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Abstract: The slow dynamic response of a proton exchange membrane fuel cell (PEMFC) to high
load change during deficit periods must be considered. Therefore, integrating the hybrid system
with energy storage devices like battery storage and/or a supercapacitor is necessary. To reduce
the consumed hydrogen, an energy management strategy (EMS) based on the white shark opti-
mizer (WSO) for photovoltaic/PEMFC/lithium-ion batteries/supercapacitors microgrid has been
developed. The EMSs distribute the load demand among the photovoltaic, PEMFC, lithium-ion bat-
teries, and supercapacitors. The design of EMSs must be such that it minimizes the use of hydrogen
while simultaneously ensuring that each energy source performs inside its own parameters. The
recommended EMS-based-WSO was evaluated in regard to other EMSs regarding hydrogen fuel con-
sumption and effectiveness. The considered EMSs are state machine control strategy (SMCS), classical
external energy maximization strategy (EEMS), and optimized EEMS-based particle swarm opti-
mization (PSO). Thanks to the proposed EEMS-based WSO, hydrogen utilization has been reduced
by 34.17%, 29.47%, and 2.1%, respectively, compared with SMCS, EEMS, and PSO. In addition, the
efficiency increased by 6.05%, 9.5%, and 0.33%, respectively, compared with SMCS, EEMS, and PSO.

Keywords: energy management systems; hydrogen fuel; renewable energy; microgrid; optimization

1. Introduction

Microgrids offer a potential solution for integrating small-scale renewable energy
sources and loads along with energy storage systems and other non-renewable sources [1].
Many issues, including finance and cost concerns, are debated in multiple international
seminars and meetings. The main topics of these seminars are innovative efforts and
funding feasibility. The development of several wireless and IoT technologies improved
the performance of microgrids [2,3]. Manufacturers today are also using microgrids’
capabilities, mainly to lessen their dependency on long-distance distribution lines and,
consequently, to cut down on transmission losses [4]. The main benefits and challenges of
the microgrid are reported in Table 1.
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Table 1. Microgrid benefits and challenges.

Item Description

Benefits

Cost optimization
• Cost reduction for electricity;
• Cost savings for fuel and O&M;
• Independence from changes in energy prices.

Energy access
• Electricity access in isolated places;
• Support industrial loads;
• Compatibility with EV charging stations.

Quality and safety
• Backup for power outages;
• Stabilization of voltage and frequency;
• Reduced reliance on fuels.

Environmental and economic benefits

• Increasing the usage of renewable energy will
minimize the carbon footprint;

• Rewards, tax advantages, and the avoidance of fines;
• Reputation.

Challenges

Reliability High levels of intermittent generation due to the
penetration of renewables and random loads.

Scheduling Uncertainty of demand and supply.

Bidirectional power flow New equipment and protocols are required to consider the
bidirectional power flows.

Plug and play (P&P) Microgrid-compliant P&P marketing.

Control Development and design of control strategies to account for
the growth of DGs with power electronics interfaces.

Grid connection Resolve grid connection issues such as synchronization.

A microgrid can be customized to meet each customer’s individual needs by mixing
various components, offering the best technical and financial options [5]. These systems
meet energy demands for electrical and/or thermal energy typically supplied by the
natural gas or electric utility company. Microgrid components can sometimes be found in
the following list [6]:

◦ Distributed energy resources (DERs): include traditional generators like Gensets
or natural gas generators that mechanically transform fuel into electricity and heat,
as well as renewable energy technologies, including solar and wind power, which
operate on natural renewable resources.

◦ Energy storage systems (ESSs): electrochemical (batteries), mechanical (flywheels), and
thermal (hot water) systems are examples of systems. This energy can originate from
renewable overproduction or be charged when energy is cheaper for peak periods.

◦ Loads: the user loads can be classified as industrial, residential, commercial, and
electric vehicles (EVs). In addition, the loads can be classified according to their nature
as crucial and non-crucial loads or controllable and non-controllable loads.

◦ Monitoring and Control systems: monitoring systems are required in data acquisition
and transmission, whereas intelligent controls are implemented to improve electrical
efficiency and cost performance by automatically directing supply to the most efficient
available source.

