
Citation: Vakil, A.; Blasch, E.; Ewing,

R.; Li, J. Finding Explanations in AI

Fusion of Electro-Optical/Passive

Radio-Frequency Data. Sensors 2023,

23, 1489. https://doi.org/10.3390/

s23031489

Academic Editors: Szi-Wen Chen,

Yuan-Ho Chen and Aiguo Song

Received: 25 November 2022

Revised: 20 January 2023

Accepted: 24 January 2023

Published: 29 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Finding Explanations in AI Fusion of Electro-Optical/Passive
Radio-Frequency Data
Asad Vakil 1,* , Erik Blasch 2 , Robert Ewing 3 and Jia Li 1,*

1 Department of Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA
2 Air Force Office of Scientific Research, Arlington, VA 22203, USA
3 Sensors Directorate, Air Force Research Laboratory, WPAFB, Dayton, OH 45433, USA
* Correspondence: avakil@oakland.edu (A.V.); li4@oakland.edu (J.L.)

Abstract: In the Information Age, the widespread usage of blackbox algorithms makes it difficult
to understand how data is used. The practice of sensor fusion to achieve results is widespread, as
there are many tools to further improve the robustness and performance of a model. In this study,
we demonstrate the utilization of a Long Short-Term Memory (LSTM-CCA) model for the fusion
of Passive RF (P-RF) and Electro-Optical (EO) data in order to gain insights into how P-RF data are
utilized. The P-RF data are constructed from the in-phase and quadrature component (I/Q) data
processed via histograms, and are combined with enhanced EO data via dense optical flow (DOF).
The preprocessed data are then used as training data with an LSTM-CCA model in order to achieve
object detection and tracking. In order to determine the impact of the different data inputs, a greedy
algorithm (explainX.ai) is implemented to determine the weight and impact of the canonical variates
provided to the fusion model on a scenario-by-scenario basis. This research introduces an explainable
LSTM-CCA framework for P-RF and EO sensor fusion, providing novel insights into the sensor
fusion process that can assist in the detection and differentiation of targets and help decision-makers
to determine the weights for each input.

Keywords: heterogeneous sensor fusion; dense optical flow; greedy algorithm; explainable AI;
canonical correlation analysis

1. Introduction

Even with the widescale use of neural network-based algorithms becoming common in
everyday aspects of life such as advertising, banking, manufacturing, medical applications,
and many more, it remains difficult to fully understand of how these algorithms utilize
the data with which they are provided. Neural network-based algorithms are considered
black boxes; however, unlike traditional algorithms they are considerably more versatile in
the ways in which they can be trained to learn from different sources of information. In
the modern age, there are an almost infinite number of potential sources of data. In the
case of marketing, information from social media can be used to infer the products and
services a user might be interested in based on trends that include their socioeconomic
status, political views, residence, job, and many other seemingly unrelated factors.

The ability to sift through such junk data and fulfill the desired application is the main
reason such black box systems are popular and widely used despite the tradeoff of users
not having a complete understanding of their process. While many types of data may not
be sufficient to achieve the desired objective independently, more sources of information
can provide better context and trends that such algorithms can use. The fusion of multiple
sources of data leads to a more robust algorithm, allowing an algorithm utilize other
algorithmic tools in turn to achieve better results.

When it comes to applications such as detection, classification, and tracking, one of the
tools that is especially useful is canonical correlation analysis (CCA). Canonical correlation
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analysis has been used in the field of sensor fusion for a number of applications in recent
years [1]. A statistical method that focuses on maximizing the correlation between different
datasets, it has a versatile number of applications and is a tool that other fusion models can
capitalize on in order to improve overall performance. This can be especially useful when
the exact relationship between different sensors is not completely known and may be more
difficult to intuitively exploit.

This is particularly the case in passive radio frequency (P-RF) and electro-optical
(EO) sensor fusion. Due to the nature of P-RF data, which uses radio frequency data for
applications that do not directly reconstruct relative position via methods such as radar, it
can be quite difficult to use. The fusion for P-RF and EO data is extremely desirable due to
their complementary nature. While P-RF might not excel in the spatial resolution provided
by EO sensors, it is not limited by ocular obstructions and can provide excellent range along
with angular and spectral resolution. While there are a wide variety of methods to utilize
EO data, even after synchronizing the two modalities it is not always apparent what method
should be used to achieve the goal of fusing the two sources of information together. The
use of a powerful tool used in the fields of image enhancement [2] and cognitive radio [3]
naturally makes experimenting with the use of canonical correlation analysis (CCA) for EO
and P-RF sensor fusion highly desirable for object detection and tracking.

However, even if a fusion model performs well for the desired task, it remains impor-
tant to be able to understand its decision-making process. Neural network-based models
encounter the problem of explainability, as they are essentially black box systems. It has
been shown that such algorithms are not immune to bias [4], and by using explainability
and visualization techniques it becomes possible to reduce the uncertainty inherent in
training a black box model. Considering the possible uses for such models, including
algorithmic trading, medical diagnosis, and autonomous vehicles [5], along with the major
impacts they can have on their users, it is clear that models that handle such important
applications should have a certain level of interpretability.

