements, the above process can be iterated
until a subjective and objective SVM evaluation model is obtained. Another image database
can be used to calculate the characteristic vectors as needed and the image quality is scored
for the inputs of the new training model via SVM.
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This paper calls the LIBSVM library function, which was developed by Professor
Chi-Jen Lin [45] to train and test the SVM model. The LIBSVM library function version is
libsvm-3.23. In this paper, the support vector regression model “ε-SVR” is used in SVM.

The specified training sample can be represented as {(x1,z1), . . . . . . ,(xl,zl)}, where
xi ∈ Rn is the characteristic vector, which is obtained via the improved BRISQUE algorithm
and composed of 36 characteristic values, and zi ∈ R1 denotes the subjective evaluation
score of the image, which is the target output of the training model. When the penalty
parameter C > 0 and the parameter ε > 0, the standard form of the SVR is as expressed in
Equation (13):

min
w,b,ξ,ξ∗

(
1
2

wTw + C
l

∑
i=1

ξi + C
l

∑
i=1

ξ∗i

)
(13)

s.t.
wTφ(xi) + b− zi ≤ ε + ξi (14)

zi −wTφ(xi)− b ≤ ε + ξi (15)

ξi, ξ∗i ≥ 0, i = 1, · · · · · · , l (16)

According to the principle of SVM, Equation (13) is converted to a dual problem to
calculate α. The radial basis function (RBF) is selected as the kernel function, which is
denoted as K(x,z) = φT(x)φ(z); the form of the RBF is as follows:

K(‖x− z‖) = e
− ‖x−z‖2

(2×σ)2 (17)

where σ is set to 0.5.
The training parameters of the LIBSVM library function are set as follows: penalty

parameter C is set to 1024, the probability estimate is set to 1, and other parameters use the
default parameter values of the LIBSVM function.

The samples from the image database of Table 1 are input into the SVM model and
model training is completed. The number of support vectors, which is denoted as total_sv,
is 772, and the bias b is −118.247.

4. Defocused Image Acquisition and Image Evaluation Test
4.1. Defocused Image Sequence Acquisition

In the process of tracking the real target using the optoelectronic tracking equipment,
to ensure that the target can be tracked effectively, the focus state cannot be adjusted. The
acquired image samples typically do not contain all image definition features, which makes
it impossible to fully evaluate the performance of the SVM model.

To identify the test images that meet the requirements, in the process of evaluating
the imaging quality of the optoelectronic tracking device, an imaging system is built for
obtaining image samples of various defocus states. A photo of the system is shown in
Figure 1. A Nikon 800 mm/F5.6 fixed-focus lens from the Nikon Corporation of Japan
is used in the imaging system. The piA2400-17 visible light camera is from BASLER
Corporation of Germany. The main properties of the camera are as follows: pixel size:
3.45 µm × 3.45 µm; and the number of pixels: 2448 × 2050.

4.2. Predictive Test of Definition Evaluation of Defocused Images

In this paper, a series of defocused and focused images with continuous change were
obtained by manually controlling the defocused position of the optical lens in the imaging
system. The images are used to test the effectiveness of the definition evaluation algorithm
of defocused images. At the same time, they are also used for algorithm comparison.
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Figure 1. Photo of the imaging system.

To acquire stable evaluation scores, static scenes are photographed using the imaging
system. Therefore, the image sequences in this paper are very similar to human visual
perception. The major differences between the images are definition and edge sharpness.
Serial numbers of the clear images are given in advance.

The image sequences are inputted into the trained SVM model, and the image def-
inition evaluation scores of defocused image sequences are the outputs of SVM model.
Because the image-focusing process and the serial numbers of the clear images are known,
the image definition evaluation scores can be compared with the defocused states of the
image sequences.

For the image sequences, the larger the score, the clearer the image is. Due to the
evaluation scores related to the CVs obtained by the BRISQUE algorithm, they are not
fixed values. However, the scores can reflect the definition of the image sequence with the
same scene. The image definition scores vary greatly among the image sequences with
different scenes.