Modularity, scalability, energy management, and resource balancing are essential
characteristics of a successful microgrid. The DERs can deliver high performance regardless
of the site’s conditions using a proper energy management strategy, whether off-grid or
on-grid [7].

PEMFC transforms chemical reactions to DC power. It earned great consideration
thanks to its simple size, quietness, and fewer effects on the atmosphere. Several applica-
tions, such as trains, aircraft, and electric vehicles, have used PEMFC in recent years [8].
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However, the PEMFC has restrictions on insufficient power density and postponed dynamic
response. Therefore, the installation of either battery storage (BSs) or supercapacitors (SCs)
to build a hybrid system may improve system performance [9,10]. It is critical to have an
energy-management plan into a hybrid-based system that combines storage systems as well
as photovoltaic (PV) and wind turbines are examples of sources of clean energy (WT) and
PEMFCs (EMSs) [10]. The remaining energy here between diverse sources is controlled by
the EMSs. Plus, they facilitate proper production and lengthen the authentication system.

In the literature, the EMS can be classified into three major categories: rule-based,
artificial intelligence, and optimization-based strategies [11,12]. Rule-based strategies
can be classified into two subcategories: deterministic and Boolean logic strategies. Fur-
thermore, artificial intelligence can be classified into three subcategories: fuzzy logic,
neural network, and Machin learning strategies. Finally, optimization-based strategies,
which aim to minimize/maximize the objective function. The objective function might
include emissions, costs, energy savings, device deterioration, and global efficiency [13].
There are two subcategories for optimization-based strategies: online and offline. The of-
fline optimization, including dynamic programming (DP) [14,15], nonlinear programming
(NLD) [16], stochastic dynamic control strategy (SDP) [17], and genetic algorithm (GA) [18],
are the most widely utilized to manage the power flow in the DCMG. The existence of
all load profiles is required. Hence, a large amount of data is involved. This makes their
implementation extremely difficult. Whereas in the online optimization, the objective
function depends only on the actual states of the system [19]. They have more restricted
processing and higher real-time performance. The SoC of the storage devices is taken
into account, but global optimization is not possible. The equivalent consumption mini-
mization strategy (ECMS), model predictive control (MPC) [20], and the external energy
maximization strategy (EEMS) are examples of these techniques.

The main contribution of this work is proposing, for the first time, an efficient
EMS based on white shark optimizer (WSO) for photovoltaic/PEMFC/lithium-ion bat-
teries/supercapacitors (PV/PEMFC/BSs/SCs) microgrid. The two critical aspects are
minimizing hydrogen consumption and improving the hybrids’ system performance. To
prove the superiority of the proposed strategy, three EMSs are considered: state machine
control strategy (SMCS), classical methodology for maximizing external power supply
(EEMS), and optimized EEMS-based particle swarm optimization (PSO).

The description of the different components of the hybrid PV/PEMFC/BSs/SCs
system is presented in Section 2. Section 3 explains considered energy management
strategies. The results are presented and discussed in detail in Section 4. Finally, the main
findings are concluded in Section 5.

2. Modeling of the PV/PEMFC/BSs/SCs Hybrid System

This part deals with the description and modeling of the hybrid renewable energy
system component from a photovoltaic array, fuel cell, battery storage, and supercapacitor.
The photovoltaic array generates and injects variable energy into the load under different
meteorological conditions. Due to its low electricity production, SCs are employed to
maintain and absorb oscillating power struggles as well as transient/fluctuating system
changes. In addition to having a very large number of cycles with excellent results and
no deterioration, SCs are efficient in extremely quick charging and discharges [21]. The
battery is used to store the electricity produced by the solar generator so that it may be
accessed at a later point in time, if necessary. However, because of its high energy density,
it seems to sustain continual power adjustments and only provide temporary power in
urgent situations.
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2.1. Modeling of PV Array

A single-diode electrical model is shown in Figure 1. The electrical model consists of a
photocurrent parallel to a diode, a shunt resistance, and a series resistance. Based on KVL,
the equations that control this circuit is presented as [22]:

I = Iph − Id − Ir

I = Iph − I0

[
e

V+I·Rs
nVth − 1

]
− V+I·Rs

Rsh

(1)

Rsh and Rs represent shunt and series resistances, respectively. n is the ideality factor,
I0 is the saturation current, and Vth is the thermal voltage given by the following relation:

Vth =
k·Tc

q
(2)

where q seems to be the electron’s charge, Tc is the temperature of the cell, and k is the
Boltzmann constant.
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Figure 1. Equivalent circuit of the solar cell model.

