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Abstract: Ultra-high-definition (UHD) video has brought new challenges to objective video quality
assessment (VQA) due to its high resolution and high frame rate. Most existing VQA methods are
designed for non-UHD videos—when they are employed to deal with UHD videos, the processing
speed will be slow and the global spatial features cannot be fully extracted. In addition, these VQA
methods usually segment the video into multiple segments, predict the quality score of each segment,
and then average the quality score of each segment to obtain the quality score of the whole video. This
breaks the temporal correlation of the video sequences and is inconsistent with the characteristics of
human visual perception. In this paper, we present a no-reference VQA method, aiming to effectively
and efficiently predict quality scores for UHD videos. First, we construct a spatial distortion feature
network based on a super-resolution model (SR-SDFNet), which can quickly extract the global spatial
distortion features of UHD videos. Then, to aggregate the spatial distortion features of each UHD
frame, we propose a time fusion network based on a reinforcement learning model (RL-TFNet), in
which the actor network continuously combines multiple frame features extracted by SR-SDFNet
and outputs an action to adjust the current quality score to approximate the subjective score, and
the critic network outputs action values to optimize the quality perception of the actor network.
Finally, we conduct large-scale experiments on UHD VQA databases and the results reveal that,
compared to other state-of-the-art VQA methods, our method achieves competitive quality prediction
performance with a shorter runtime and fewer model parameters.

Keywords: blind video quality assessment; deep reinforcement learning; ultra-high-definition video

1. Introduction

UHD video can bring viewers a better visual experience because of its high resolution,
high frame rate, high dynamic range and wide color gamut. However, the quality of
UHD video is subject to various distortions and noises during the processes of signal
capturing, encoding, storing, transmission and displaying. To better monitor and control
the video quality in each stage, it is essential to develop an accurate and efficient UHD
video-quality-assessment algorithm.

Video quality assessment (VQA) is a technology that can automatically measure video
quality. Based on whether the reference video is accessible, VQA can be categorized into
three types: full-reference VQA (FR-VQA) [1,2], reduced reference VQA (RR-VQA), and no-
reference VQA (NR-VQA). The FR-VQA methods predict the video quality by comparing
the reference and distorted videos. The RR-VQA methods employ only partial information
from the reference videos for quality prediction. In contrast, the NR-VQA methods can
perform quality prediction without using any information from the reference video.

NR-VQA is also known as blind VQA [3,4]. Since no reference video is needed,
BVQA can better meet the needs of real-world applications, such as the video quality
of experience (QoE). The ITU-T study group designed a no-reference model for UHD
videos and standardized it to P.1204.5 [5]. This method uses distorted video and other
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information, such as the encoding format and bit rate, for quality assessment. Inspired by
this method, STEVE et al. proposed the Nofu model [6], which extracts 64 features, such
as colorfulness, tone, and saturation from the distorted UHD video, without additional
information, and predicts the quality by the support vector regression (SVR). Moreover,
most of the current NR-VQA methods are still aimed at low-resolution videos, such as [7,8].
They do not perform well when applied to UHD videos. The main reasons are as follows:

First, the VQA task is closely correlated with the perception of distortion information.
However, the current BVQA methods [9–11] usually use backbone convolutional neural
networks to extract global spatial distortion features. Such networks are designed for
computer vision tasks, such as image classification, focusing more on objects rather than
distortions. While these methods perform well for those videos with relatively low resolu-
tion, because viewers tend to pay more attention to objects which usually appear in the
center of the screen, they do not work well for UHD videos. For UHD videos, the attention
of viewers is not only focused on the objects in the screen center, but is also attracted by
the content in other regions of the screen. These methods that focus on objects cannot fully
extract the distortion information outside the object region and,thus, cannot effectively
predict the quality of UHD videos. In addition, due to the high resolution of UHD videos,
the current methods often need to divide a UHD video frame into image patches of small
size, and then perform quality prediction based on image patches instead of the whole
video frame. This makes it hard for the backbone neural network to fully extract the global
spatial distortion features.

In contrast, the video super-resolution task is more related to the VQA task and both of
them aim at how to better extract the features related to video quality. The process of video
super-resolution involves dealing with the content feature and distortion feature. The con-
tent feature is extracted and used to generate high-quality and high-resolution videos,
while the distortion information is not used in the super-resolution task. Because the super-
resolution model can convert low-resolution video into high-resolution video, the distortion
information hidden in the low-resolution video can reflect the distortion distribution of
the high-resolution video well. Therefore, we can use the distortion information hidden
in the low-resolution video to predict the UHD video quality by embedding the super-
resolution model into the VQA model. Figure 1 shows the relationship between the quality
assessment and the super-resolution task. The red box in Figure 1 shows the structure of
a common super-resolution model. The model first extracts the content features through
the super-resolution feature extraction network, and then the content features are used to
output high-quality and high-resolution frames by an up-sampling network. The green
box in Figure 1 shows the structure of a VQA model proposed in this paper in which
the distortion features from the super-resolution model are used in the follow-up quality
prediction. Furthermore, in this structure, the input to the feature extraction network is the
low-resolution version of the UHD video frame rather than the segmented image patches,
so the frame-level global spatial distortion features can be effectively extracted.

