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Abstract: Mobile edge computing (MEC) is a promising technique to support the emerging delay-
sensitive and compute-intensive applications for user equipment (UE) by means of computation
offloading. However, designing a computation offloading algorithm for the MEC network to meet the
restrictive requirements towards system latency and energy consumption remains challenging. In this
paper, we propose a joint user-association, task-partition, and resource-allocation (JUTAR) algorithm
to solve the computation offloading problem. In particular, we first build an optimization function for
the computation offloading problem. Then, we utilize the user association and smooth approximation
to simplify the objective function. Finally, we employ the particle swarm algorithm (PSA) to find the
optimal solution. The proposed JUTAR algorithm achieves a better system performance compared
with the state-of-the-art (SOA) computation offloading algorithm due to the joint optimization of the
user association, task partition, and resource allocation for computation offloading. Numerical results
show that, compared with the SOA algorithm, the proposed JUTAR achieves about 21% system
performance gain in the MEC network with 100 pieces of UE.

Keywords: mobile edge computing (MEC); computation offloading; joint optimization; system overhead

1. Introduction

Various mobile applications facilitate people’s lives but bring very high requirements
for mobile user equipment (UE). Admittedly, UE enjoys more and more powerful comput-
ing process units (CPU) nowadays, but they still can not handle the numerous computation
tasks given a strict low-latency restriction due to their inherent hardware resource limits.
Since the base station (BS) holds hundreds of times the computation capability of the UE,
it can help UE solve heavy computation tasks. In particular, UE can offload all or part of
the computation-intensive tasks to the BS, relieving its local computation burden. Based
on this idea, several techniques have recently been proposed to solve the computation
overload problem with respect to UE [1]. The mobile cloud computing (MCC) [2] technique
works by uploading the tasks of UE to the cloud servers at the macro BS (MBS), which
possesses very powerful computation capabilities and can finish the uploaded tasks within
a short time. However, the transmission latency for the UE may be unacceptable if the
UE suffers from a far distance from the MBS. To address this bottleneck, a mobile edge
computing (MEC) [3,4] technique is further proposed as a promising approach for this issue.
By deploying the small BS (SBS) involving servers at the edge of the network, each UE can
upload its computation tasks to the nearest SBS, thus not only mitigating its computation
load but also reducing the transmission latency.

1.1. Related Works

Drawing insights from MEC literature, the computation offloading strategy ranks as a
dominant issue in the MEC network. Refs. [5–7] considered the computation offloading

Sensors 2023, 23, 1601. https://doi.org/10.3390/s23031601 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031601
https://doi.org/10.3390/s23031601
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8569-0703
https://doi.org/10.3390/s23031601
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031601?type=check_update&version=3


Sensors 2023, 23, 1601 2 of 14

issue with the binary offloading strategy, in which all computation tasks for each UE are
either computed locally or uploaded to servers. The binary offloading strategy enjoys
low computational complexity but causes a high awaiting latency for each UE due to
its principle that the computation tasks can not be processed until all of the tasks are
uploaded. To overcome this drawback, the partial computation offloading strategy was
proposed in [8–11], in which some computation tasks for each UE are computed locally,
and other computation tasks are uploaded to servers. The partial computation offloading
strategy allows performing the computation offloading and task processing in parallel,
thus reducing the system latency. In particular, Refs. [8–11] merely aimed at optimiz-
ing a single key parameter indicator (KPI), e.g., energy consumption or system latency,
whereas [11] investigated the joint optimization of several KPIs to achieve the best system
overhead. However, Refs. [8–11] only considered MEC networks with one edge server,
which bottlenecks the system’s computational capability. Fortunately, this problem can be
solved by deploying densely distributed servers [12,13] in MEC networks. The main issues
considered in the MEC network with densely distributed servers are user association, task
partition, and resource allocation [14–17]. In particular, Ref. [14] solved the user association
problem according to the bandwidth, power, and interference. Ref. [15] considered the
user association issue according to the data size of the uploaded tasks. Refs. [16,17] jointly
considered the task partition and resource allocation issues to not only balance the overload
of each server but also exploit the computational capability of each server more efficiently.
Recently, deep learning techniques were extensively employed to optimize the computation
offloading problem [18–22]. Ref. [18] used the genetic algorithm (GA) to decide whether
the tasks of each UE are offloaded to SBS or MBS. Ref. [19] enhanced the decision strat-
egy by comprehensively considering the GA and each UE’s offloading prior probability.
Ref. [20] relied on deep reinforcement learning (DRL) to solve the resource allocation issue.
Ref. [21] employed the GA to save energy consumption and further considered each UE’s
mobility. Ref. [22] exploited the LSTM network to further improve the system performance
by considering each UE’s direction.

