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Abstract: Algal blooms have seriously affected the production and life of people and real-time
detection of algae in water samples is a powerful measure to prevent algal blooms. The traditional
manual detection of algae with a microscope is extremely time-consuming. In recent years, although
there have been many studies using deep learning to classify and detect algae, most of them have
focused on the relatively simple task of algal classification. In addition, some existing algal detection
studies not only use small datasets containing limited algal species, but also only prove that object
detection algorithms can be applied to algal detection tasks. These studies cannot implement the
real-time detection of algae and timely warning of algal blooms. Therefore, this paper proposes
an efficient self-organized detection system for algae. Benefiting from this system, we propose an
interactive method to generate the algal detection dataset containing 28,329 images, 562,512 bounding
boxes and 54 genera. Then, based on this dataset, we not only explore and compare the performance
of 10 different versions of state-of-the-art object detection algorithms for algal detection, but also tune
the detection system we built to its optimum state. In practical application, the system not only has
good algal detection results, but also can complete the scanning, photographing and detection of a
2 cm × 2 cm, 0.1 mL algal slide specimen within five minutes (the resolution is 0.25886 µm/pixel);
such a task requires a well-trained algal expert to work continuously for more than three hours.
The efficient algal self-organized detection system we built makes it possible to detect algae in real
time. In the future, with the help of IoT, we can use various smart sensors, actuators and intelligent
controllers to achieve real-time collection and wireless transmission of algal data, use the efficient
algal self-organized detection system we built to implement real-time algal detection and upload the
detection results to the cloud to realize timely warning of algal blooms.

Keywords: algal blooms; algal detection; real-time detection; self-organized detection; Internet of
Things (IoT); algal detection dataset

1. Introduction

Algal blooms such as red tide [1,2] and cyanobacterial blooms [3] are occurring more
and more frequently around the world and they not only devastate ecosystems but also
seriously damage human health. For example, the blooms of dinoflagellate karenia brevis
are thought to be capable of killing large numbers of fish and causing significant economic
losses [4]. In 2005, the bloom of karenia in the Gulf of Mexico resulted in more than a month
of benthic mortality [5]. In 2007, a cyanobacteria bloom in Wuxi, Jiangsu Province, caused
a drinking water crisis for 2 million people [6], and a large cyanobacteria bloom took place
in the western part of Lake Erie, Ohio, which cut off water supplies to over 500,000 people
in 2014 [7]. Therefore, real-time monitoring of algae is necessary to prepare for and even
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prevent algal blooms before they occur, and how to quickly detect algae from acquired
sample images is the core issue of real-time algal monitoring. The traditional manual
detection of algae with a microscope is extremely time-consuming and not time-efficient.

In recent years, convolutional neural networks (CNNs) have developed rapidly in
the fields of image classification, object detection and semantic segmentation, and have
achieved great success in many fields, such as face recognition [8] and autonomous
driving [9,10]. CNNs are mainly used for feature extraction through convolution operation
to achieve the purpose of images classification or objection detection. Due to the fast speed
of convolution operation, CNNs are very effective in dealing with large-scale datasets
and under the drive of a certain scale of data, CNNs can achieve unexpected good results.
Therefore, more and more algal researchers have begun to apply CNNs to the classification
and detection of algae. Moreover, the acquisition and collection of algal images are diffi-
cult due to their obvious regional nature. Most algal researchers use data augmentation
methods to expand the numbers of algal images [11–14]. These extended algal datasets can
easily enable classification algorithms to achieve accuracy of more than 99% [11,13,15] and
average precision of more than 80% [15,16], which leads to the classification and detection
performance of CNN on algal dataset not being able to be well mined. Furthermore, most
algal researchers focus on algal classification and there are few studies on algal detection.
The reason is that the algal classification task requires the CNN to achieve the correct
output of the category for the input image containing a single algal species, while the algal
detection task requires the CNN to achieve the correct output of the category and location
for the input image containing multiple algal species. Compared with algal classification,
algal detection requires more complex dataset and algorithms [17]. The existing literature
on algal detection not only uses a small dataset containing limited algal species, but also
only proves that object detection algorithms can be applied to the algal detection task.
In other words, the existing studies cannot realize the real-time algal detection and timely
warning before algal blooms occur.