Second, due to the limitation of computing power, most VQA models are unable to
continuously handle the temporal features of UHD videos with high frame rates. Instead,
these models usually have to segment the video into multiple segments, predict the quality
score of each segment, and then average these segment quality scores to obtain the video
quality score, as shown in Figure 2a. This kind of operation breaks the temporal correlation
of the video sequences and leads to discontinuities in the temporal features. For example,
if the quality of the first segment is degraded, it will not affect the quality prediction of
the subsequent segment. This is not consistent with the characteristics of human visual
perception. Human visual perception of video quality is continuous rather than segment-
by-segment, as shown in Figure 2b. To simulate this process, we use a reinforcement
learning model to continuously extract the temporal features.
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Figure 1. The relationship between video super-resolution and quality assessment. The red box
shows the super-resolution process and the green box represents the structure of our method.
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Figure 2. (a) Video quality score prediction process of previous NR−VQA methods. (b) Video quality
score prediction process of our model.

According to the above analysis, we propose a blind video quality assessment method
for UHD video based on super-resolution and deep reinforcement learning. First, we
construct a spatial distortion feature network based on a super-resolution model (SR-
SDFNet) to extract the global spatial distortion features of UHD frames. Then, a time
fusion network based on reinforcement learning (RL-TFNet) is employed to aggregate
the spatial distortion features of each UHD frame to obtain the UHD video quality score.
For the SR-SDFNet, as shown in the green box in Figure 1, the UHD video frames are
downsampled before being fed into the super-resolution model for extraction of the global
spatial distortion features. This significantly reduces the computational time. For the RL-
TFNet, as shown in Figure 2b, the video quality score is adjusted iteratively by combining
the global spatial distortion features of each frame with the history quality score. When the
last frame is input, the model outputs the final video quality score.

We make three main contributions:
(1) We propose a global spatial distortion feature network based on a super-resolution

model (SR-SDFNet) to efficiently and effectively extract the global spatial distortion features
from the UHD frames.

(2) We propose a time fusion network based on reinforcement learning (RL-TFNet) to
continuously fuse the global spatial distortion features of each frame to obtain the whole
video quality score, which can ensure the continuity of the video temporal domain and
improve the prediction accuracy for the UHD video quality.
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(3) By combining the SR-SDFNet with the RL-TFNet, we present an NR-VQA model
BVQA-SR&DRL for UHD videos. Our model is driven by distorted UHD videos without
human subjective scores. We evaluate our model on two public UHD-VQA databases.
The result demonstrates that our model achieves state-of-the-art performance compared
with existing BIQA methods.

2. Related Work
2.1. BVQA

The current UHD video quality assessment methods usually use the VQA model
designed for low-resolution video, apart from the above two methods P.1204.5 [5] and
Nofu [6]. Most of these methods are based on machine learning. Zhang et al. [12] used a 3D-
DCT transform to extract spatiotemporal features of videos and fed the extracted features
into a convolutional neural network to regress perceptual quality scores. CNN-MR [13]
and COME [14] used the 2D CNN AlexNet to extract spatial features of videos, which were
combined with motion features, and then used support vector regression (SVR) to obtain
the final quality score. Chen et al. proposed a concept of temporal resolution and designed
RIRNet [15] to extract temporal features at different temporal resolutions for quality per-
ception. Since RIRNet has many temporal resolution inputs, the computational complexity
will be higher than for other models. Dendi et al. [16] proposed an asymmetric generalized
Gaussian distribution (AGGD) to simulate the MSCN coefficients of distorted video and
the statistics of the bandpass filtered output, which are used to predict the quality score by
SVR. ChipQA [17] tracked and cropped video regions where motion information existed to
obtain localized spatiotemporal slices, and outputted natural video statistical parameters
for those extracted slices to perceive video quality. Chen et al. [18] extracted multi-scale
distortion features using a VGG16 network combined with an attention mechanism and
proposed a pyramid aggregation model along the temporal dimension to obtain the final
video-level quality score. Xu et al. [19] extracted time-space features of UGC videos through
graph convolution and attention blocks, and built a long short-term memory network to
integrate distortion features and obtain the video quality score. Varga et al. [20] proposed
an FLG-VQA model which extracts and integrates local and global image statistics features
for quality perception. Li et al. [21] proposed a bidirectional GRU network to predict UGC
frame scores and integrated the quality scores of multiple frames by constructing temporal
memory blocks. According to the characteristics of compressed videos, Lin et al. [22]
combined perceivable encoding artifacts (PEAs) detection and visual saliency perception to
output the final quality score. However, for UHD videos with large spatial resolution and a
high frame rate, the above methods have unsatisfactory performance and slow operation
speed. Therefore, our method aims to achieve improvements in terms of both efficiency
and effectiveness.