The photocurrent is represented as:

Iph = [ISC − α(Tc − Tr)]G (3)

where Tc and Tr are the experimental and benchmark temperatures, α is the temperature
coefficient, and G is the solar radiation. ISC is the short circuit current in A. In sum, consid-
ering series and parallel panels, the current produced by the PV array can be estimated
as follows:

I = Iph − I0

[
e

Vout+Iout ·NS ·RS
n·NS ·Vth − 1

]
− Vout + Iout·NS·RS

Rsh·NS
(4)

where Vout is the voltage and Iout is the current of the photovoltaic array, respectively. NS
and NP are the number of series and parallel cells connected in photovoltaic arrays.

2.2. Battery Storage Model

In industry, there are different types of batteries. The model adopted in the current case
analysis is a lithium-ion relying on the Thevenin representation [23], which is demonstrated
in Figure 2. Since lithium-ion batteries have a large storage capacity, a high proportion of
operating voltage, and a prolonged cycle life, they are frequently employed due to their
benefits over other energy storage technologies. The presented electrical model is among
the most popular energy storage technologies. It contains an internal resistance with a
parallel RC network. The open-circuit voltage Uoc, intrinsic resistances, and analogous
capacitor values are the three basic elements that make up the model [24]. The intrinsic
impedances are made up of the polarization resistance RTh and the conductive resistance
R0. The battery’s charging and discharging dynamics are represented by the roughly
comparable capacitance CTh. UTh denotes the voltage above CTh.
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The following equation is a characterization of the supply voltage:{
UB = Uoc − R0·IB −UTh.
UTh = − UTh

RTh ·CTh
+ IB

CTh

(5)

2.3. PEMFC Mathematical Model

As shown in Figure 3 [25], a fuel cell includes an anode and a cathode, as well as an
electrolyte. At the anode, a platinum catalyst splits the hydrogen atom into protons and
electrons. While the electrons receive current from an externally applied to produce the FC
output voltage, the protons reach the cathode. At the cathode, the protons and electrons
are once again coupled with oxygen to produce heat and water.
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Figure 3. Structure of PEMFC.

The following is a presentation of the FC chemical reactions [25]:
H2 → 2H+ + 2e−

O2 + 4e− → 2O−2

H2 +
1
2O2 → H2O + electrical energy + heat

(6)

Inside the PEMFC, there are three different types of losses: activation, ohmic, and
concentration losses. Figure 4 depicts the fluctuation of PEMFC voltage with cell current
density [26].
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As a result, the output voltage of the PEMFC is the sum of four voltage provided by
thermodynamic effect as ENernst, the activation voltage losses zone creating the Vact, the
ohmic voltage losses Vohm come from the ohmic loss dominated region due to the ionic
and electronic resistance, the last region generated the concentration voltage losses, Vcon,
due to the mass transport, and ncell percent is the number of connected cells in PEMFC. In
principle, the true voltage output of a fuel cell may be calculated by initiating with both the
thermally anticipated voltage and removing the different voltage fluctuation inefficiencies,
as shown below:

VFC = ncell(ENernest −Vcon −Vact −Vohm) (7)

Each element in Equation (1) is recognized and analyzed separately as follows:

ENernest = E0 − 0.85× 10−3·(T − 298.15) + 4.3085× 10−5·T· ln
(

PH2
√

PO2

)
(8)

where T represents the cell temperature, and E0 = 1.229 is the thermodynamic voltage of
a conventional bidirectional FC. PH2 and PO2 are the partial pressures of hydrogen and
oxygen, respectively.

The reactant concentration variations at the electrode surface cause a voltage decrease
in accumulation, which is characterized as:

Vcon = −b· ln
(

1− I/A
Imax

)
(9)

where b represents the concentrations degradation constant and Imax represents the rated
current destiny.