Therefore, based on the object detection algorithm, we construct an efficient self-
organized detection system for algae. In order to better build and debug the algal self-
organized detection system, we use an interactive method to generate the algal detection
dataset containing 28,329 images, 562,512 bounding boxes and 54 genera. Based on this
algal detection dataset, we explore and compare 10 different versions of state-of-the-art
object detection algorithms. The experimental results show that under the same dataset and
training conditions, YOLOv7 has the best detection results. We will consider replacing the
YOLOv5 embedded in the algal self-organized detection system with YOLOv7. In practical
application, the system not only has good algal detection results, but also can complete
the scanning, photographing and detection of a 2 cm × 2 cm, 0.1 mL algal slide specimen
within five minutes (resolution is 0.25886 µm/pixel); such a task requires a well-trained
algal expert to work continuously for more than three hours.

At present, the collection and transmission of algal data depend on manual completion,
which hinders the real-time detection of algae. The Internet of Things (IoT), which aims
to enable ubiquitous wireless connections among various smart sensors, actuators and
intelligent controllers and then integrate their functions to realize the mutual sharing
and interaction of information, can be used to collect and transmit algal data in real-time.
With the help of the IoT and the algal self-organized detection system built by us, real-time
detection of algae can be well realized in the future. At the same time, we can upload the
results to the cloud through the IoT, which is used as the basis for algal bloom warning.
The contribution of this paper can be stated as follows:

• An algal self-organized detection system is established, which not only guarantees the
good detection results, but also realizes the rapid detection of algae;

• An interactive method for generating an algal detection dataset is proposed;
• The detection performance of 10 different versions of state-of-the-art object detection

algorithms is compared on the algal detection dataset.
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The rest of this paper is as follows. Section 2 gives the related work. Section 3
introduces the research material and methods in detail. Experimental implementation and
experimental results are presented in Section 4. Finally, we conclude the paper in Section 5.

2. Related Works

Object detection algorithm: As we know, object detection is one of the core research
contents of computer vision. Its purpose is to predict the position of objects in a given image
and label each object with a corresponding category. In the early stage, object detection
is divided into three steps: generating region proposal, extracting features and region
classification [18]. The most representative algorithm of this method is the deformable
part-based model (DPM) algorithm [19] extended on histogram of oriented gradients
(HOG) [20], which won the 2007, 2008, 2009 detection challenge on Pascal VOC dataset [21].

After CNN achieved a higher accuracy of image classification [22], a wave of research
on object detection using CNN was set off. Currently, object detection based on deep
learning has formed two factions: two-stage detection and one-stage detection. In the
two-stage detection framework, the first stage generates the candidate region proposals
and uses CNN for feature extraction. Then, the second stage uses a specific classifier to
predict the categories of the candidate region proposals. The most representative algo-
rithm is R-CNN [23] and its series of optimization deformation algorithms, such as Fast
R-CNN [24], Faster-RCNN [25], Feature Pyramid Network (FPN) [26]. In the one-stage
detection framework, all locations of the whole image are regarded as potential objects
by default, the bounding boxes and categories of the objects are predicted simultaneously
on the feature map. Its representative algorithm is You Only Look Once (YOLO). Since
Joseph et al. [27] first proposed the YOLO algorithm in 2015, there have been seven versions
of YOLO, namely YOLOv1-YOLOv7 [27–33].

CNN application in algal identification: Recently, with the remarkable success of CNN
in various industries, a large number of algal researchers using CNN to identify algae
have emerged. Pedraza et al. [11] first applied CNN to the classification of 80 diatoms,
using the data augmentation approach to expand the dataset to over 160,000 samples
and finally achieved an overall accuracy of 0.99 in AlexNet. Park et al. [12] used the neural
architecture search (NAS) technology to design a CNN suitable for algal image classification
and obtained an F1-score of 0.95 on eight algal genera. In addition, they also discussed the
impact of data enhancement on classification. Several repeated experimental results show
that the classification results after data enhancement are lower than those using the original
dataset. Yadav et al. [13] used data augmentation techniques to expand the algal dataset
100 images to 80,000 images. Based on the expanded dataset of 16 algal families, ResNeXt
was modified and a classification accuracy of 0.9997 was finally achieved. Xu et al. [14]
expanded 13 algal species through data enhancement, forming a relatively balanced dataset
among different algal species. Based on this dataset, they designed a new CNN algorithm,
which obtained the lowest classification probability of 0.939.