1.2. Motivation and Contributions

Thus far, the existing computation offloading schemes still suffer from several concerns.
First, the user association should not only consider the bandwidth, power, and interference
for each UE but also evaluate the data size of the tasks and the channel quality [14,15].
Second, the traditional algorithms employed the task partition and resource allocation
shows low convergence speeds, which bottleneck the system performance [16,17]. Finally,
the existing computation offloading schemes usually optimize the user association, the
task partition and the resource allocation problem, respectively, which could miss the
optimal solution for the overall MEC network [9,12]. The performance of the computation
offloading scheme is dominated by the user-association together with the task-partition and
the resource-allocation strategy, and this knowledge motivates us to think of an approach to
jointly optimize the user-association, task-partition, and resource-allocation issues. In this
paper, we propose a joint user-association, task-partition, and resource-allocation (JUTAR)
algorithm to solve the computation offloading problem in the MEC network with densely
distributed servers. The main contributions of this work are listed as follows:

• We build up the optimization function with respect to the joint user-association, task-
partition, and resource-allocation issues given an MEC network with massive servers.
With the joint optimization of these problems, the optimization function could explore
better results for the realistic MEC network.

• We define a user-association metric, which comprehensively considers the distance
and overload of each UE and the target SBS, to indicate the user-association for each
UE. In addition, we employed the smooth approximation to further simplify the
optimization function.
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• We propose using the particle swarm algorithm (PSA) to find the optimal results of
the optimization function. The PSA can heuristically find the optimal solutions for the
function and contribute to better system performance.

Numerical results also demonstrate that the proposed JUTAR algorithm enjoys the
lowest system overhead compared with the existing computation offloading schemes given
different parameters (e.g., number of users, data size of tasks).

The rest of this paper is organized as follows. Section 2 introduces the system model
and the problem formulation of MEC networks. Section 3 discusses the details of the
proposed JUTAR algorithm. Section 4 provides numerical results to validate the proposed
algorithm. Section 5 concludes this work.

2. System Model and Problem Formulation

Figure 1 shows the model of the MEC network, involving an MBS, several SBSs, and
various types of UE. Each BS is equipped with an MEC server. The SBSs and UE are
randomly distributed within the coverage of the MBS. In addition, all of the SBSs are
connected to the MBS via wired links. Supposing there are M + 1 BSs (including the MBS),
and N pieces of UE, let S = {S0, S1, · · · , SM} and U = {u1, u2, · · · , uN} denote the set
of the BSs and the UE, respectively, where S0 represents the MBS, Sm (m ∈ {1, 2, ..., M})
denotes the m-th SBS, and un (n ∈ {1, 2, ..., N}) denotes the n-th UE. Although each user
could detect several SBSs in this scenario, we only consider the case that each user associates
with one SBS for simplicity. am,n indicates that UE n is associated with SBS m, and we have

am,n =

{
1, if n-th UE ∈ m-th SBS,
0, otherwise.

(1)

SBS MDMEC serverMBS

Figure 1. System model of the MEC network.

In the MEC network system, a computational task can be divided into several indepen-
dent subtasks, which are addressed by the MEC servers and the local devices, respectively.
The task requirement of the n-th UE is denoted as In =< dn, cn, tmax

n >, where dn is the
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data size of the task, cn is the CPU clock cycles required to process a bit of data in the task,
tmax
n is the maximum latency of this task. Therefore, the task In requires cndn clock cycles

for the n-th UE.
Generally, computational offloading has two different solutions. On the one hand,

as Figure 2a shows, if the UE is directly connected to the MBS, its computational task
is divided into two parts: (1) local computational task, denoted as xl

n, and (2) remote
computational task, denoted as xc

n, where xl
n + xc

n = 1. On the other hand, if the UE is
connected into an SBS, its computational tasks are processed in part by the local device
(local computation, denoted as xl

n), in part by the SBS (computational offloading, denoted as
xe

m,n), and in part by the MBS (further computational offloading, denoted as xc
n). Figure 2b

shows the offloading strategy of the UE corresponding to an SBS, and the processed tasks
satisfy xl

n + xe
m,n + xc

n = 1. Since the local tasks and the offloading tasks are processed in
parallel, the system latency is dominated by the part with the highest latency. However,
energy consumption is the accumulation of energy consumption for different parts.