2.2. Deep Reinforcement Learning

DRL [23] imitates the learning process of the human brain. The model can find the
optimal strategy through constant trials and errors in the environment. In addition, DRL
can complete the construction of knowledge models even when environmental information
is insufficient. Early works on DRL mainly focused on robotic control and game agents.
In recent years, DRL has become a research hotspot in computer vision.

Zhang et al. [24] proposed a DRL model called EBSNet to automatically select ap-
propriate exposure images and combine it with MEFNet to generate high-dynamic-range
images. Sun et al. [25] achieved referring expression grounding through a reinforcement
learning model, which predicts the possible orientation of the object at each iteration to
localize the target object. Nauata et al. [26] combined the DRL network with the GAN
network to achieve automated floorplan generation. Wang et al. [27] applied the DRL
model, which reduces the computational complexity while ensuring performance, to the
field of face video segmentation. Lu et al. [28] regarded coronary CT angiography vessel-
level image quality assessment (CCTA VIQA) as a multi-instance learning (MIL) problem,
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and constructed a reinforcement learning model to gradually select key instances for subse-
quent quality assessment. Saeed et al. [29] proposed a meta-RL-based meta-learning model
to improve the adaptability of the common quality assessment model to the task-specific
IQA, such as pneumonia detection in X-ray images and other clinical applications.

However, to our knowledge, RL has never been used for video quality assessment
tasks. Existing VQA methods usually divide the entire video into multiple video segments
and then process them. We argue that such segmentation is inconsistent with the actual
subjective perception process. Therefore, our method attempts to process the entire video
with an RL model, which predicts the quality fluctuations that each video frame brings to
the entire video, thereby preserving complete and continuous video temporal features.

3. Proposed Method
3.1. BVQA-SR&DRL

We propose a BVQA method BVQA-SR&DRL that aims to efficiently and accurately
predict the quality score of the UHD distorted video. It consists of two components: a
spatial distortion feature network based on a super-resolution model (SR-SDFNet) and
a time fusion network based on reinforcement learning (RL-TFNet). Figure 3 illustrates
the main steps of our method. First, we downsample the UHD video frames to obtain
the low-resolution video frames and input them into the SR-SDFNet for spatial distortion
feature extraction. Guided by the super-resolution network, the spatial distortion features
extracted by the SR-SDFNet can reflect the distortion distribution of the UHD frames well.

Low resolution 
frame

Downsample 

SR-SDFNet

Global Distortion 
spatial  features

Historical quality score

... ...

UHD frame 

Framen-1 n ......

Quality score

Distorted UHD video

1

1

4

RL-TFNet

 Quality adjusts value

nn-11 2 NN-1

Figure 3. Processing pipeline of the proposed model BVQA−SR&DRL. The SR−SDFNet model is
used to extract spatial distortion features from the UHD video frame. Then, the RL-TFNet model
observes the spatial features and the historical quality score Sn−1, which outputs ∆Sn to adjust the
quality score. The prediction process of the entire video score is shown in the line graph.

Second, the proposed RL-TFNet observes the spatial features extracted by SR-SDFNet,
as well as the historical quality score Sn−1, and outputs the adjust value ∆Sn to increase or
decrease the quality score from the first frame, and iteratively adjusts the quality score until
the last frame, finally outputting the overall video quality score. The prediction process of
the entire video score is shown in the line graph of Figure 3.

3.2. Spatial Distortion Feature Network Based on a Super-Resolution Model (SR-SDFNet)

To extract high-resolution spatial distortion features quickly and completely, we em-
ploy the generator network SRResNet used in the super-resolution method ESRGAN [30]
to construct SR-SDFNet. Specifically, SRResNet can be divided into a feature network N f eat
and an upsample network Nup, as Figure 4 shows. The feature network N f eat consists of
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four residual-in-residual dense blocks (RRDB), which are used to extract content features
and distortion features. Each RRDB contains three residual networks and uses dense
connections to combine.

Co
nv

RRDB
Block

RRDB
Block

Co
nv

Upsampling
Co
nv

Co
nv

...

Feature network  Upsample netwok

Input Output

Figure 4. The network structure of the generator network SRResNet.

In the task of SR, the content features F_contentL→H
n are extracted by the feature

network N f eat and used to output high-quality frames Ioutput
n by an upsample network Nup,

as shown in Formulas (1) and (2). Considering the spatial features of a frame consists of
content features and distortion features, we extract the distortion features by making a
difference between the frame and the content features in the task of VQA.

F_contentL→H
n = Nfeat

(
IL
n

)
(1)

Ioutput
n = Nup

(
F_contentL→H

n

)
(2)

In detail, we first downsample the UHD video frame IH
n (3840 × 2160) by four times

to get the low-resolution video frame IL
n (960 × 540). Then, IL

n is fed into SR-SDFNET to
extract the global spatial distortion features. In detail, SR-SDFNet diffs the IL

n with the
output of N f eat to get the information FL→H

n , which is adopted as the distortion feature for
the UHD frame, as shown in the Figure 5.