To achieve explainable sensor fusion, the present research presents CCA utilities for
P-RF and EO sensor fusion for the purposes of target detection, tracking, and differentiation.
We utilize a greedy algorithm and visualization methods to draw inferences about the
fusion model’s decision process in order to provide greater transparency. Using the weights
provided by the greedy algorithm and saliency maps from the visualizations, we infer
the behaviors and mannerisms of the model to support our understandings regarding
the use of fusion data. Using a modified deep CCA fusion model, we are able to confirm
the value of passive RF data for this application, achieve higher performance with an
explainable model, and aid in furthering the use of P-RF and EO data for target tracking. In
the rest of this paper, Section 2 covers the relevant literature, Section 3 further explains our
experimental design and methodology, Section 4 covers the experimental results, Section 5
provides a discussion of the results, and Section 6 concludes the paper.

2. Literature Review
2.1. Canonical Correlation Analysis

Canonical correlation analysis was first published in 1936 by Harold Hotelling, and
has seen increasing use in recent years [6]. Originally proposed for association between
arithmetical potentials, the algorithm quickly grew into one for finding the best predictors
among linear functions by maximizing the correlation coefficient between two sets. There
are a wide variety of different CCA-based approaches, including Latent Variable Model
and Bayesian CCA [7] and Multiview CCA, which can be further divided into the pairwise
correlation [8], zero order correlation [9], and high order correlation [10] approaches. In addition,
there are kernel-based methods such as Kernel CCA [11] and Discriminative CCA [12], which
are further divided into global and local discriminative methods, as well as Sparse CCA [13],
Locality-Preserving CCA [14], and many more. However, for the purposes of this paper,
the majority of the focus is on CCA applications tied to deep learning-based approaches,
specifically, LSTM.
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Deep CCA comes in many popular forms, typically using Deep Neural Networks
(DNN), Autoencoders, or Convolutional Neural Networks (CNN) [15]. There are advan-
tages to using this approach compared to approaches such as Kernel CCA or locality
preserving CCA. This nonlinear approach to using CCA is not restricted by a predefined
kernel or local information. Rather than relying on handcrafted features, Deep CCA and
similar approaches seek more complex nonlinear associations between two views or ob-
servations by passing the information through a neural network. Considering the major
impact and diversity in the methods used for multi-modal fusion, the appeal of CCA for
high dimensional data becomes obvious. In previous research, our group has determined
that deep learning is capable of differentiating between targets using P-RF data [16] when
fused with EO data for vehicle and even human targets [17]. Thus, the use of ML with
CCA is desirable to enhance performance, motivating the use of a modified deep CCA
network [15] for fusion.

2.2. Eo/Rf Sensor Fusion

When it comes to modalities that involve radio frequency (RF) and electro-optical
(EO) sensors, the focus for fusion research has traditionally been on active RF [18] sensors
and [19] applications. Whether it is the fusion of Synthetic Aperture Radar (SAR) and
multi-spectral images [20] via random forest classifier or double-weighted decision level
neural network fusion schemes [21], many EO/RF sensor fusion applications normally
use active RF in one form or another. Doppler radar and imaging radar (e.g., side-looking
airborne radar) as well as other similar active RF sensors are well suited for tracking a
moving target, a combination that is highly desirable when successfully fused with EO
input. The combined view and the exploitation of the two types of sensor modalities has
room for improvement [22], however. RF based modalities excel in providing features that
are desirable for tracking. Range, angular, and spectral resolution of information from RF
modalities has long been the basis of radar technology, and is adept at tracking moving
targets. The benefits of combining these data with the higher spatial resolution of EO-based
sensors is extremely desirable for detection, differentiation, and tracking of targets in a
number of environments. There are a few RF based modalities that are used in applications
such as tracking, proximity, localization, and detection. While many EO modalities are
intuitively easier for humans to understand and implement for similar applications, unlike
RF modalities, RF approaches to such applications are less susceptible to outside factors
such as ocular interference. RF-based sensors are not limited or obscured by factors such as
visual interference from natural phenomenon such as fog, clouds, snow, or any other form
of weather that would otherwise normally interfere in the collection of EO data. In addition
to this, RF-based sensors can provide repetitive coverage over a wide geographical area,
and can determine the precise distance and velocity of a target.

There are many methods for using RF data, including both active and passive us-
age. In [23], support vector machine (SVM) is used as a final method of classification to
achieve sense-and-avoid for unmanned aircraft. The use of an autoencoder-based dynamic
deep directional unit network [24] was capable of learning compact and abstract feature
representations from high-dimensional spatiotemporal data of full motion video and I/Q
data for the purposes of event behavior characterization. Other research into achieving
EO/RF fusion for vehicle tracking and detection using Full Motion Video and P-RF in-
cludes joint manifold learning [25], a sheaf-based approach with its data [26], and SVM
classifier [23]. In [25,26], simulation data were used as the primary method of training
and testing, while in [23] real data were used. In [25], a joint manifold learning fusion
approach was used for mixed simulation data using DIRSIG-generated data. Finally, in [26],
simulated multi-sensor data were used to locate a moving emitter with Sheaf Theory.