Local

ji

Local

SBS MDMBS

e

,m ix

l

ix

(a) (b)

l

jx

l1 jx
e l

,1 m i ix x 

Figure 2. Computational offloading strategies for the UE in different scenarios: (a) only associated
with an MBS, (b) associated with the SBS and MBS.

2.1. Local Computing Model

Let tl
n denote the latency of the local tasks, which can be written as

tl
n =

xl
ncndn

f l
n

, (2)

where f l
n is the computational capability of the n-th UE, measured in CPU clock cycles per

second. Let ς denote the energy coefficient depending on CPU chip architecture, then the

power consumption of the CPU is expressed as ς
(

f l
n

)3
. Hence, the execution energy for

this task (denoted as El
n).

El
n = xl

ncndnς
(

f l
n

)2
. (3)

2.2. Computing Model in SBS

The tasks with respect to the n-th UE and processed in the m-th SBS are divided into
two parts. In particular, the first part will be offloaded into a corresponding MEC server,
and the second part is processed by the SBS itself. Let the notation B, σ2, pn and hm,n denote
the system bandwidth, noise power, transmit power of the n-th UE, and channel coefficient
between the n-th UE and m-th SBS, respectively, then the transmission rate of the n-th UE is

rm,n = B log2

(
1 +

Pnhm,n

σ2

)
(bits/s). (4)

In addition, let the notation fm,n represent the computational capacity (clock cycles
per second) of the m-th SBS, and the maximum computational capacity of the m-th SBS is
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f max
m,n . With the notation defined above, the latency te

m,n and energy consumption Ee
m,n of

the tasks with respect to the n-th UE and processed in the m-th SBS can be written as

te
m,n = am,nxe

n

(
dn

rm,n
+

cndn

fm,n

)
, (5)

Ee
m,n = am,nxe

n

(
pn

dn

rm,n
+ cndnes

)
, (6)

where es is the energy consumption of m-th SBS per CPU cycle clock. It is noted that
the latency and energy consumption of the feedback operation from the MEC sever are
neglected since the data size of the feedback is negligible compared with the transmitted
data [7].

2.3. Computing Model for the MBS

The latency of the tasks associated with xc
n consists of the transmission latency and

the processing latency. In detail, if the n-th UE is directly connected to the MBS, the
transmission rate is

r0,n = B log2

(
1 +

Pnh0,n

σ2

)
(bits/s), (7)

where h0,n is the channel gain between the n-th UE and the MBS. On the contrary, if the
n-th UE is linked with an SBS, the transmission rate is rm,n defined above. In addition to
the latency transmitting the data from the n-th UE to the m-th SBS, the overall transmission
latency also involves the latency offloading the data from the m-th SBS to the MBS, which
is represented as γxc

nam,ndn. Here, γ is a factor of the transmission via the wired line. Let
the notation κ be the indicator about whether the n-th UE is directly connected to the MBS
(1 for YES and 0 for NO), then the overall latency about the tasks xc

n is

tc
n =

xc
ndn

rn
+ (1− κ)γxc

nam,ndn +
xc

ncndn

Fc
, (8)

where Fc [clock cycles/s] is the computing capacity of the MEC server corresponding to
the MBS [10]. Following the same principle as the latency analysis, the overall energy
consumption of the tasks associated with xc

n is

Ec
n = Pn

xc
ndn

rn
+ (1− κ)βγxc

nam,ndn + xc
ncndnec, (9)

where β is the transmission power consumption via a wired line ec is the energy consump-
tion per CPU clock cycle of the MBS [16].

Thus far, the overall latency of the tasks for the n-th UE is

tn = max
(

tl
n, te

m,n, tc
n

)
, (10)

and the overall energy consumption for processing the tasks of the n-th UE is expressed as

En =
(

El
n + Ee

m,n + Ec
n

)
. (11)

Table 1 concludes the notations used in this paper.
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Table 1. Notations in this work.