IL
n = Downsampling

(
IH
n

)
(3)

FL→H
n = IL

n − Nfeat

(
IL
n

)
(4)

Low resolution frame

Downsample Super resolution 
feature network

Distortion features

SR-SDFNet

UHD frame

4

Figure 5. The network structure of the spatial distortion feature network (SR-SDFNet).

To train SR-SDFNET, we first train the super-resolution model ESRGAN based on the
VQA database. The inputs to ESRGAN are the distorted frames which are downsampled by
a factor of four, and the corresponding reference frames are used as the ground truth of the
ESRGAN model. After the losses of ESRGAN stop falling, we use the feature network N f eat
in SRResNet as the pre-training parameter of SR-SDFNet. Most existing VQA methods use
sliding window segmentation on UHD video frames to predict the quality score, which
consumes a lot of time and computation. In contrast, the proposed SR-SDFNet only needs
to input low-resolution video frames and, thus, most computation is performed in the
low-resolution feature space. In this way, the algorithm efficiency is greatly improved.
Furthermore, because the spatial distortion feature extraction is based on the video frames
instead of the segmented image patches, the integrity of the spatial distortion feature
is guaranteed.
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3.3. Time Fusion Network Based on Reinforcement Learning (RL-TFNet)

To continuously integrate the spatial quality features extracted by SR-SDFNet in the
temporal dimension, we formulate the video quality assessment task as a Markov decision
process (MDP) and propose the RL-TFNet model, which simulates the process of human
visual perception of video quality. As shown in Figure 6, we initially set the video quality
score S0 to one (i.e., the highest quality). The RL-TFNet model consists of the actor network
and critic network, in which the actor network iteratively adjusts the quality score according
to the spatial distortion features extracted and the historical quality score, as shown in
the formula. In addition, the critic network outputs action values to optimize the quality
perception of the actor network.

SR-SDFNet

Distortion features

Historical quality score

Actor 
network

Critic 
network

Quality score

 [-0.15,0.15]

0.1                               0.9

Bad action Good action

Network 
optimize

UHD frame

Framen-1 n ......
Next iteration

Quality score

1

1

RL-TFNet

Downsample 

4

... ...Distorted UHD video

nn-1

Figure 6. The processing pipeline of the time fusion network based on reinforcement learning
(RL-TFNet).

Since the subjective quality scores of each video frame used as the ground truth are
hard to obtain, the training of RL-TFNet is guided by a reward generated from VAMF-
4K [31], which is a widely used FR-VQA method based on VMAF. VMAF-4K mainly
extracts three features, the visual quality fidelity (VIF) [32], a detail loss measure (DLM),
and temporal information (TI), and integrates them to calculate the video quality score.
The proposed RL-TFNet contains the following important factors: the state space, the action
space and the definition of the reward function, which will be introduced in detail.

3.3.1. State Space

In order for our model to continuously fuse long-range UHD video quality features,
we define the state vector as state n =

{
FL→H

n , Sn−1
}

, where FL→H
n represents the spatial

distortion feature extracted by SR-SDFNet for the n-th frame. Sn−1 means the historical
quality score from the first frame to the n-1th frame, which ranges from 0 to 1, and the
larger the value, the higher the video quality. The initial preset historical quality score S0 is
1. The model integrates the spatial distortion features of the nth frame with the historical
quality of the previous n-1 frames by observing FL→H

n and Sn−1.
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3.3.2. Action Space

For the n-th video frame IH
n , RL-TFNet outputs action an by observing staten to

adaptively adjust the historical quality score Sn−1, where action an is a continuous value
taken from [−0.15, 0.15]. When the quality of the nth frame is improved compared to
the previous n-1 frames, and an is a positive value, the quality score Sn becomes higher
than Sn−1. Conversely, when the quality of the nth frame is lower than the previous n − 1
frames, the output an is between [−0.15, 0], the quality score Sn becomes lower. Our model
adjusts the historical quality score Sn−1 through action an−1, so that the quality score Sn is
closer to the subjective perception of the previous n frame.

3.3.3. Reward Function

The reward is an essential metric for the agent to learn which action performs better in
the environment. Considering the frame IH

n and the current quality score Sn−1, the reward
should encourage the model to increase or decrease the video quality score. The reward
function in our method is shown in the formula.

rn = −
∣∣∣an − ∆Svma f

n

∣∣∣ (5)

∆Svma f
n = Svma f

n − ∑n−1
i=1 Svma f

i
n− 1

(6)

Svma f
n represents the quality score of the nth frame calculated by the full reference model

VMAF-4K. The higher the score, the higher the quality. ∑n−1
i=1 Svma f

i
n−1 represents the average

VMAF-4K score of the 1st to n−1th video frames, and ∆Svma f
n represents the quality

fluctuation of in the nth frame. When an is closer to ∆Svma f
n , rn will be larger, otherwise, rn

will be smaller.