While the above studies mainly focus on the classification of algae, the detection of
algae has also attracted the attention of algal researchers. Samantaray et al. [34] proposed a
viable algal monitoring system that uses transfer learning techniques to test three object
detection algorithms, Faster R-CNN, Single Shot Detector (SSD) and Region-based Fully
Convolutional Networks (R-FCN), on two datasets of hundreds of ground algal images
and aerial algal images. The final monitoring system chooses the more robust, accurate and
faster reasoning R-FCN algorithm. Baek et al. [16] used R-CNN and CNN to detect and
count five cyanobacteria species and the average precision values of the final detection were
between 0.89 and 0.929. Qian et al. [35] proposed a new object detection network based on
faster R-CNN and tested the new network on the algal dataset containing 27 genera, achiev-
ing 0.7464 mean average precision (mAP). Park et al. [17] compared YOLOv3 with YOLOv4
on a dataset of 437 images containing 30 algal genera and showed that YOLOv4 performed
better. Salido et al. [15] proposed a low-cost automated digital microscopy platform for the
automatic classification and detection of diatoms. On a dataset containing 80 species of
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algae, they achieved a detection accuracy of 0.86 using YOLO and a classification accuracy
of 0.9951 using AlexNet. Ali et al. [36] applied deep convolutional generative adversarial
neural (DC-SGAN) to expand the dataset containing four types of algae and carried out
comparative experiments on YOLOv3, YOLOv4 and YOLOv5 on the expanded dataset.
The comparison results show that YOLOv5 has the best performance.

Different from the above studies, based on the object detection algorithm, we build
the efficient algal self-organized detection system, which can automatically scan the algal
slide specimens and realize the algal self-organized detection. The system is designed to
achieve real-time detection of algae, so as to give a timely warning of algal blooms.

3. Material and Methods

In this section, we first introduce the built algal self-organized detection system. Then,
we present the data acquisition and pre-processing, give the specific steps of interactive
algal detection dataset generation method and show the detailed information of the algal
detection dataset we have established. Finally, the evaluation standard of object detection
is proposed.

3.1. Algal Self-Organized Detection System

The algal self-organized detection system is mainly composed of the Algae-Hub Algae
Artificial Intelligence Analyser (AH-20-S, Jiangsu Metabio Science & Technology Co., Ltd.,
Wuxi, China), data analysis workstation, display, mouse and keyboard. The system we
built and the functions of its major components are shown in Figure 1.

Algae-Hub

Algae Artificial Intelligence Analyser

Functions: Receive specimens slide,               

  Scan sample,

      Automatic focusing,

     Automatic imaging.

Data analysis workstation(Win10)

Functions: Image browsing,

  Data analysis,

  Results display,

  Check and save results.

Figure 1. The demonstration picture of the algal self-organized detection system and the functions of
its major components.

The Algae-Hub consists of an objective lens and an imaging camera, accepting
20 mm × 20 mm, 0.1 mL algal specimens in a slide. The scan magnification of the Algae-
Hub is 20× or 40×, the resolution is 0.25886 µm/pixel and the scanning speed is less
than 120 s. It can realize automatic focus or manually fine-tune the focus. In addition,
the embedded camera is a 5-megapixel CMOS camera.