Notations Description

un n-th UE

Sm m-th SBS
am,n Indicator of if the n-th UE is associated with the

m-th SBS
dn Data size of the task
cn Required CPU clock cycles to process a bit of data

in the task
tmax
n Maximum tolerance latency of this task

tl
n Latency of the local tasks

El
n Energy consumption of the local tasks

f l
n Computational capability of the n-th UE

rm,n Transmission rate of the n-th UE

te
m,n Latency of the tasks of the n-th UE and processed

in the m-th SBS

Ee
m,n Energy consumption of the tasks of the n-th UE

and processed in the m-th SBS

tc
n Latency of the tasks of the n-th UE and processed

in the MBS
Ec

n Energy consumption of the tasks of the n-th UE
and processed in the MBS

tn Overall latency of the tasks for the n-th UE

En Overall energy consumption of the tasks of the
n-th UE

xn Task offloading ratio

bφk ,n UE association metric

loadφk Overload of the φk-th SBS

3. Methodology

Since the latency and the energy consumption serve as the key parameter indica-
tor (KPI) for the MEC network, designing an offloading strategy that can balance those
two KPIs becomes demanding. Considering the trade-off of the latency and the energy
consumption, the optimization problem of the computation offloading is formulated as

P1 : min
am,n ,xn , fm,n

N

∑
n=1

(tn + λEn),

s.t. tn ≤ tmax
n , (C1)

M

∑
m=1

am,n ≤ 1, am,n ∈ {0, 1}, (C2)

xl
n + xe

m,n + xc
n = 1, ∀m ∈ M, n ∈ N, (C3)

fm,n > 0, ∀m ∈ M, n ∈ N, (C4)

∑
n∈N

fm,n ≤ f max
m , ∀m ∈ M, n ∈ N (C5)

(12)

Here, λ denotes the weight coefficients corresponding to the latency and energy
consumption, and (C1) limits the maximum latency. (C2) guarantees that each UE can
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be associated with at most one SBS. (C3) promises that the overall tasks of the n-th UE
are normalized as one. (C4) and (C5) circumvent the scenarios in that the required
computational resource of the connected UE exceeds the overall computational capacity for
the n-th SBS. Unfortunately, the optimal solution of the P1 problem can not be computed
directly since there are several strongly coupled variables, and the problem is built by a
non-convex nonlinear function. To this end, heuristic methods are employed in this section.
In particular, the P1 problem is first simplified by associating each UE with the appropriate
SBS and then approximated by utilizing a smooth approximation equation. Finally, a PSA
algorithm is developed to find the optimal solution to the problem.

3.1. User Association

Supposing the network involves M SBSs and N users, let A denote the user-association
matrix with dimensions of M× N, written as

a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N

...
...

...
...

aM,1 aM,2 · · · aM,N

 (13)

where ai,j represents whether the j-th user is associated with the i-th SBS. Since the i-th user
may be covered by several SBSs at the same time, the i-th column of the A could involve
K, 1 ≤ K ≤ M unitary elements. Let Φn = {φ1, φ2, ..., φK} denote a vector consisting of
the index of the unitary element in the n-th column of the matrix A. The user association
for each UE should comprehensively consider: (1) the distance between the UE and the
target SBS, and (2) the overload of the SBS. Based on this, we denote bφk ,n as the association
metric with respect to each SBS. The bφk ,n is illustrated as

bφk ,n =
hφk ,n

1 +
loadφk

∑k loadφk

, k = {1, 2, · · · , K}. (14)

where loadφk denotes the overload of the φk-th SBS and hφk ,n is the channel coefficient
between the n-th UE and the φk-th SBS. The channel coefficient hφk ,n follows the Rayleigh
fading channel model, and is computed by

hφk ,n = 140.7 + 36.7 log d, (15)

where d is the distance between each pair of UE and the target SBS. It is observed that
the larger the bφk ,n, the more reliable the SBS. Hence, each UE will be associated with the
corresponding SBS with the largest association metric. Since the UE may also be covered
by the MBS, they can be categorized into two groups. Let Nm,0 denote the first group of UE,
in which the offloading tasks for each UE can only be processed by the MBS. Denote Nc

m,0
as the second group of UE, which is the complementary set of Nm,0. The offloading tasks
for each UE in Nc

m,0 are addressed in part by the SBS and in part by the MBS. Hence, the P1
optimization problem can be simplified as

P2 : min
xn

∑
n∈Nm,0

(
max

(
tl
n, tc

n

)
+ λ

(
El

n + Ec
n

))
+

min
xn , fm,n

∑
n∈Nc

m,0

(
max

(
tl
n, te

m,n, tc
n

)
+ λEn

)
, (16)

s.t. (C1) − (C5) .