3.3.4. Network Introduction

After defining the above components of MDP, we design and update RL-TFNet via a
deep deterministic policy gradient (DDPG) [33]. RL-TFNet consists of an actor network
and a critic network, as shown in Figure 7. The input of the actor network is the state
vector staten =

{
FL→H

n , Sn−1
}

, and the corresponding output is the adjusted value ∆Sn to
the quality score. The critic network criticizes the action ∆Sn based on the state staten and
outputs the state value Q. Both networks have a copy network for calculating the target
value—the structure is the same as the main network, but the parameter update speed
is different. In each training iteration, both the actor and critic networks are optimized
sequentially, as shown in Algorithm 1. In the inference stage, only the actor network is
used to predict actions to adjust the quality score.

flatten

Distortion features
fc1 fc2

fc3

Historical quality 
score

con
cat

0.15

Action
flatten

Distortion features
fc1 fc3

Historical quality 
score

con
cat

Action
fc2

State value
Q

(a) (b)

Actor network Critic network

Figure 7. (a) The network structure of the actor network. (b) The network structure of the critic network.
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Algorithm 1 RL-TFNet Algorithm
Randomly set the initialize weights of the actor network π(State | θπ) and critic network
Q
(
State, A | θQ).

Initialize copy network weights θQ′ ← θQ, θπ′ ← θπ .
Initial quality score S0 = 1

1: for train step n ∈ [1, N] do
2: Set staten =

{
FL→H

n , Sn
}

;
3: Select action an = π(staten | θπ) + Noise;
4: Execute action on quality score Sn+1 = Sn + an and get reward rn;
5: Set staten+1 =

{
FL→H

n+1 , Sn+1
}

;
6: Store transition (staten, an, rn, staten+1) in replay buffer;
7: Set yn = γQ′

(
staten+1, π′

(
staten+1 | θπ′

)
| θQ′

)
+rn

8: Minimize the loss to optimize critic network:
Lcritic =

1
m ∑n

(
yn −Q

(
staten, an | θQ))2

9: Optimize actor network by the cost function:
J(θπ) = 1

m ∑n Q
(
staten, an | θQ)

10: Update the copy network weights:
θQ′ ← τθQ + (1− τ)θQ′

θπ′ ← τθπ + (1− τ)θπ′

11: end for

3.4. Training Procedure

In our method, we first extract global spatial distortion features FL→H
n from the n-th

UHD distorted frame IH
n through SR-SDFNet, and the extracted features FL→H

n and histori-
cal quality score Sn−1 are used as the input of RL-TFNet to output ∆Sn which adjusts the
historical quality score Sn−1 and get the current quality score Sn . The above process con-
tinues from the first frame to the last frame to get the entire video quality score, as shown
in the formula.

FL→H
n = NSR-SDFNet

(
downsampling

(
IH
n

))
(7)

∆Sn = NRL−VQANet

(
FL→H

n , Sn−1

)
(8)

Sn = Sn−1 + ∆Sn (9)

To train the two networks (SR-SDFNet and RL-TFNet) stably, we first train the super-
resolution model ESRGAN, the distorted frames are downsampled by a factor of four as
the input of ESRGAN, and the corresponding reference frames are used as the ground
truth of the super-resolution model. After the ESRGAN is trained to convergence, we use
the feature network N f eat in the ESRGAN generator network SRResNet as the pre-training
parameters of SR-SDFNet, and then we jointly train the two networks (SR-SDFNet and
RL-TFNet).

4. Experimental Results
4.1. Databases and Evaluation Criteria

To train the proposed model, we collect 50 UHD (3840 × 2160 pixels and 50 fps) video
sequences from the source materials of the UHD TV programs. These source materials
are only slightly compressed, so the video quality is high enough to be used as reference
videos. The collected video sequences cover a wide range of content, including outdoor,
indoor, night scenery, buildings, people, sports games and so on. The duration of each
sequence is 10 s to 15 s. We manually add three types of compression distortion (AVC,
HEVC and VP9) to each of these UHD sequences;each type has four levels, which are set
according to the MCML [34] database. Finally, our training database contains 50 reference
videos and 600 distorted videos.
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In order to evaluate the performance of our method, two UHD VQA databases are
used for testing: the AVT-VQDB-UHD-1 [35] and the MCML [34] database. The AVT-
VQDB-UHD-1 database includes 13 open-source reference videos and 432 distorted videos,
which correspond to four different subjective tests. TEST_1 contains three different codecs
(H.264, H.265 and VP9) and four resolutions from 360 p to 2160 p, TEST_2 considers two
codecs (H.264 and H.265) and four different bits-per-pixel (bpp) values. TEST_3 uses the
same bpp values as TEST_2 and encodes videos with H.265 and VP9 codecs. Test videos for
TEST_4 include four frame rates from 15 fps to 60 fps and six different resolutions, which
are encoded with H.264. Each distorted video has a mean opinion score (MOS), which
ranges from 1 to 5. The MCML database consists of 10 reference videos and 240 distorted
videos, which have two resolutions (1920 × 1080 and 3840 × 2160) and three compression
distortions (AVC, HEVC and VP9) with four different levels.