The data analysis workstation is a computer installed with a win10 operating system,
and also installed with Artificial Intelligence Analyser professional analysis software. It
analyzes the images generated by the Algae-Hub independently. The methods of analyzing
the images include the visual method, the diagonal method, the lattice method and the
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whole section method. By default, the entire image is evenly divided into 100 square
grids. The visual method analyzes a selected square grid, the diagonal method analyzes
the diagonal square grids of the 100 square grids, the lattice method selects the square
grids of some rows for analysis and the whole section method analyzes the entire image.
After the analysis is completed, the workstation displays the name and number of algal
species identified in the selected square grids and saves the image detection results in the
workstation. For the detection results, we can view, verify and modify. Once we have
optimized the system, we just put in algal slide specimens or algal images, choose an
analysis method and the system can realize self-organized algal detection. In addition,
the workstation integrates functions such as statistical algal density and distribution. We
can also continue to add features as needed in the future.

In the context of the IoT, we focus on using various smart sensors, actuators and
intelligent controllers to achieve real-time acquisition and sharing of algal data in the future.
Combined with the efficient algal self-organized detection system we built, the algal self-
organized detection system under the IoT is formed to implement the real-time detection
of algae and the interaction of detection results, so as to realize a timely warning of algal
blooms. In order to better display the specific workflow of the algal self-organized detection
system under the IoT in the future, we present the schematic diagram in Figure 2.

Lake

River

Ocean

Water Samples

Generate Data

Optimization 

System

Algal Self-organized 

Detection System

Algal Detection 

Dataset

New Samples or Images

Internet of Things(IoT)

No Warning

Warning

Algal 

Booms

N

Y

Figure 2. The schematic diagram of the algal self-organized detection system under the IoT.

It is worth noting that the core of the detection system is the object detection algorithm
integrated in the system. As we know, although the two-stage detection method has good
detection performance, the detection speed is far slower than that of the one-stage detection
method. Therefore, we chose the YOLO series in the one-stage detection method to accom-
plish the task of real-time object detection. While there are many object detection algorithms
in the YOLO series, YOLOv5 is one of the most stable and widely used. Initially, the algal
self-organized detection system we built was based on YOLOv5, whose performance meets
our requirements.

3.2. Dataset Acquisition and Pre-Processing

We collect water samples through several pilot sites in Taihu Lake in Wuxi, China.
For the water samples with algal cells gathered together, the algal cells are scattered as
much as possible by shaking or ultrasonic crushing, while for the water samples with large
density of algal cells, appropriate dilution is carried out.

The processed water samples are made into slide specimens and the algal images are
automatically scanned and saved using our proposed algal self-organized detection system.
It is worth noting that the algal detection dataset built by us is generated interactively
and the specific steps are as follows:

(i) For the slide specimens, the algal self-organized detection system automatically scans
to obtain algal images.
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(ii) The algal images acquired in (i) are cross-labeled by 15 algal experts using labelImg
annotation software with reference to the VOC dataset format and the annotation files
are saved. Then, the initial algal detection dataset is generated.

(iii) The algal detection dataset generated in (ii) is trained by the object detection algorithm
to obtain the optimal weight and the optimal weight is imported into the algal self-
organized detection system.

(iv) For the new slide specimens or images, the algal self-organized detection system
implements automatic scanning, analysis and export of the analysis result images.

(v) The algal images analyzed in (iv) are manually checked and combine with the algal
detection data produced in (ii) to generate a new algal detection dataset.

(vi) Repeat (iii)–(v) to finally obtain the algal detection dataset used in this paper.

Among the above steps to interactively generate the algal dataset, the dataset in (ii) is
used to start and tune the algal self-organized detection system we have built. New samples
are detected in (iv) to expand and enrich the algal detection dataset. The manual check
in (v) is to eliminate the detection errors produced by the algal self-organized detection
system. Through interactive data generation, we can quickly obtain a considerable number
of algal detection datasets with relatively accurate labels and bounding boxes. Based on
this dataset, we can adjust the algal self-organized detection system to the optimal state, so
as to detect algae more quickly and accurately.

For our algal dataset, each image has a width and height of pixels between 1536
and 1984. Due to the inconsistent number of bounding boxes for various algae, we select
algae with more than 200 bounding boxes as the final algal detection dataset. Therefore,
we obtain an algal detection dataset consisting of 28,329 images, 562,512 bounding boxes
and 54 genera. We randomly split the dataset into three parts, training set, validation set
and test set and their ratio is 7:2:1. The specific information of the datasets is presented
in Table 1.