For simplicity, we use OM to denote the optimization function corresponding to the
computation offloading tasks processed by the MBS andOS to denote the optimization func-
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tion corresponding to the computation offloading tasks addressed by the SBS. Therefore,
we have 

OM = min
xn

∑
n∈Nm,0

(
max

(
tl
n, tc

n

)
+ λ

(
El

n + Ec
n

))
,

OS = min
xn , fm,n

∑
n∈Nc

m,0

(
max

(
tl
n, te

m,n, tc
n

)
+ λEn

)
.

(17)

3.2. Smooth Approximation

Although the functionOM can be solved by employing the linear optimization toolbox,
the solution of the P2 problem is still unavailable due to the nonlinear optimization function
OS involving the variables xn and fm,n. Hence, heuristic approaches (e.g., PSA algorithm)
can be employed to find optimal the solutions to OS. However, the max function in OS
involves tree variables, which makes it hard to derive the optimal results theoretically,
hindering the application of the heuristic approaches. Fortunately, the max function can be
eliminated by the smooth approximation function for the mathematical uniform norm [23].
Let O′S = min

xn , fm,n
∑

n∈Nc
m,0

max
(

tl
n, te

m,n, tc
n

)
, and then it can be rewritten as

O′S = min
u∈Φn

max(u) = min
u∈Φn

‖u‖∞, (18)

where u is the vector involving all of the possible choices with respect to (tl
n, te

m,n, tc
n).

According to the property of the uniform norm, by introducing the entropy function,
Equation (18) can be approximated by

min
u∈Φn

Fµ(u) = µ ln

[(
n

∑
i=1

(
e

ui
µ + e−

ui
µ

)]
, (19)

where µ is the smoothing factor. Therefore, the max
(
t1
n, te

m,n, tc
n
)

can be rewritten as

µ ln

[
e

t1n
µ + e−

t1n
µ + e

temn
µ + e−

temn
µ + e

tcn
µ + e−

tcn
µ

]
. (20)

Replacing the max
(
t1
n, te

m,n, tc
n
)

with (20), the P2 problem can be converted into P3
problem, illustrated as

P3 : min
xn

∑
n∈Nm,0

(
max

(
tl
n, tc

n

)
+ λ

(
El

n + Ec
n

))
+

min
xn , fm,n

∑
n∈Nc

m,0

(
µ ln

[
e

tln
µ + e−

tln
µ + e

tem,n
µ +

e−
tem,n

µ + e
tcn
µ + e−

tcn
µ

]
+ λEn

)
(21)

s.t. (C1) − (C5) .

3.3. Optimized with PSA Algorithm

With the derivations above, the joint optimization problem for the computation of-
floading in a single SBS scenario is simplified as the P3 function, which can be solved with
the PSA algorithm [24]. The PSA algorithm enjoys the advantages of rapid convergence
and low complexity. In addition, it can circumvent the local optimal results and achieve the
approximated global optimal point. The details of employing the PSA algorithm to solve
the P3 problem is listed as follows:

(1) Initialization : Let Θm = {θ1, θ2, ..., θ|Nc
m,0|} denote a particle for the m-th single SBS,

where θk represents the computation offloading strategy for the k-th user involved in set
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Nc
m,0. For the k-th user, recall that xl

k and xe
k denote the tasks processed locally and the tasks

offloaded from the user to the single SBS, respectively. Given xk and fm,k, θk can be denoted
as θk = (xl

k, xe
k, fm,k). Figure 3 shows a toy example for Θm with |Nc

m,0| = 3. For initial-
ization, it is assumed that there are Q particles. In addition, let Vm = {v1, v2, ..., v|Nc

m,0|}
represent the velocity towards to the particle Θm. In particular, the velocity with respect to
the k-th user is vk = (vl

k, ve
k, v f

k ), where vl
k, ve

k, and v f
k are initialized with random values. It

is noted that all of the initial values must satisfy the constraints in the P1 problem.

0.50.2 7 0.1 0.6 8 0.15 0.7 10

1 32

Figure 3. The position of the k-th particle.

(2) Update Fitness function: According to the formula of the P3 problem, the Fitness
function is denoted as

Fit = ∑
n∈Nc

m,0

(
µ ln

[
e

tln
µ + e−

tln
µ + e

tem,n
µ + e−

tem,n
µ +

e
tcn
µ + e−

tcn
µ

]
+ λEn

)
+ η.