While most research is focused on active RF applications, there are a number of
advantages for the implementation of passive RF modalities such as passive radar and RFID
compared to the use of active methods. Passive RF modalities are more difficult to detect,
and typically have lower power requirements and lower costs compared to the construction
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and use of active radar. Furthermore, they are harder to implement countermeasures
against; jamming and spoofing can corrupt the collection of RF-based modalities and
transmitted imagery. Combining the two modalities improves overall reliability, and has
previously been implemented in a few applications for target detection, estimation, and
tracking. While P-RF data have been used in a fusion-focused approach [24,27,28], if a
blackbox based approach is utilized it can be difficult to understand exactly how the data
are used. For this reason, having a level of transparency can be extremely helpful, which
is why the main focus of the present research is on explainability with respect to how the
modalities are used.

2.3. Explainable AI

As explainable AI (XAI) is an emerging field in research and industry, there has yet
to be a widely adopted standard [29], let alone a widely adopted method of quantifying
interpretability for explaining models. Even discussing the different methods of how
to quantify such approaches is quite a task in itself, as there are a number of different
classifications for such types of interpretability. To even begin discussing the topic of
XAI, the most important thing is to define interpretability. There are several definitions
of interpretability or explainability. For models that deal with EO modalities for example,
interpretability might be defined as being able to map the predicted class [30] into a domain
that might allow the human user to infer the decision-making process. In an ideal system,
one might even define interpretability as a reasonable explanation as to why a collection of
features contributed to the decision-making process, or allow for determining how much
weight the decision-making process gave to said [31] features.

From saliency maps to activation maximization, there are a number of methods by
which interpretability can be achieved. The distinctions between these types of methods are
typically twofold, described as either ante hoc or post hoc, local or global, or model-specific
or [32] model-agnostic. Ante hoc and post hoc describe an intrinsically interpretable model
from different approaches. Ante hoc systems provide explanations from the beginning of
the model, such as the Bayesian Rule List [33], a generative model that yields posterior
distribution over decision lists consisting of a series of if–then-statements. Other examples
can include methods such as visualization, saliency mask, rule extraction, and even neuron
activation. Post hoc techniques, on the other hand, focus on creating explainability in a
model based on the model’s outcome, marking the part of the input data responsible for the
final decision. Similar to ante hoc techniques, this can include visualization and saliency
mapping, and can use methods such as gradients and feature importance as well.

Similar to these, though not quite the same, are the descriptor local and global inter-
pretability. Local interpretability provides explanations only for each single prediction,
while global interpretability explains the logic of the whole system, from the input to every
possible outcome. Methods such as Grad-CAM [34] are examples of local interpretability
systems, using global average pooling and heat maps of a pre-softmax layer in order to
determine the regions of an image responsible for prediction. Lastly, the model-specific
and model-agnostic descriptors refer to the usability of different aspects of the system, with
model-agnostic being indifferently usable and model-specific is tied to a particular type
of black box or data. For methods that are post hoc-oriented solutions to explainability,
there exist a number of methods for image-based neural networks. Visualizations, the
use of gradients [35], activation maximizations [36], rebuilding the final layer of a neural
network via deconvolutions [37], and applying decomposition [38] are among the com-
mon approaches. Visualization techniques typically use tools such as generative models
or saliency maps in order to determine activations produced on each layer of a trained
CNN or DNN after processing an image or video. The visualization of the key neurons
or neuron layers highlights the responsible features that lead to a maximum activation or
the highest possible probability of prediction. Deconvolution, sometimes referred to as
inverting DNNs [39], can be applied to create special typical inputs or parts of an input.
These special inputs are created to fit the desired output of the network, producing a special
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layer or single unit to recreate the results. Finally, decomposition/isolation, transfer, and
limitation of portions of networks can provide further insights into which way single parts
of the architecture influence the output layer.

3. Design and Methodology

This section highlights the components of the experimental design. The first subsection
covers the dataset, the scenarios chosen, and the general objectives for detection and
tracking. The second subsection covers how the chosen data types, that is, EO and P-
RF, were preprocessed prior to being used for training. The third subsection covers the
model utilized for the explanations and the highest-performing model that our research
group tested on this dataset. The last subsection covers the greedy algorithm used for the
explanations, the results of which are discussed in Section 4.

3.1. The Escape Dataset

In 2019, a collaboration between the Air Force Research Laboratory (AFRL) and
Michigan Tech Research Institute (MTRI) released their Experiments, Scenarios, Concept of
Operations, and Prototype Engineering dataset (ESCAPE) [40]. The ESCAPE dataset is a
versatile toolkit of different sensor modalities and scenarios that include infrared (IR), full
motion video (FMV), passive RF data, and acoustic, seismic, and active radar imagery data.
This information is collected via a number of sources, with the majority of the data being
collected by portable or preexisting towers that remain stationary during testing.

The primary advantages of using this dataset are the number of options for each of its
scenarios and the design of the ESCAPE dataset. Multi-source data collection provides a
number of vantage points from which information on various ground targets can be used
for data fusion research. The design of the dataset enhances the complexity and opportunity
of such research by increasing the number of available modalities, in addition to outdoor
experimental irregularities. In this dataset, various ground vehicles are witnessed leaving
the observed scene available sensors, then potentially reemerging, thereby “escaping”
detection and tracking. This design incentivizes ML algorithms to utilize other sensory
data in order to confirm target detection, tracking, and classification. A brief description of
the scenarios we used can be found in Table 1.