Table 1. Statistics of the algal detection dataset.

Categories
Train Val Trainval Test

Images Objects Images Objects Images Objects Images Objects

achnanthidium 556 915 137 220 693 1135 87 138
actinocyclus 566 755 156 220 722 975 85 111
aphanizomenon 756 1344 211 433 967 1777 121 216
aphanocapsa 264 308 68 73 332 381 40 48
asterionella 356 637 105 172 461 809 54 101
aulacoseira 3126 3911 874 1089 4000 5000 418 533
centricae 1951 4693 590 1421 2541 6114 256 608
chlamydomonas 1234 1667 373 487 1607 2154 189 239
chlorella 3334 6995 944 1910 4278 8905 487 990
chlorophyta 141 164 37 46 178 210 21 23
chromulina 199 275 64 77 263 352 31 41
chrysophyta 819 1285 241 419 1060 1704 109 170
coelastrum 172 180 50 50 222 230 20 22
cosmarium 426 521 106 132 532 653 75 101
crucigenia 608 676 187 207 795 883 78 91
cryptomonas 2932 4335 826 1211 3758 5546 405 598
cryptophyta 204 638 59 159 263 797 33 116
cuspidothrix 557 858 155 249 712 1107 103 147
cyanophyta 84 288 17 45 101 333 7 26
cyclotella 8262 27,625 2408 8035 10,670 35,660 1210 4052
cylindrospermopsis 369 2328 108 640 477 2968 44 242
desmodesmus 890 959 274 306 1164 1265 124 133
dinobryon 163 166 32 33 195 199 22 22
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Table 1. Cont.

Categories
Train Val Trainval Test

Images Objects Images Objects Images Objects Images Objects

dinophyta 180 187 53 55 233 242 30 32
dolichospermum 2832 8783 789 2746 3621 11,529 367 776
euglena 134 146 42 45 176 191 17 19
kirchneriella 1086 1268 368 426 1454 1694 152 176
komma 4664 16,155 1429 4878 6093 21,033 667 2425
limnothrix 1581 3700 430 1021 2011 4721 248 545
merismopedia 422 546 125 154 547 700 64 85
microcystis 7316 244,604 2164 73,860 9480 318,464 1019 32,796
monoraphidium 438 464 130 145 568 609 61 66
mougeotia 574 1111 142 270 716 1381 90 201
navicula 410 570 100 132 510 702 56 70
nitzschia 1991 2682 560 759 2551 3441 258 345
oocystis 1710 2145 480 609 2190 2754 259 324
pediastrum 172 174 42 42 214 216 23 25
pennatae 200 256 48 65 248 321 36 40
peridiniopsis 93 146 22 38 115 184 16 31
phacotus 127 168 36 55 163 223 19 32
planctonema 493 815 144 229 637 1044 57 95
planktosphaeria 1156 1923 331 499 1487 2422 171 300
planktothricoides 1042 2155 270 540 1312 2695 142 284
planktothrix 1597 3508 463 992 2060 4500 231 536
pseudanabaena 4281 14,506 1227 4139 5508 18,645 625 2058
raphidiopisis 1212 2191 345 635 1557 2826 169 311
rhabdogloea 1086 1358 278 358 1364 1716 141 181
scenedesmus 1706 1949 498 557 2204 2506 249 288
schroederia 332 348 81 85 413 433 46 50
skeletonema 3561 15,738 1017 4513 4578 20,251 466 2033
tetradesmus 150 171 43 50 193 221 24 25
tetraedron 739 834 194 221 933 1055 107 117
trachelomonas 274 287 90 100 364 387 45 52
ulnaria 1766 2215 511 612 2277 2827 261 336

Total 19831 392,626 5665 116,464 25,496 509,090 2833 53,422

As shown in Table 1, we give the names of 54 algae that reach the genus level, the num-
ber of images for each algal species and the number of bounding boxes for each algal
species after data division. Note that there are multiple algal genera in an image, the sum
of the images of each algal genus is not the total number of algal images. To better display
the algal detection dataset constructed in this paper, we randomly select 12 images, draw
their bounding boxes and categories and show them in Figure 3.