(22)

where η is the penalty function for the particles. Once the particle violates the constraints,
it will be penalized by the penalty function. According to the constraint in P1 problem, η is
computed by

η =

Nc
m,0

∑
n=1

θn

(
max

(
0, ∑

n∈N
fm,n − f max

m

))
. (23)

where θn is the penalty factor. It is emphasized that the better the offloading strategy, the
smaller the fitness function.

(3) Update particle: In the t-th iteration, Θm and Vm will be updated as
Vm(t + 1) =W ·Vm(t) + C1 · R1 · (Eopt −Θm(t))

+ C2 · R2 · (Gopt −Θm(t)),

Θm(t + 1) =Θm(t) + Vm(t + 1),

(24)

where:

• C1 and C2 are two acceleration factors,
• W is a constant weight of the inertia,
• R1 and R2 are random factors chosen from [0, 1],
• Eopt is the optimal position for the m-th particle in the single SBS scenario,
• Gopt is the optimal position for m-th particle in the global MEC network.

(4) Terminate algorithm: If the maximum number of the iterations is achieved, the
algorithm will be terminated. On the contrary, the algorithm step (2) and step (3) are
repeated.

3.4. Proposed JUTAR Algorithm

Thus far, the computation offloading problem in the single SBS-based scenario has
been solved. However, there are multiple SBSs and massive users in the realistic MEC
network. Therefore, the JUTAR algorithm is proposed in this subsection to solve the
computation offloading problem in the overall MEC network.

Algorithm 1 shows the details of the JUTAR algorithm. In particular, first, each user in
the network is associated with a single SBS according to the association metric computed
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by (14). Second, the problem corresponding to computation offloading tasks directly
processed by the MBS is solved by employing the linear toolbox. Third, the computation
offloading problem for each user in the single SBS scenario is transformed from the P2
problem to the P3 problem by means of smooth approximation. Finally, the results of
the problem associated with the tasks offloaded to the SBS are acquired by utilizing the
PSA algorithm. With the JUTAR algorithm, the P1 problem in the overall MEC network is
converted into the P4 problem, written as

P4 : min
xn , fm,n

∑
m

∑
n∈Nrec

m

(
max

(
tl
n, te

m,n, tc
n

)
+

λ
(

El
n + Ee

m,n + Ec
n

))
+

min
xn

N1

∑
n=1

(
max

(
tl
n, tc

n

)
+ λ

(
El

n + Ec
n

))
, (25)

s.t. (C1) − (C5) .

Note that although the P4 problem is derived from the P1 problem by simplifying the
scenario of the network, it converges to the same results as the P1 problem [25].

Algorithm 1: JUTAR Algorithm

Input: the network parameters: N, M, f l =
{

f l
1, f l

2, · · · , f l
N

}
, f = { f1, f2 · · · , fM}.

the algorithm parameters: Q, T, C1, C2, W, R1 and R2.
Output: < AM×N , xn, F >.

1 for ui ∈ U do
2 Φi = {φ1, φ2, · · · , φK}; //ui selects all reachable SBSs
3 for Φj ∈ Φi do
4 compute bΦj ,i according to Equation (14);

5 y = arg max
Φi

(
bΦj ,i

)
, ay,i = 1,Φi/

{
ay,i
}
= 0;

6 if aΦj ,i = 0 then
7 use the optimization toolbox for solving;
8 else for Si ∈ S/{S0} do
9 transform from the P2 problem to the P3 problem by means of

smooth approximation.
10 Initialization: Θm, Vk, t = 0;
11 while t ≤ T do
12 for q ∈ Q do
13 Update Θm, Vq, compute the fitness of the particle

according to Equation (23);
14 Update the individual optimal value and the global optimal

value if Fitt
q � Fitt−1

q ;
15 t = t + 1;
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4. Numerical Results