There are a total of five different types of ground vehicles used in the dataset: a gas
motor Gator utility vehicle, a diesel motor Gator utility vehicle, a pickup truck, a panel
van, and a stake rack truck. It should be noted that between the Gator vehicles the diesel-
powered gator had different acoustical and seismic signatures due to the nature of its
propulsion system, despite how relatively similar the John Deer vehicles look compared to
the trucks or vans. These five vehicles are the primary focus of the ESCAPE dataset, and by
design are always the aforementioned targets of the dataset.

Table 1. Scenario Overview.

Scenario Description

Scenario 1 Two vehicles: one behind treeline, one in sight, “switches”
in the garage

Scenario 2(2C) Three vehicles: one behind treeline, one vehicle that looks
different that simply moves out of sight, one in sight,
“switches” in the garage

Scenario 3(2D) Five vehicles: four come out of the garage and shuffle the
order while another comes out from the back of the garage

For the multimodal heterogeneous EO/P-RF sensor fusion research presented in this
paper, the raw RF data were preprocessed to obtain I/Q histograms with respect to the
time. The histograms were then aligned with the simulated EO data for the purposes of
detecting and discriminating between the different vehicles in each scenario. These P-RF
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data were obtained from three sources, designated as points 11, 12, and 13 for the MTRI
P-RF sensors (depicted in Figure 1 as the orange trapezoids 11, 12, and 13) used to collect
the I/Q data. The EO data were collected by MTRI EO Sensor 04, shown in Figure 1 as the
blue semicircle. While the ESCAPE dataset has a total of nine scenarios, for the purposes of
experimentation the research presented in this paper uses Scenarios 1, 2(2C), and 3(2D).
These scenarios were picked specifically for a number of reasons. Based on results from
earlier research with the same dataset, the EO input provided by the two SUAS produced
less than acceptable results in terms of accuracy, while the MTRI EO sensor designated,
designated as Sensor 04, provided the optimal results.

Figure 1. Scenarios 1, 2, and 3. In Scenario 1, Vehicle 2 (the yellow triangle) attempts to hide behind
the treeline, while Vehicle 1 (the red traingle) drives around the garage. In Scenario 2, a third vehicle
(the green triangle) attempts to “substitute” itself for Vehicle 2 after Vehicle 2 enters the garage. In
Scenario 3, there is a shuffle as multiple vehicles, including 4 and 5 (the purple and blue triangles,
respectively) begin to shuffle as they drive around and enter the garage.

3.2. Data Preprocessing

In order to better exploit the combined view that the P-RF and EO sensors provide,
certain steps had to be taken in order to implement their fusion. From previous research [7]
with this dataset, we determined that the input of the raw P-RF data by itself was not
sufficient for fusion, even via neural network. There had been other attempts using
supervised learning and other classifiers. However, the performance of these classifiers was
insufficient even for classifying scenarios, let alone handling the task of identifying specific
targets. While the ESCAPE dataset does provide the sensory information required for radar,
this research is primarily focused on exploitation of the passive RF information available
in concert with the EO data. Because the raw in-phase and quadrature components (I/Q
data) were insufficient for classification purposes, the data were transformed into a series of
histograms corresponding to the same points in time as each of their respective frames. The
EO data, on the other hand, were preprocessed through dense optical flow (DOF) to remove
inactive targets from detection. In prior research [16], it was determined that the use of a
neural network-based approach is desirable, as when traditional methods were compared
all except nearest centroid performed underwhelmingly. To handle this crucial issue of
computer vision, dense optical flow (DOF) [41] was applied on the EO images. Lastly,
the application of canonical correlation analysis and the input of the variates between the
P-RF and EO data was a necessary step for the creation of the current fusion model. In
previous research, the application of CCA variates drastically improved the performance
of the classifiers for discriminating between different targets. In the case of P-RF and EO
fusion for the ESCAPE dataset, the results of the XAI indicate that the variates provide
insight that can be almost as valuable as the DOF-EO input. As previous research shows
that including the canonical variates is proven to increase performance with respect to F1
score and the Tracking Detection Rate, the use of CCA variates in training for the fusion
model was a clear choice for the XAI research.
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3.3. Lstm-CCA

For the purposes of fusion, the model utilized was an LSTM-CCA as seen in figure 2
below. This model uses the same inputs as the data frame fusion model for explainable
AI, and can therefore provide a fair comparison in order to determine whether the greedy
algorithm prototype can perform competitively with a less transparent ML model. The
LSTM-CCA model uses a CCA layer derived from the work of Deep CCA [42]. While LSTM-
CCA is often used for prediction of time-series data such as medical applications [43] or
fault monitoring [44], the nature of the “evasion” of the targets makes it extremely useful
for this dataset. The Deep CCA creates a layer that computes the representations of the two
views (P-RF histograms and DOF-EO frames for corresponding points in time) that are
connected from two deep networks. While the neural network type is different, using the
same architecture to process the two views separately with CCA is a desirable approach for
this dataset based on the target detection and classification results. Thus, the outer layers
were trained to be maximally correlated with each view.

Figure 2. LSTM-CCA architecture overview.