3.3. Detection Evaluation

As we know, the object detection goal is to find the location of the object in the image
and give the corresponding label. For the predicted object locations, we use intersection
over union (IOU) to evaluate the accuracy, which is calculated by the following formula:

IOU =
Area(bpred)

⋂
Area(btruth)

Area(bpred)
⋃

Area(btruth)
,

where Area(bpred) represents the area of the predicted bounding box and Area(btruth)
presents the area of the ground truth bounding box [21]. When the value of the IOU
between the predicted bounding box and the ground truth bounding box is greater than
the preset IOU threshold, the location detection is correct. Otherwise, it is regarded as
missed detection.
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Figure 3. Twelve algal detection images with annotation information. Images are randomly selected
from the algal detection dataset generated via the interactive method. Each image corresponds to an
annotation file, which stores the location information and the category of algae. We use red rectangles
and blue fonts to display the bounding boxes and categories on the chosen images.

For the predicted labels, average precision (AP) is used for evaluation. AP is the area
under the precision–recall curve calculated by interpolation. The precision (P) and recall
(R) are calculated as follows:

P =
TP

TP + FP
, R =

TP
TP + FN

,

where TP is true positive, representing the number of true positive samples that are correctly
predicted. FP is false positive, representing the number of true positive samples that are
incorrectly predicted. FN is false negative, representing the number of true negative
samples that are incorrectly predicted.

In image classification, positive samples refer to the samples of the current category,
while negative samples refer to the remaining samples that do not belong to the current
category. In object detection, the definition of positive and negative samples is more
complex and even varies in different periods. For example, YOLOv3 [29] uses the dual
IOU thresholds strategy; that is, the thresholds are 0.3 and 0.7 respectively. For a predicted
bounding box, if its IOU with the ground truth bounding box is greater than 0.7, it is
considered as a positive sample; if its IOU with the ground truth bounding box is between
0.3 and 0.7, it is ignored. If its IOU with the ground truth bounding box is less than 0.3, it is
considered as a negative sample. YOLOv4 [30] states that for a predicted bounding box,
if its IOU with the ground truth bounding box is greater than the preset threshold, it is a
positive sample. Otherwise, it is a negative sample. In general, we use the mean AP (mAP)
of the average over all objects as the indicator to evaluate the prediction label.

In order to take into account both the evaluation of the predicted location and label,
mAP with an IOU of 0.5 (mAP@.5) and an average mAP of 10 different IOU thresholds
with a step size of 0.05 between 0.5 and 0.95 (mAP@.5:.95) is commonly used to evaluate
the performance of the object detection algorithm. Under the same dataset and training
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environment, the larger the mAP@.5 and mAP@.5:.95 values, the better the detection
performance of the object detection algorithm.

4. Experiments

Recently, YOLOv6 and YOLOv7 appeared, which performs better than YOLOv5
on the COCO dataset. Therefore, this section gives the parameters and equipment for
experiment implementation, as well as the detection results of 10 different versions of
YOLOv5, YOLOv6 and YOLOv7 on the algal detection dataset.

4.1. Implementation

The experiments in this paper are based on pytorch 1.12, running on an ubuntu
operating system with Intel(R) Core(TM) i9-12900k, a 3090 24GB GPU. Before providing
the data to the network, we only convert the annotations to the format that YOLO needs.
We use the default hyperparameter settings of YOLOv5, YOLOv6 and YOLOv7. We set the
image size to 640 × 640 pixels and the batch size to 24. Each model is trained from scratch
for 300 epochs and does not use pre-trained weights. When testing the training model,
the confidence threshold is set to 0.001 for YOLOv5 and YOLOv7 and 0.03 for YOLOv6. All
the IOU thresholds are set to 0.6.

4.2. Detection Results

Based on the algal detection dataset we built, 10 different versions of YOLOv5,
YOLOv6 and YOLOv7 are trained on the training set and verified on the validation set,
respectively. After the training, the parameter model with the best performance on the
validation set is selected for the final test on the test set. Table 2 shows the detection results.

Table 2. Comparison of detection results on algal dataset.