The activation voltage loss is determined as follows [27]:

Vact = −[ξ1 + ξ2T + ξ3T ln(CO2) + ξ4T ln(I)] (10)

where ξi (i = 1, 2, 3, 4) symbolizes the semi-empirical parameters of the FC derived from the fluid
mechanic, thermodynamic, and electrochemistry, and CO2 illustrates the oxygen concentration,

CO2 =
PO2

5.08× 106· exp
(
−498

T

) (11)

RM stands for identical membrane resistance to proton conduction, and ρM and l are
both the thickness of the membrane, and λ presents membrane water content.

RM = ρM ·l
A

M =
181.6·

[
1+0.03·( i

A )+0.062·( T
303 )·(

i
A )

2.5]
[λ−0.634−3·( i

A )]· exp[4.18·( T−303
T )]

(12)
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The equivalent resistance of the FC causes the ohmic voltage loss, and it can be
expressed as:

Vohm = I·(RM + RC) (13)

where Rc is the equivalent resistance representing the concentration processes.
The stack terminal voltage of the FC is given by the number of fuel cells interconnected

in series:
Vstack = n·VFC = n·(ENernest −Vact −Vohm −Vcon) (14)

2.4. Supercapacitor

The capacitance used in the SC model represents how the SC performs when be-
ing charged and discharged. A series resistance is analogous to those same resistances
for both charging and discharging [28]. Figure 5 depicts the related system model of
SC. The behavior of the SC is represented by the Stern model, which is available in the
MATLAB/Simulink [29].
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Once resistive losses are taken into account, the SC output voltage may be represented as:

VSC =
QT
CT
− RSC· iSC (15)

with, 

CT =
Np
Ns
· C

QT = Np· Qc =
∫

iSCdt

C =
[

1
CH

+ 1
CGC

]−1

CH = Neεε0 Ai
d

CGC = FQc
2NeRT sin h

(
Qc

Ne2 Ai
√

8RTεε0c

)
(16)

where CT denotes the sum of the capacitances (F), QT represents the entire amount of
electricity charged, RSC denotes intrinsic resistance (ohm), iSC is the SC current (A), NS is
the number in series, NP denotes the number in parallel, CH is the Helmholtz capacitance
(F), CGC represents the capacitance of Gouy-Chapman (F), Ne is the total number of layers
of the electrodes, ε and ε0 are the permittivity values of the electrolyte material and empty
area, Ai is the space between both the electrodes and the electrolyte (m2), d is the length
of the Helmholtz layer (m), Qc would be the electric charge of the cell, C is just the molar
concentration (mol m−3).

2.5. Specifications of the Hybrid System

The considered hybrid power system is shown in Figure 6. It includes a PV system,
PEMFC, BSs, and an SC to supply the load demand regarding high fluctuations. The
perturb and observed maximum power point tracking maximizes the PV power. The
specifications of the hybrid system are presented in Table 2.
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Figure 6. Configuration of hybrid PV/PEMFC/BSs/SCs system.

Table 2. The elements of a hybrid system’s electrical characteristics.

PV System PEMFC

Type of solar panel TPB156 × 156-72-P cells 65
strings six Rated voltage 41.15 V

series panels in string six Rated current 250 A
Maximum power 295 W Operating temperature 45 ◦C

Voltage @ MPP 35.3 V Efficiency 50%
Current @ MPP 8.36 A

BSs SCs
Rated voltage 48 V Rated voltage 291.6 V

Capacity 40 Ah Rated capacitance 15.6 F
Charge rated voltage 55.88 V Resistance 0.15 Ω

Discharge rated current 17.4 A Series capacitors 108
Internal resistance 0.012 Ω

3. Proposed Energy Management Strategies

The system’s efficiency depends greatly on the development of MG energy manage-
ment, which is essential [30,31]. The necessary power by the load in a hybrid system not
supplied by the PV array is known as net power (∆P). To provide conversion efficiency, the
EMS instructions might control the PEMFC, BSs, and SCs.