LSTM-CCA relies on the CCA Layer approach of Deep CCA with a few minor changes.
The correlations of the two outermost views are used, then the correlations and two views
are fed into an LSTM. These results are then run through the network in sequence and
used to produce a classification output to determine which vehicles are moving during the
provided frames. After the training is completed, evaluation begins. For the purposes of
implementation, the equations remain the same, with a change in optimization function to
RMSProp followed by a standard sigmoid activation function. Rather than implementing
the system only with deep neural networks, the resulting views are saved with respect to
time, being loaded as a sequential vector for the LSTM portion of the network. While the
neural network architecture and implementation of the original Deep CCA layer differ, the
purpose of the CCA layer’s implementation in the LSTM remains the same. The model
then undergoes training and cross-validation, with thirty percent of the data retained for
validation and seventy percent used for training.

3.4. Explainable AI

For the purposes of experimentation, the analysis of the LSTM-CCA Fusion model
occurs after preprocessing and compares the local and global weights of the fusion model
for each of the scenarios with respect to their performance with individual targets. To
facilitate this, explainX.ai is used. ExplainX.ai uses a streamlined and optimized version
of [45] ProtoDash, a versatile algorithm that works with any black box ML algorithm to
identify similar prototypes. The creation of these prototypes, representatives that optimally
describe the black box algorithm, allow for the coherent framework to find and determine
non-negative weights by importance. Using this framework combined with the current
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data frame and CCA inputs is what composes the generated Greedy Algorithm used in the
experiments.

ProtoDash uses a greedy algorithm to achieve optimization, seeking to assess the
importance of the generated prototype and using the nonnegative weights in order to
produce a more natural and easier to interpret comparison. The prototype framework
focuses primarily on deriving the theoretical bounds for the selection methods. The 2019
algorithm showcases its actionability, utility, and insight when summarizing a variety of
different datasets and applications (MNINST, Retail, CDC questionnaires case study). Ex-
plainX.ai is based off of this algorithm, though the number of available features it provides
is considerably increased, and is capable of providing insights based on a single prediction
point as well as providing a global overview of the interactions of different features in a
user-friendly manner. With respect to the features that explainX.ai provides, the four major
categories of transparency are global explanation, feature interaction, distribution, and local
interaction. For the purposes of this paper, the primary focus is on global explanation and
the comparison of weights in decision making. Though certain aspects of local interaction
are brought up in Section 4, the primary results and interpretation are focused on global
explanation due to the limited number of features used in the current data frame fusion
model. In future work, other aspects might be integrated after the data frame fusion model
is expanded, as discussed in Section 5. Global feature impact identifies which features in
a dataset have the greatest positive or negative effect on the outcomes of an ML model.
The impact value is the weight by which the input provided is used to produce a decision.
For the purposes of this paper, the impact of different variables on the decision-making
of the XAI fusion model is the focus. Due to the fact that the calculations of the feature
importance and feature impact remain the same for the four sources of input data, the
discussion of weight on decision-making is focused only on feature importance. In future
work, depending on the results of more than four types of information placed into the
model, other aspects of the global explanations might be implemented.

Feature interaction contains a number of visual representations of the model, specifically
a partial dependence plot and a summary plot. It decomposes the predictions into different
terms: a constant term, a term for the first feature, a term for the second feature, a term for
the interaction between two features, etc. The interaction between the two features is the
change in the prediction that occurs by varying the features after considering individual
feature effects. The partial dependence plot shows the marginal effect one or two features
have on the outcome of an ML model, while the summary plot provides the first indications
of the relationship between a value of a feature and the impact on the prediction, with
different colors representing the value of the features from low to high.

Distribution provides the option of viewing the impact of different variables via his-
togram or violin plot and the option to implement a multi-level Exploratory Data Analysis
(EDA) based on the chosen variables. Histograms of the different features can be individu-
ally produced. For the joint violet plots, the statistics summary provides mean, median,
model, interquartile values, etc. The distribution of the predicting variable can be found on
top of the other input variables in order to find the join distribution.

Finally, local interaction provides the options to view local feature impact and similar
profiles to the data. Local feature impact narrows down the global feature impact graph,
showing the decision plot and how much each feature contributes to the overall model
prediction for a specific point. Profiles generate similar profiles from within the dataset
based on how similar their attributes are with respect to model prediction and ground
truth values.

4. Experimental Results
4.1. Explainable AI

With respect to the performance of the tracking detection rate metric and the F1 score,
the results for the XAI fusion model were able to meet our expectations and achieve an
F1 score of 1.0 in both metrics for each respective target. While not practical in a larger-
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scale application, for the purposes of the ESCAPE dataset and the chosen scenarios this
improvement makes it the ideal model to analyze with explainability and gain insights
as to how the P-RF data is used. When compared with other approaches from previous
research [27,28], the use of the CCA layer provided the best performance possible for the
scenario data. While there is a slight change in distribution between all of them based
on the target being tracked, the results from the XAI indicate that the CCA input greatly
improves the heterogenous EO/P-RF sensor fusion.