In this section, we provide numerical results to demonstrate the performance of the
proposed JUTAR algorithm for the MEC network. We consider a network with coverage of
1.2 km× 1.2 km, involving one MBS, multiple SBSs, and multiple users. The MBS locates
on the central point of the network, and the SBSs, together with the users, are randomly
distributed. We follow the setup of the parameters in [18]. In particular, the computation
input data size of subtask is dn ∈ [10, 12] Kbits , and the number of CPU cycles to execute
one bit of the task is cn ∈ [1000, 1200] cycles/bit. The computational capabilities of the
local device is f l

n ∈ [4, 5]× 108 cycles/s, the maximum computational capabilities of the
SBS is f l

m ∈ [8, 10]× 109 cycles/s, and the maximum computational capabilities of MBS is
Fc = 15× 109 cycles/s. The transmit power for each user is set as 0.1 W. A Rayleigh fading
channel is employed, and the channel coefficients are computed by (15). In addition, we
set the energy coefficient with respect to the CPU as ς = 10−28. The energy consumption
of both the SBS and the MBS are set as es = ec = 0.02 W/GHz. Since the latency and
the energy consumption use the dominant roles to measure the computation offloading
algorithms, we comprehensively consider these two KPIs and propose the system overhead
Ω as a new metric. The system overhead Ω is computed by

Ω =
N

∑
n=1

(tn + λEn). (26)

Without special explanation, the parameter λ is set as λ = 0.5. Consequently, the
smaller the system overhead Ω, the better the computation offloading algorithm. To show
the performance advantages of the proposed JUTAR algorithm, we provide comparison
results of the existing algorithms as follows:

• All local processing (ALP) algorithm [8]: all tasks of the user are processed locally.
• Partial offloading strategy (POS) algorithm [8]: partial tasks of each UE are offloaded

into either SBS or MBS based on a possible user association.
• All MBS processing (AMP) algorithm [10]: the overall tasks of each UE can only be

uploaded to the MBS.
• GA [18]: partial tasks of each UE are uploaded to either SBS or MBS, which is decided

according to the genetic algorithm.
• Priority offloading mechanism with joint offloading proportion and transmission

(PROMOT) algorithm [19]: partial tasks of each UE are offloaded into SBS or MBS
according to not only the GA algorithm but also its offloading prior probability.

Figure 4 shows the comparison results of the system overhead for the proposed JUTAR
algorithm and other algorithms with different amounts of UE and date size of tasks. In
particular, Figure 4a shows the system performance of the proposed JUTAR algorithm
with various amounts of UE. It is observed that compared with existing algorithms, the
proposed JUTAR algorithm shows comparable performance with a relatively small amount
of UE but achieves the best results with a relatively large amount of UE. In particular,
compared with the SOA GA algorithm, the proposed JUTAR algorithm saves about 21%
system overhead given 100 pieces of UE in the MEC network. Figure 4b reports the system
performance of the proposed JUTAR algorithm with various data sizes of tasks. It can be
seen that the curves in Figure 4b have a consistent trend with that in Figure 4a. Compared
with the GA algorithm, the proposed JUTAR algorithm saves about 33% system overhead
when the offloaded tasks hold the size of 10,000 bits.
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Figure 4. Comparison results of the system overhead vs. (a) amount of UE, (b) data size for the
proposed JUTAR algorithm [8,10,18,19].

Figure 5 illustrates the system performance of the proposed JUTAR algorithm with
10–100 servers. From Figure 5, we can draw two observations. First, the system overhead
of the proposed JUTAR algorithm degrades rapidly by increasing servers in the region
with a relatively small number of servers but achieves a performance floor in the region
with a relatively large number of servers. Second, although the proposed JUTAR algorithm
suffers from a performance floor with a large number of servers, it still enjoys the best
performance compared with the existing algorithms. From the numerical results reported in
Figures 4 and 5, we can conclude that given a different amounts of UE, servers, and data
sizes of tasks, the proposed JUTAR algorithm holds the best system performance compared
with the existing algorithms.
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Figure 5. Comparison results of the system overhead vs. number of servers for the proposed
JUTAR algorithm.

5. Conclusions

In this paper, we investigated the computation offloading problem in MEC networks
with multiple SBSs and multiple pieces of UE. We proposed a JUTAR algorithm to solve the
problem by jointly optimizing the user-association, task-partition, and resource-allocation
issues. In particular, first, we simplified the network from a multiple SBS-based scenario to
a single SBS-based scenario by employing the proposed user-association scheme. Second,
for the single SBS-based scenario, we transformed the nonlinear optimization problem
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into the linear problem by means of the smooth approximation. Finally, we solved the
linear problem in the single SBS-based scenario by utilizing the PSA algorithm. Given a
different amount of UE, servers, and data size of tasks, our algorithm shows the smallest
system overhead compared with the existing algorithms. In future work, we will optimize
the complexity of the algorithm and further consider the mobility of each UE for realistic
MEC scenarios.
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