4.2.1. Single-Peak Defocused Image Test

The indoor image sequence that was obtained by the experimental imaging system
is shown in Figure 2. The shooting process is from defocus to focus and back to defocus.
The 9th image of the 12 images in Figure 2 has the best visual effect. In the predictive
evaluation test of the 12 pictures via the SVM model, we obtained the curve that is shown
in Figure 3. The X-axis of the curve represents the serial numbers of the pictures and the
Y-axis represents the corresponding image definition evaluation values. The first image has
the largest defocused position, and its evaluation score is only −3.34. The ninth image with
the highest definition has the highest score of 20. The curve is consistent with the clarity of
the real image.

4.2.2. The Test of Algorithm Comparison

The structural similarity (SSIM) is compared with the SVM model in this paper. As
shown in Figure 4, the first image in the image sequence has the largest defocus, and it is
the most blurred image to human visual perception. As the serial number increases, the
image has a higher definition with defocused decreasing. The 14th image is the clearest
to human perception. The evaluation curves with SSIM and the SVM trained model are
shown in Figures 5 and 6, respectively. Due to the different calculation principles of the
two algorithms, the evaluation scores cannot be directly compared.

As shown in Figure 5, the evaluation scores with SSIM increase monotonously in
the range of the first image to the eleventh image, which is consistent with the subjective
evaluation by human eyes. However, the evaluation scores start to fall from the 12th image,
and it is inconsistent with subjective evaluation. As shown in Figure 6, the evaluation scores
with the SVM model increase with the serial numbers of the images in the sequence. Image
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1 has the lowest score of 10.4, and image 14 has the highest score of 65.5. The evaluation
with SVM is completely consistent with human subjective evaluation.
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4.2.3. Dual-Peak Defocused Image Test

The dual-peak defocused image sequence is shown in Figure 7. The shooting process
is focus, defocus, focus, and defocus in image 8 and image 21, respectively. According to
the predictive evaluation test of the 28 pictures using the SVM model, the curve in Figure 8
is obtained. The X-axis of the curve represents the serial numbers of the pictures and the
Y-axis represents the corresponding image definition evaluation values. We marked the
two focused peak images with red hexagonal stars. The score of the 8th image is 58.3, and
the score of the 22nd image is 55. The curve is consistent with the subjective evaluation by
the human eyes of the test images. The curve also exhibits dual peaks, which demonstrates
the convergence of the prediction model.

4.2.4. Repeatability Testing of Dual-Peak Defocused Image

Repeated tests were carried out to check the generalization performance of the SVM
model. Another 29 images were acquired by changing the imaging scene and imaging
process. The images were captured in order of focus, defocus, focus, defocus, and focus.
Two randomly selected images in this image sequence are shown in Figure 9, and the
definition evaluation scores of the sequence with the SVM model are shown in Figure 10.
The result shows that the evaluation scores change by the focusing and defocused order, and
the definition evaluation with the SVM model shows stability consistent with perspective
evaluation. The SVM model has good generalization performance.

Through many test experiments, the image feature characteristic vectors are calculated
via the improved BRISQUE algorithm and the evaluation model that is established via the
SVM algorithm is used to evaluate the definition evaluation prediction. The evaluation
results are highly consistent with the subjective evaluation results of the human eyes.
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5. Discussion

For the purpose of increasing the effect of model training, we improved the BRISQUE
algorithm that is weighted by the Gaussian function, and other weighted functions and
parameters can also be researched in the future. The kernel function is selected as the radial
basis function (RBF) in this paper, and other kernel functions can also be tried. In the future,
the research of image objective evaluation model training based on machine learning will
focus on two aspects. First, we should research and improve the new methods, which is
to characterize the image spatial statistical characteristics. Second, we can introduce new
machine learning algorithms, such as deep learning algorithms, which lead to a model with
stronger self-learning ability.

6. Conclusions

Aiming at the problem of defocusing on large-scale optoelectronic tracking equipment
in the shooting range, the use of image definition indicators for evaluation is proposed in
this paper. An improved BRISQUE algorithm is used to objectively evaluate a defocused
image and a CV that consists of 36 characteristic values are obtained. The CV is input
into a previously trained SVM model to obtain an image definition evaluation score.
Many image samples were obtained using the established imaging experimental system
and experimental tests were carried out. The experimental results demonstrate that the
image definition evaluation method that is used in this paper can effectively evaluate the
defocusing condition of an optoelectronic tracking device, and the obtained image CV can
effectively reflect the image defocus state.
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