As the results from the LSTM-CCA and the current XAI data were both able to achieve
a perfect F1 score and perfect score for the tracking detection rate metric, the primary focus
for this research is on the results for the XAI. More specifically, we focus on the weights
and transparency of the current fusion model and attempt to gain insights on how the less
intuitive data, that is, the P-RF data, are utilized. The use of the greedy algorithm in order
to derive a prototype approximation for the fusion model provides benefits for determining
the impact of different inputs for different scenarios. For the experimentation, the four
inputs for the data frame were the DOF-EO frames, the EO-CCA input, the P-RF histogram
input, and the RF-CCA input. For Scenarios 1, 2(2C), and 3(2D), Tables 2–4 below provide
the explainX.ai results with respect to the weights of each of the four inputs.

The overall results of the weights in the experiment with explainX.ai demonstrate a
reasonably well-spread and balanced result from the prototype. From the weights, it is clear
that the P-RF data play something of a role within the fusion model, even if the histogram
input is generally the lowest input weight relative to the other three data inputs. It is less
than surprising that the EO input consistently receives the highest weight, though it is an
interesting scenario in which the P-RF CCA variates are occasionally almost as important
to the decision-making process as the EO. The fused view performs better when the focus
is on Vehicle 1, which in the context of screen time in Scenario 1 makes sense with respect
to the weight distribution.

Table 2. explainX.ai weight results for Scenario 1.

Vehicle Input Weight

Vehicle 1

EO Input 0.212249
EO CCA Input 0.1844515

RF Input 0.1246046
RF CCA Input 0.2122194

Vehicle 2

EO Input 0.1269909
EO CCA Input 0.09609033

RF Input 0.08085641
RF CCA Input 0.08058309

For the most part, the results for scenario 2(2C) were within expectations. The EO
input predominantly leads in terms of weight for decision-making, followed closely by the
P-RF CCA values. That said, there are brief unexpected instances of the EO-CCA covariate
input dominating the results of the weights over the P-RF CCA covariate input. In light
of the importance of the EO input with regard to detecting the targets, it should not be a
surprise that the covariate input of that data should be important as well. However, as
seen in Table 2, the EO-CCA covariate input being used more in the decision-making for
certain vehicles is clearly not a fluke, and in certain cases is a major discriminating feature
for decision-making.
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Table 3. explainX.ai weight results for Scenario 2C.

Vehicle Input Weight

Vehicle 1

EO Input 0.1313921
EO CCA Input 0.1134093

RF Input 0.09182034
RF CCA Input 0.100984

Vehicle 2

EO Input 0.1841983
EO CCA Input 0.07001276

RF Input 0.06620991
RF CCA Input 0.1185514

Vehicle 3

EO Input 0.1304092
EO CCA Input 0.1116768

RF Input 0.0984916
RF CCA Input 0.1072683

In the case of Table 4, Vehicle 1 and Vehicle 3 both rely more on the EO-CCA input. In
comparison, Vehicle 5 barely uses the P-RF histogram or EO-CCA input at all. Compared
with the other targets, Vehicle 5’s classification relies almost entirely on the P-RF CCA and
DOF-EO inputs. Considering Vehicle 5 spends the least amount of time visible with respect
to the EO source, this indicates that the P-RF CCA input provides enough insight into the
activities of Vehicle 5 to be given the same weight as the EO input. While the P-RF CCA
data impact is relatively high for the scenario compared to the P-RF data impact, the sheer
difference in impact weight is especially visible with Vehicle 5’s weights.

Table 4. explainX.ai weight results for Scenario 2D.

Vehicle Input Weight

Vehicle 1

EO Input 0.09108965
EO CCA Input 0.0.07937257

RF Input 0.05895651
RF CCA Input 0.0654112

Vehicle 2

EO Input 0.10578873
EO CCA Input 0.09031994

RF Input 0.06189732
RF CCA Input 0.1057738

Vehicle 3

EO Input 0.1332544
EO CCA Input 0.1116768

RF Input 0.0984916
RF CCA Input 0.09032434

Vehicle 4

EO Input 0.1841983
EO CCA Input 0.0825

RF Input 0.08589286
RF CCA Input 0.09032434

Vehicle 5

EO Input 0.1343745
EO CCA Input 0.04249655

RF Input 0.007944699
RF CCA Input 0.134089

4.2. Inferences from Explainx AI

As both the XAI and the LSTM-CCA models were both capable of achieving a perfect
F1 score and tracking score of 1, the value in this experiment comes from the ability to see
how the XAI used information fed from the data frame for decision-making. For each of
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the scenarios and each of their respective targets, there are corresponding values for the
weights assigned by each of the four inputs, namely, the DOF-EO, EO-CCA variates, P-RF
histograms, and the RF-CCA variates, for decision-making. The tables, however, do not
address the bigger picture, instead focusing on the impact each of the individual aspects of
the data frame had on the classification of the vehicles.

In order to gain further insight on the model, we first explored the local feature
impact, as seen in Figure 3. The P-RF histograms appear to have a negative impact on the
outcome on the prediction process. In comparison however, the RF CCA variates appear to
have the highest positive impact, surpassing the DOF-EO image input and the EO CCA
variate inputs. These results are consistent with the experiments in this paper, as the P-RF
histograms never consistently reached performance near that of DOF-EO. The CCA input
drastically improved the results of the LSTM-CCA and the generated Greedy Algorithm,
which makes sense based on the the RF CCA variates bridging the gap between the P-RF
histograms and accurately detecting and tracking the individual targets.

Figure 3. Local impact of data frame attributes for EO, P-RF, and CCA variates for EO and P-RF
input data.