∆P = PLoad − PPV (17)

To prevent reactive depletion, however, the FC dynamics must be controlled. In
the case study, numerous EMSs are considered, including external energy optimization
methodologies, state engine control, standard EEMS, and improved EMMS-based WSO.
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3.1. Equivalent Consumption Minimization Methodology

The ECMS aims to minimize fuel consumption while maintaining a battery SOC
within acceptable bounds. The accuracy of the empirical assessment of the associated fuel
economy determines how successfully the ECMS performs, as stated in [32]. The related
objective function is presented as follows:

Popt
Batt = min(CFC + β·CBatt) (18)

β = 1− 2·µ SoC− 0.5(SoCmin + SoCmax)

SoCmin + SoCmax
(19)

wherein CBat denotes the battery energy usage in relation to the given energy and µ is a
constant (0.6). This equation can be defined as follows:

SoCmin ≤ SoC ≤ SoCmax
Vmin

bus ≤ Vbus ≤ Vmax
bus

Pmin
FC ≤ PFC ≤ Pmax

FC

(20)

wherein µ is indeed a constant (0.6), and CBat reflects the battery fuel efficiency in terms of
the energy supplied.

The following equation is used to compute the FC output:

Pre f
FC = ∆P− Pre f

Grid − Popt
Batt (21)

Figure 7 presents an illustration of the ECMS system.
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3.2. State Machine Control Management

An EMS depending on switching rules is designated SMC [33]. In SMC, the operational
state is chosen in proportion to the inputs: ∆P and battery SOC. The battery is charged or
discharged depending on the status of its inputs, as shown in Figure 8.

The numerical values of parameters addressed in SMCS are:

min = 30%; nom2 = 40%; nom1 = 85%; max = 90%;
Pfcmin = 850; Pfcmax = 8800; Pfcopt = 1500; PBattmax = 3400 W;

3.3. Conventional EEMS

The basic purpose of EEMS is to supply the minimum fuel consumption possible while
respecting battery and DC bus capacitor power constraints [24]. The fitness function’s
objective is to increase the energy supplied by the BS and SC:

Popt
Batt = min(∆T·PBatt + 0.5·Cbus·(∆Vbus)

2) (22)

where T represents the sample period, and V indicates the charge/discharge voltage. This
equation is confirmed by the following optimization:

PBatt ≤ (SoC− SoCmin)VBatt·QBatt
Vmin

bus −Vbus ≤ ∆v ≤ Vmax
bus −Vbus

Pcharge
Batt ≤ PBatt ≤ Pdischarge

Batt

(23)

where Vbatt and Qbatt are the standard voltage and capacitance of the battery, respectively.
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3.4. Optimized EMMS-Based WSO

The “fmin” function is a component of the standard EEMS’s programming code [34].
Consequently, a new white shark optimizer is used in place of the function “fmin” to
improve the efficiency of EEMS (WSO). The decision factors throughout the optimization
procedure are FC power, PFC, battery power, Pbatt, and battery SOC.

The lower and upper limits of the decision variables are chosen as indicated in Table 3.

Table 3. lower and upper limits.

Parameter Lower Upper

PFC (W) 850 8800
Pbatt (W) 1500 3400

SOC 60 90

Figure 9 shows the layout of optimized EMMS-based WSO.
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WSO is now a revolutionary meta-heuristic optimization tool influenced by great white
shark attributes, such as their exceptional hearing and sense of smell when navigating and
foraging. The important steps of this algorithm are listed below [35]:

Movement speed towards prey. When a white shark recognizes the location of prey
reliant on the waves created by the prey’s activity, it approaches in the following way:

si(t + 1) = u[si(t) + ρ1·c1(PGbest(t)− Pi(t)) + ρ2·c2(Pibest(t)− Pi(t))] (24)

where the index i (i = 1, 2, . . . , n) expresses the white shark order in a population of size
n, s represents the speed, Pgbest reflects the highest strategic standing vector, p is the ith
white shark’s present position vector, Pbest is the current best-achieved position, c1 and c2
are two numbers at random from the range [0, 1], p1, p2, and u are calculated according to
the following equations:

ρ1 = ρmax + (ρmax − ρmin)e−(4t/tmax)
2

(25)

ρ2 = ρmax + (ρmax − ρmin)e−(4t/tmax)
2

(26)

u =
2∣∣∣2− τ −
√

τ2 − 4τ
∣∣∣ ; τ = 4.125 (27)

Movement towards optimal prey. After they presumably detect the waves caused by
the target’s movement or when they see the target’s movements or smell the fragrance
of the prey, white sharks continually travel toward their prey. The prey either escapes
or leaves its location to search for food. However, its scent in that position is still there.
Accordingly, the white shark updates its position as follows:

Pi(t + 1) =
{

Pi(t)¬⊕ P0 + high·a + low·b; rand < m
Pi(t) + si(t)/ f ; rand ≥ m

(28)

where “-” is not a sign, a and b represent one-dimensional binary vectors, f is the frequency
of the wavy motion, high and low are the upper and lower random search boundaries, and
mv is described as:

m =

(∣∣∣∣a0 + e
tmax/2−t

a1

∣∣∣∣)−1
(29)

where a0 and a1 are constants.
Movement towards the white shark: this phase can be modeled as:

m =

(∣∣∣∣a0 + e
tmax/2−t

a1

∣∣∣∣)−1
(30)

where a0 and a1 are constants.



Sensors 2023, 23, 1534 12 of 17

Movement towards the white shark: this phase can be modeled as:

Pi(t + 1) =
{

PGbest(t) + r1·D·sgn(r2 − 0.5); r3 < ss
Pi(t); otherwise

(31)

wherein r1, r2, and r3 represent the random values ranging in [0, 1], and D expresses the
distance between the target and the shark.

Fish school behavior: The formula for this phase is provided as follows:

Pi(t + 1) =
Pi(t) + Pi(t + 1)

2·rand
(32)

The main procedure of WSO is provided in Figure 10.
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4. Results and Discussion

The suggested optimized EEMS-based WSO is used to minimize the consumed hy-
drogen of a hybrid power system shown in Figure 6. The simulation software model’s
S-function incorporates the optimized EMMS-based WSO, which is constructed and pro-
vided with the following two input variables: the battery SOC and the load profile, whereas
the output, the FC and battery banks, are regulated currents. The optimized EMMS-based
WSO is compared with conventional EEMS, SMCS, and PSO. Figure 10 demonstrates the
load demand that was used (red curve). As presented in Figure 11, at a time of 5 s no load
demand is required, and the PEMS starts recharging the BSs with its optimal power (about
1 kW). At 40 s, with no PV power, the extra load demand required is instantly given by the
SCs due to its fast dynamics, while the PEMFC power increases gradually. At 45 s, the SCs
are discharged below the reference DC link voltage of 270 V, as presented in Figure 12, and
the BSs begin delivering power to adjust the DC link voltage back to 270 V. At 48.5 s, the
SCs voltage reaches 270 V, and the BSs decreases its power gradually to zero. The PEMFC
provides the total demand and continues to recharge the SCs. At 60 s, a fast change in load
occurs, and the SCs provide the extra transient demand while the PEMFC power increases
gradually. The PV has not yet delivered any power; this changes at t = 100 s. Throughout
this time, the energy generated by the PV increases to contribute to load-shaving while the
excess electricity is used to charge the battery and SC. Likewise, when the PV power has a
value, the PEMFC power is zero. At t = 250 s, when the battery and SC are simultaneously
in the charging mode, the PV is shut off, and the PEMFC returns to share a large amount of
load power.
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Table 2 and Figure 13 present the consumed hydrogen using different EMSs. The
results demonstrated the superiority of optimized EEMS-based WSO compared to EEMS,
SMCS, and PSO. The EEMS-based WSO reduces hydrogen consumption to a best-obtained
value of 14.74 gm, followed by the PSO with 15.05 gm, and the traditional SMCS with a
worst-obtained value of 22.39 gm. It is crucial to determine each approach’s efficiency for
further research; you may do this by dividing the total power consumed by a PV array,
PEMFC, BS, or SC by the total power generated by all of these devices together. The
accuracy of each optimization method is shown in Table 4, with the optimized EEMS-
based WSO achieving the highest efficiency of 79.24% and the EEMS achieving the lowest
efficiency of 72.41%.