We chose Spearman’s rank order correlation coefficient (SROCC), the linear correlation
coefficient (PLCC) and root-mean-square error (RMSE) to measure the VQA model perfor-
mance. SROCC describes the rank consistency of the predicted score and the subjective
score. Where N is the total number of distorted videos, and dn represents the ranking
difference between the subjective score and the predicted score of the n-th video.

SROCC = 1− 6 ∑n d2
n

N(N2 − 1)
(10)

PLCC describes the linear correlation between the predicted score and the subjective score,
where si is the predicted quality score and pi is the video subjective score. s̄ and p̄ denote the
average of the predicted scores and the average of the subjective scores, respectively.

PLCC =
∑N

i=1(si − s̄)(pi − p̄)√
∑N

i=1(si − s̄)2 ∑N
i=1(pi − p̄)2

(11)

RMSE is mainly used to measure the relative error, where sp is the predicted quality
score and sm is the video subjective score.

RMSE =

√
∑
(
Sp − Sm

)2

n− 1
(12)

Following Zhang et al. [36] and Ma et al. [37], we estimate the parameters of a nonlinear
function that transforms the prediction values to the same scales as the subjective score.

q̃ = (η1 − η2)/(1 + exp(−(q̂− η3)/|η4|)) + η2 (13)

4.2. Implementation Details

In the training session, the SR model ESRGAN is first trained on the training database
according to [30]. The distorted frames in our training database are downsampled by a
factor of four as the input of ESRGAN. Then the SR-SDFNET and RL-TFNet are jointly
trained in the training database. The video frames used for training are obtained by
sampling one frame every 30 frames of each video in the training database. The Adam
algorithm is used to optimize the model. The learning rate is set to 1 × 10−4 and decays by
a factor of 0.5 every 10,000 iterations. We choose the model with the largest reward value
as the best model. In the testing session, each test video is frame sampled every 30 frames
intervals for score prediction.

4.3. Comparisons with the State of the Art

In this section, we evaluate the performances of our model and various other BVQA
models on two UHD-VQA databases. The main models being compared have all been
designed for video quality assessment in recent years, and include VSFA [38], TLVQM [39],
VIDEVAL [40], GSTVQA [18], RAPIQUE [10], ChipQA [17], NOFU [6], HEKE [9] and
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HFR-BVQA [11]. Among them, VIDEVAL, ChipQA, TLVQM, RAPIQUE, and VSFA are five
VQA models for UGC video. To ensure fairness of comparison, we train the nine BVQA
models on the KONVID [41] database and test them on the MCML and AVT-VQDB-UHD-1
databases. Such cross-dataset experiments can also give the generalization performance of
these models. The overall testing results are shown in Tables 1 and 2. The best results are
highlighted in bold.

It can be observed from Tables 1 and 2 that our model obtains superior performance
compared to other BVQA algorithms on both the two databases. Compared with previous
methods, our model can extract the distortion features of large-resolution videos more
completely. Moreover, the above results illustrate the strong generalizability of our model
on UHD distortion databases. This is because the previous methods are supervised by MOS,
whereas our model is driven by the super-resolution process without human subjective
scores and can adapt to different UHD video quality databases.

Table 1. Performance comparison on the MCML databases.

ALL AVC HEVC VP9Method SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE

VSFA 0.633 0.708 1.751 0.757 0.834 1.613 0.614 0.655 1.892 0.295 0.575 1.399
TLVQM 0.505 0.577 2.050 0.607 0.629 1.936 0.487 0.526 2.156 0.462 0.449 1.790
VIDEVAL 0.753 0.686 1.808 0.751 0.828 1.625 0.811 0.834 1.384 0.698 0.704 1.244
GSTVQA 0.716 0.830 1.382 0.740 0.855 1.513 0.774 0.850 1.319 0.588 0.682 1.251
RAPIQUE 0.774 0.758 1.617 0.781 0.763 1.887 0.818 0.828 1.402 0.726 0.779 1.074
ChipQA 0.748 0.753 1.636 0.755 0.738 1.821 0.792 0.791 1.565 0.702 0.753 1.068
Nofu 0.808 0.803 1.544 0.832 0.803 1.674 0.838 0.824 1.502 0.726 0.754 1.068
HEKE 0.803 0.834 1.487 0.816 0.811 1.657 0.810 0.845 1.485 0.722 0.755 1.065
HFR-BVQA 0.761 0.775 1.600 0.808 0.780 1.828 0.836 0.847 1.463 0.712 0.696 1.456
Proposed 0.836 0.878 1.189 0.874 0.841 1.387 0.869 0.896 1.110 0.733 0.789 1.050

The best results are highlighted in bold.