Next, we determined whether there is an overall impact of the RF CCA variates on
the local feature impact graph claims. By averaging the weight values for each vehicle and
each scenario, Figure 4 shows that the RF CCA input for the ESCAPE dataset holds the
second-highest value after the DOF-EO input. The average weight value is slightly higher
than that of the EO CCA variates, and naturally the P-RF histogram inputs are the lowest
on average. The average weight of the P-RF data is as expected, with the P-RF weight
almost always the lowest, with the sole exceptions of Vehicle 2 in Scenario 1 and Vehicle 4
in Scenario 3(2D), in which the RF-CCA input and the EO-CCA values are lower in weight.
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Figure 4. Comparison of average weights for all five targets.

Taking the results on a scenario-by-scenario basis and averaging the values for each
of them, Figure 5 displays the results for Scenario 1. As seen above, the difference in
average weight between the DOF-EO input and the RF CCA input is considerably close.
The RF CCA data have a little more than a 0.025 difference in weight for decision-making
compared to the DOF-EO input. It should be noted, however, that in Scenario 1 the EO
CCA input average weight has little more than a 0.006 difference from that of the RF CCA
input compared to the average, suggesting a less than 0.02 difference between the two
inputs. For Scenario 1, the CCA input is almost on par with that of the DOF-EO input
on average.

As for scenario 2(2C), the difference is not as close to that of the averaged results as
in Scenario 1. As seen in Figure 6, there is an over 0.4 difference in average weight input
from the DOF-EO input to the RF CCA variate input. The EO CCA variate input is not
far behind the RF CCA’s average weight, with the results even closer than in Scenario 1.
As is a reoccurring theme in this experiment, the P-RF histogram input remains at the
lowest average weight. The focus on inputs for decision making in the generated Greedy
Algorithm remains on the DOF-EO input followed by the RF and EO CCA variate inputs.

Figure 5. Comparison of average weights for Scenario 1.
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Figure 6. Comparison of average weights for Scenario 2C.

Finally, with respect to Scenario 3(2D), the most chaotic of the three scenarios, there
were a few notable anomalies in the standalone experiments. As seen in Figure 7, the most
pleasant of which was the clustering performance, as KNN just manages to exceed 0.9
accuracy for Vehicle 1 in scenario 3(2D). For this scenario and in future work revisiting
the performance for KNN warrants the use of activation maximization or another form of
visualization to determine the impact of the P-RF data on Vehicle 1. The overall performance
of the P-RF data is much stronger in Scenario 3(2D) than in Scenarios 1 and 2(2C). While
there are no other standalone instances of P-RF scoring above a 0.9, there are many that are
above 0.8 in comparison to the other two scenarios.

Figure 7. Comparison of average weights for Scenario 3(2D).

5. Discussion
5.1. Fusion Comparison

As the simplest way for the model to determine if a potential target is present is clearly
the usage of the EO data, the available data needed to be designed to “incentivize” the
model’s usage of the P-RF data. This is reflected in the weights for the most part, as the EO
and EO-CCA input is predominantly focused on weight wise, while P-RF and RF-CCA is
less often used. However, the level of accuracy the model possesses is an important factor,
as more errors might lead to a misunderstanding in how and when the P-RF data is best
utilized. For that reason, using the highest performing model is integral. With respect to
the performance of the tracking detection rate metric and the F1 score, the results for the
LSTM-CCA fusion model were able to meet the expectations and achieve a perfect score in
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both metrics for each respective target. These results indicate that the CCA values and the
data frame fusion model together are able to sufficiently track and detect the vehicles with
the EO and P-RF data for the application and dataset in question. While there was a slight
change in distribution between all of them based on the target being tracked, the results
from the generated Greedy Algorithm indicate that the CCA input helps to improve the
heterogenous EO/P-RF sensor fusion.

5.2. Explainable AI

As the results from the LSTM-CCA and the current XAI data were both able to achieve
a perfect F1 score and perfect score for the tracking detection rate metric, the primary
focus for this research is on the explanations provided by the generated Greedy Algorithm,
more specifically, the weights and transparency of the current fusion model. The use of
the greedy algorithm to derive a prototype approximation for the fusion model provides
benefits for determining the impact of different data inputs for different scenarios, which
provides context for when and where data was more useful with respect to the desired
target. For the experimentation, the four inputs for the data frame were the DOF-EO frames,
the EO-CCA input, the P-RF histogram input, and the RF-CCA input. For Scenarios 1,
2(2C), and 3(2D), Tables 2–4 provide the explainX.ai results with respect to the weights of
each of the four inputs.

The overall results of the weights experiment with explainX.ai demonstrate a rea-
sonably good spread and a balanced result from the prototype. From the weights, it is
clear that the P-RF data play a role within the fusion model, even if the histogram input
is generally the lowest input weight relative to the other three data inputs. It is less than
surprising that the EO input consistently receives the highest weight, though an interesting
scenario in which the P-RF CCA variates occasionally may be almost as important to the
decision-making process as the EO. The fused view performs better considering the focus
on Vehicle 1, which in the context of screen time in Scenario 1 makes sense with respect to
weight distribution.