Model Parameters FLOPs mAP@.5 mAP@.5:.95 FPS

YOLOv5-N (r6.2) [31] 1.8M 4.4G 56.1% 38.0% 435
YOLOv5-S (r6.2) [31] 7.2M 16.2G 65.9% 45.7% 370
YOLOv5-M (r6.2) [31] 21.1M 48.5G 68.3% 49.0% 208
YOLOv5-L (r6.2) [31] 46.4M 108.6G 69.6% 50.5% 114

YOLOv6-N [32] 4.31M 11.1G 56.5% 39.4% 658
YOLOv6-T [32] 9.69M 24.88G 61.1% 43.0% 383
YOLOv6-S [32] 17.21M 44.14G 65.4% 46.2% 299
YOLOv6-M [32] 34.27M 82.12G 68.6% 50.1% 179

YOLOv7-Tiny [33] 6.2M 13.5G 61.7% 42.9% 526
YOLOv7 [33] 36.8M 104.1G 70.6% 50.4% 204

It can be seen from Table 2 that under the same input condition of 640 × 640 pixels, un-
der the same detection model framework, the larger the model, the higher the mAP@.5 and
mAP@.5:.95 and the smaller the frames per second (FPS). Hence, YOLOv5-L, YOLOv6-M
and YOLOv7 achieve the highest mAP@.5 and mAP@.5:.95 with their respective frame-
works. Among 10 different versions of YOLOv5, YOLOv6 and YOLOv7, YOLOv7 has the
highest mAP@.5, but YOLOv5 has the highest mAP@.5:.95. Compared with YOLOv5-L
and YOLOv6-M, YOLOv7 has the fastest frames per second (FPS). Therefore, we are con-
sidering replacing the YOLOv5-L algorithm embedded in the algal self-organized detection
system with YOLOv7. Moreover, from Table 2, we can see that the detection speed (FPS)
of 10 object detection algorithms is far higher than that of manual algal detection, which
can well realize real-time algal detection. In order to better present the detection effect
of the trained model in the test set, we set the confidence threshold to 0.25 and the IOU
threshold to 0.45. Then, we randomly select four images and present them together with
the corresponding manually annotated image, detection results of YOLOv5-L, YOLOv6-M
and YOLOv7 in Figure 4.
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Original image Manually annotated images YOLOv5-L detection YOLOv6-M detection YOLOv7 detectionOriginal image Manually annotated images YOLOv5-L detection YOLOv6-M detection YOLOv7 detection

Figure 4. Schematic of four randomly selected images in the test set and the corresponding detection
results. The four images in each row from left to right are the original image, the corresponding
manually annotated image and the final detection results of YOLOv5-L, YOLOv6-M and YOLOv7.

From Figure 4, YOLOv5-L, YOLOv6-M and YOLOv7 can detect the algae that are not
manually labeled although there are few missed algae. This fully proves that the object
detection algorithm can surpass the manual algal detection method in algal detection.
Meanwhile, Table 2 and Figure 4 also fully demonstrate the high efficiency of the algal
self-organized detection system built by us based on YOLOv5.

5. Conclusions

In this paper, we first present the algal self-organized detection system we built.
Then, we used an interactive method to generate an algal detection dataset containing
28,329 images, 562,512 bounding boxes and 54 genera. Based on the algal detection dataset,
10 different versions of YOLOv5, YOLOv6 and YOLOv7 were compared. The experimental
results show that under the same dataset and training conditions, the detection performance
of YOLOv7 is better than that of YOLOv5-L and YOLOv6-M. We will consider using
YOLOv7 to replace YOLOv5-L embedded in the algal self-organized detection system.
Meanwhile, in practical applications, the efficient algal self-organized detection system
embedded with YOLOv5-L can realize rapid and accurate detection of algae. However,
the current system relies on manual data acquisition and transmission, which hinders real-
time detection of algae. In the future, we will focus on using intelligent sensors to realize
real-time collection and sharing of algal data and combine with the algal self-organized
detection system we have built to form an algal self-organized detection system under the
IoT, so as to realize timely warning of algal blooms. This is one of our future major works.
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