Table 2. Performance comparison on the AVT-VQDB-UHD-1 databases.

Method ALL TEST1 TEST2 TEST3 TEST4
SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE

VSFA 0.607 0.601 0.826 0.715 0.692 0.768 0.754 0.789 0.641 0.696 0.729 0.738 0.536 0.596 0.737
TLVQM 0.488 0.509 0.977 0.501 0.501 0.992 0.510 0.524 0.963 0.516 0.537 0.987 0.469 0.477 0.921

VIDEVAL 0.715 0.724 0.686 0.704 0.722 0.738 0.739 0.756 0.668 0.747 0.757 0.711 0.668 0.679 0.641
GSTVQA 0.679 0.701 0.737 0.536 0.655 0.803 0.777 0.835 0.573 0.780 0.814 0.626 0.688 0.731 0.626
RAPIQUE 0.674 0.729 0.708 0.500 0.696 0.763 0.837 0.866 0.521 0.767 0.797 0.651 0.680 0.757 0.599
ChipQA 0.725 0.745 0.667 0.714 0.761 0.716 0.766 0.718 0.703 0.740 0.778 0.691 0.652 0.689 0.637

Nofu 0.731 0.701 0.774 0.798 0.745 0.709 0.795 0.746 0.741 0.748 0.682 0.823 0.632 0.600 0.803
HEKE 0.762 0.775 0.641 0.780 0.801 0.680 0.805 0.819 0.617 0.760 0.745 0.703 0.684 0.707 0.638

HFR-BVQA 0.711 0.750 0.671 0.750 0.756 0.721 0.717 0.764 0.661 0.709 0.720 0.757 0.723 0.733 0.615
Proposed 0.816 0.803 0.616 0.849 0.859 0.652 0.878 0.866 0.521 0.807 0.847 0.572 0.717 0.729 0.628

The best results are highlighted in bold.

To our surprise, the proposed model is weaker than HFR-BVQA for TEST_4 on the
AVT-VQDB-UHD-1 database. One reason for this is that the TEST_4 of AVT mainly contains
distorted videos with different frame rates. Compared with our method, HFR-BVQA is
specially designed for low-frame-rate videos. In response to this phenomenon, we will
make special optimizations for distorted videos with different frame rates in the future.

4.4. Performance on Computation Complexity and Runtime

To evaluate the time and spatial complexity of the proposed model, our model is com-
pared with the other nine BVQA models: VSFA, TLVQM, VIDEVAL, GSTVQA, RAPIQUE,
ChipQA, NOFU, HEKE and HFR-BVQA. These models are implemented on CPU or GPU,
as requested by the authors. The hardware platform used for testing includes an NVIDIA
TITAN X GPU processor and Core i7-5930K CPU @ 3.5 GHz. We summarize the runtime
and network parameter size in Table 3. The runtime represents the average time to predict
a UHD video with a resolution of 3840 × 2160 and 300 frames from the MCML database.
In addition, Figure 8 is a scatterplot of speed and performance comparison for our model
and the other nine BVQA models in MCML to visually compare.
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Table 3. Performance on computation complexity.

Method Implement Runtimes (s) Parameters (Millions)

TLVQM Matlab-CPU 121.20 -
VIDEVAL Matlab-CPU 282.46 -
RAPIQUE Matlab-CPU 46.54 96.4

HFR-BVQA Matlab-CPU 58.12 97.1
ChipQA Python-CPU 103.40 -

Nofu Python-CPU 117.52 -
VSFA Python-GPU 9.74 100

GSTVQA Python-GPU 30.88 580.4
HEKE Python-GPU 39.90 377.6

Proposed Python-GPU 12.08 6.2

Figure 8. The speed and performance comparison for our model and the other nine BVQA models
on the MCML database.

As shown in Table 3, our model is faster than most BVQA models and the parameter
size is smaller than those of the above methods. It should be noted that the previous
methods take more time to extract the spatial features of large-resolution video frames.
In contrast, our method downsamples the video frames from 3840 × 2160 to 960 × 540 for
processing, which greatly improves the running speed. In addition, some models extract
spatial features based on basic CNN models, such as GSTVQA using the VGG16 model, and
RAPIQUE and HFR-BVQA using the Resnet-50 model. In contrast, our method employs a
lightweight super-resolution model for feature extraction, which can predict video quality
with smaller model parameters. Furthermore, although the spatial and time complexity of
VSFA is slightly lower than that of our model, our model has a comprehensive advantage
in both performance and complexity, as shown in Figure 8.