Sensors 2023, 23, 1534 14 of 17

Sensors 2023, 23, x FOR PEER REVIEW 14 of 17 
 

 

is instantly given by the SCs due to its fast dynamics, while the PEMFC power increases 
gradually. At 45 s, the SCs are discharged below the reference DC link voltage of 270 V, 
as presented in Figure 12, and the BSs begin delivering power to adjust the DC link voltage 
back to 270 V. At 48.5 s, the SCs voltage reaches 270 V, and the BSs decreases its power 
gradually to zero. The PEMFC provides the total demand and continues to recharge the 
SCs. At 60 s, a fast change in load occurs, and the SCs provide the extra transient demand 
while the PEMFC power increases gradually. The PV has not yet delivered any power; 
this changes at t = 100 s. Throughout this time, the energy generated by the PV increases 
to contribute to load-shaving while the excess electricity is used to charge the battery and 
SC. Likewise, when the PV power has a value, the PEMFC power is zero. At t = 250 s, 
when the battery and SC are simultaneously in the charging mode, the PV is shut off, and 
the PEMFC returns to share a large amount of load power. 

 
Figure 11. Dynamic produced power by different hybrid system components using WSO. 

 
Figure 12. Time response of SC voltage obtained using different EMSs. 

Table 2 and Figure 13 present the consumed hydrogen using different EMSs. The 
results demonstrated the superiority of optimized EEMS-based WSO compared to EEMS, 
SMCS, and PSO. The EEMS-based WSO reduces hydrogen consumption to a best-ob-
tained value of 14.74 gm, followed by the PSO with 15.05 gm, and the traditional SMCS 
with a worst-obtained value of 22.39 gm. It is crucial to determine each approach’s 

Figure 12. Time response of SC voltage obtained using different EMSs.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 17 
 

 

efficiency for further research; you may do this by dividing the total power consumed by 
a PV array, PEMFC, BS, or SC by the total power generated by all of these devices together. 
The accuracy of each optimization method is shown in Table 4, with the optimized EEMS-
based WSO achieving the highest efficiency of 79.24% and the EEMS achieving the lowest 
efficiency of 72.41%. 

Table 4. Performance of the planned EMS-PPA in comparison to alternative methods. 

EMS Hydrogen (gm) Efficiency (%) SOC (%) 
SMCS 22.39 74.72 62.21 
EEMS 20.9 72.41 60.56 
PSO 15.05 78.98 60.1 
WSO 14.74 79.24 54.46 

 
Figure 13. Time response of hydrogen consumption in gm obtained via each optimizer. 

A comparison between different EMSs is presented in Figure 14. Thanks to the pro-
posed EEMS-based WSO, hydrogen consumption has been reduced by 34.17%, 29.47%, 
and 2.1%, respectively, compared with SMCS, EEMS, and PSO. In addition, the efficiency 
has been increased by 6.05%, 9.5%, and 0.33%, respectively, compared with SMCS, EEMS, 
and PSO. 

 
Figure 14. Comparison between different EMSs. 

Figure 13. Time response of hydrogen consumption in gm obtained via each optimizer.

Table 4. Performance of the planned EMS-PPA in comparison to alternative methods.

EMS Hydrogen (gm) Efficiency (%) SOC (%)

SMCS 22.39 74.72 62.21
EEMS 20.9 72.41 60.56
PSO 15.05 78.98 60.1
WSO 14.74 79.24 54.46

A comparison between different EMSs is presented in Figure 14. Thanks to the
proposed EEMS-based WSO, hydrogen consumption has been reduced by 34.17%, 29.47%,
and 2.1%, respectively, compared with SMCS, EEMS, and PSO. In addition, the efficiency
has been increased by 6.05%, 9.5%, and 0.33%, respectively, compared with SMCS, EEMS,
and PSO.
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5. Conclusions

A new energy management strategy (EMS) using the white shark optimizer technique
(WSO) has been proposed to optimally distribute the load demand between the sources
in a hybrid PV/PEMFC/BSs/SCs microgrid. The optimized EMS aims to minimize the
consumed hydrogen consumption of PEMFC. The optimized EMS avoids the defects
of the conventional approach for maximizing external energy (EEMS). The improved
EEMS-based WSO is evaluated to EEMS, state machine control (SMCS), and particle
swarm optimization (PSO). Two main factors are considered, hydrogen fuel consumption
and efficiency. The results reveal that the improved EEMS-based WSO was preferable.
Hydrogen consumption has been reduced by 34.17%, 29.47%, and 2.1%, respectively,
compared with SMCS, EEMS, and PSO. In addition, the efficiency has been increased by
6.05%, 9.5%, and 0.33%, respectively, compared with SMCS, EEMS, and PSO.6.
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