4.5. Visual Analysis

In order to visually verify the effectiveness of our model, we output the feature map
from the spatial distortion feature network (SR-SDFNet) and show the fluctuation of video
quality over time through a line graph, as shown in Figure 9, where the red dot is the
quality scores calculated by the FR-VQA method VMAF-4K and the blue dots are the
quality scores predicted by the proposed method. Here, we use the VMAF-4K method to
reflect the real quality distribution of the distorted video. As shown in Figure 9a, the trends
in the predicted quality scores in our model are similar to those of VMAF-4K, which is
gradually degraded. The feature map shows that, along with the degradation of the quality
scores, the distortion features are increasing. The same phenomenon can also be observed
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in Figure 9b. We find that the predicted scores of the proposed model are consistent
with VMAF-4K. As time changes, the video quality is first degraded and then improved.
Similarly, the spatial distortion features in the feature map are also increased and then
reduced. This suggests that our model can perceive the distortion features and accurately
predict the video quality.

Figure 9. Two visualization examples about the prediction quality score process of our model. (a)
and (b) respectively represent two distorted videos from the AVT-VQDB-UHD-1 database and curves
of their predicted quality scores.

4.6. Ablation Study

In this section, we investigate the functionalities of SR-SDFNet and RL-TFNet. All
experiments are evaluated on the AVT-VQDB-UHD-1 and MCML databases.

4.6.1. SR-SDFNet

To verify the effectiveness of the proposed SR-SDFNet, we evaluate the performance
of different spatial feature extractors. The analysis includes five kinds of networks, Resnet-
50 [42], VGG16 [41], Mobilenetv2 [43], RCAN [44] and SR-SDFNet (proposed). RCAN
is a super-resolution network, which is implemented by the residual-in-residual (RIR)
structure and the channel attention mechanism. Table 4 shows the PLCC, SROCC and
network parameter size on two databases. We can observe from the results that SR-SDFNet
is superior to the other four spatial feature extractors. This is because the three extractors
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(Resnet-50, VGG16 and Mobilenetv2) are designed for other computer vision tasks, such
as image classification. In contrast, SR-SDFNet and RCAN are built based on a video
quality enhancement model, which is more suitable for the VQA task. Moreover, the RCAN
network only takes a single LI loss as a loss function, and SR-SDFNet introduces perceptual
loss and GAN network loss through the pre-training of ESRGAN, so that SR-SDFNet can
better extract spatial distortion features with the smallest parameters than other networks.

Table 4. Performance comparison of different spatial feature extractors on two databases.

Method MCML AVT ParametersSRCC PLCC SRCC PLCC

VGG16 0.795 0.818 0.788 0.772 528 M
Mobilenetv2 0.762 0.786 0.723 0.738 5.2 M

Resnet-50 0.813 0.854 0.793 0.774 97.8 M
RCAN 0.829 0.870 0.811 0.789 59.7 M

SR-SDFNet 0.836 0.878 0.816 0.803 4.9 M

Furthermore, Figure 10 shows some visual examples of feature maps from SR-SDFNet
and Resnet-50. The results in Figure 10c are produced by the SR-SDFNet model and the
results in Figure 10b are produced by the Resnet-50 model. We can intuitively find that
the Resnet-50 model mainly extracts the local edge of the object, and SR-SDFNet pays
more attention to the distortion area of the frames. It can be concluded that the proposed
SR-SDFNet is suitable for the UHD-VQA task.

(a)

(b)

(c)

Figure 10. Visual comparison of spatial feature extraction. (a) shows the distorted UHD frames.
(b) presents the feature maps produced by the Resnet-50 model. (c) presents the feature maps
produced by the proposed SR-SDFNet model.

4.6.2. RL-TFNet

We use two time-process strategies to explore the effectiveness of the proposed RL-
TFNet. In the first strategy, we first extract spatial features through SR-SDFNet and then
regress the features of each frame to a quality score through two fully connected layers.
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In testing, we average the prediction scores for multiple frames as the score of the entire
video. In the second strategy, the spatial features from multiple frames are fed into an
LSTM network [45] to predict quality scores. The comparison results are shown in Table 5
and demonstrate that the RL-TFNet performs better than the other two strategies. This
occurs because the average pooling in the first strategy only deals with spatial features and
the LSTM model in the second strategy has difficulty fusing long-range temporal features.

Table 5. Performance comparison of different time-process strategies on two databases.

Time Process Strategies MCML AVT
SRCC PLCC SRCC PLCC

Average Pooling 0.792 0.795 0.767 0.773
LSTM 0.802 0.820 0.781 0.772

RL-TFNet 0.836 0.878 0.816 0.803

5. Conclusions

In this paper, we present a fast and accurate blind quality assessment algorithm for
UHD videos. It consists of two components: a spatial distortion feature network based on
a super-resolution model (SR-SDFNet) and a time fusion network based on reinforcement
learning (RL-TFNet) in which SR-SDFNet can employ a super-resolution model to efficiently
extract the spatial distortion features and RL-TFNet is used to adjust the quality score in the
continuous time dimension. Extensive experimental results demonstrate that the proposed
model outperforms all compared competing BVQA methods on UHD quality databases.
Furthermore, our model has a smaller parameter size and runs faster than other methods,
which makes it more suitable for practical applications in UHD VQA.
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