For most part, the results of Scenario 2(2C) were within expectations. The EO input
predominantly leads in terms of weight for decision-making, followed closely by the P-RF
CCA values. That said, there are brief unexpected instances of EO-CCA covariate input
dominating the results of the weights over the P-RF CCA covariate input. Considering
the importance of the EO input with regard to detecting the targets, it should not be a
surprise that the covariate input of these data is important as well. As seen in Table 3,
the EO-CCA covariate input being used more in the decision-making for certain vehicles
is clearly not a fluke, and in certain cases is a major discriminating feature. In the case
of Table 4, Vehicle 1 and Vehicle 3 both rely more on the EO-CCA input; interestingly
enough, Vehicle 5 barely uses the RF histogram or EO-CCA input at all. Between the five
targets, Vehicle 5’s classification relies almost entirely on the P-RF CCA and DOF-EO inputs.
Considering that Vehicle 5 spends the least amount of time on the EO source, this indicates
that the P-RF CCA input provides enough insight into the activities of Vehicle 5 for it to
receive the same weight as the DOF-EO input.

5.3. Comparison of Weights

For each of the scenarios and each of their respective targets, there are corresponding
values for the weights each of the four inputs, namely, the DOF-EO, EO-CCA variates, P-RF
histograms, and the RF-CCA variates with respect to decision-making. The tables, however,
do not address the bigger picture, instead focusing on the impact each of the individual
aspects of the data frame has on the classification of the vehicles. To this end, in order to
gain further insight on the generated Greedy Algorithm, the first thing to do was to explore
the local feature impact for each of the three scenarios, as seen above. For Scenario 1, the
impacts for Vehicle 1 were higher than for Vehicle 2, with Vehicle 1 prioritizing the P-RF
CCA and EO inputs over the P-RF and EO-CCA inputs. Vehicle 2, on the other hand,
prioritized the input of the EO-CCA data and the P-RF data, which is to be expected given
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the relative lack of “screen time” that the vehicle in question had on the training data. The
only notable outlier with the Vehicle 2 data is the considerably lower importance weight at
the local level for the P-RF CCA input compared to Vehicle 1.

For Scenario 2(2C), the local feature importance of the P-RF and EO-CCA becomes
clear for almost all three of the vehicles. Vehicle 1 is the only instance for this scenario in
which the P-RF CCA and EO supersede the other two inputs, with P-RF and EO-CCA being
relatively tied. For Vehicle 2, the roles are reversed, with the P-RF and EO-CCA having the
higher respective weights and P-RF CCA and EO having the lower local weights instead.
This repeats for Vehicle 3, which makes sense due to the view for Vehicle 1 being more
dominant with respect to the “screen time” compared to Vehicles 1 and 2.

Finally, for scenario 3(2D), the scenario with the largest number of vehicles, there is
an outlier or two that occurs with these results for the local level feature weights. Vehicle
5 noticeably has a negative impact with respect to the EO input, which for the local data
and the global data is an anomaly. Vehicle 1 primarily focuses on the EO-CCA results,
with P-RF having the second highest weight, while the P-RF information has the lowest
local value. This is not the case for Vehicle 2, as the P-RF CCA and P-RF data are relied on
more locally, similar to how Vehicles 3 and 4 focus on the P-RF CCA and then the EO input
over the other features by comparison. For Vehicles 3 and 4, the priority of P-RF CCA, EO,
then EO-CCA and P-RF repeat, while Vehicle 5 prioritizes the P-RF CCA and P-RF data.
It is not all that surprisingly that Vehicle 5 focuses more on changes in the P-RF data and
actually assigns a local negative value for the EO, as from the EO point of view the vehicle
is nonexistent, being a negative influence for the data. In comparison to Vehicles 3 and 4,
which are similar, the same priorities at the local level are more focused on the EO data.

The next thing to consider is whether the RF CCA variates have as much of an overall
impact as the local feature impact graph claims. By averaging the weight values for each
vehicle and each scenario, the ESCAPE dataset the RF CCA input holds the second highest
value, after the DOF-EO input. The average weight value is slightly higher than that of the
EO CCA variates, and naturally the P-RF histogram inputs are the lowest on average. The
average weight of the P-RF data is easily expected, as the P-RF weight is almost always the
lowest, with the sole exceptions of Vehicle 2 in Scenario 1 and Vehicle 4 in Scenario 2(2D),
in which the RF-CCA input and the EO-CCA values are lower in weight.

Taking the results on a scenario-by-scenario basis and averaging out the values for
Scenario 1, the difference in average weight between the DOF-EO input and the RF CCA
input is considerably closer. The RF CCA data has a little more than a 0.025 difference in
weight for decision-making compared to the DOF-EO input. It should be noted, however,
that in Scenario 1 the EO CCA input’s average weight has little more than a 0.006 difference
than that of the RF CCA input compared to the average, which would suggest a less than
0.02 difference between the two inputs. For Scenario 1, the CCA input is almost on par
with that of the DOF-EO input on average.

As for Scenario 2C, the difference is not close to that of the averaged results in Scenario
1. There is an over 0.4 difference in average weight input from the DOF-EO input to the
RF CCA variate input. The EO CCA variate input is not far behind the RF CCA’s average
weight, and is even closer than in Scenario 1. As is a reoccurring theme in this experiment,
the P-RF histogram input remains at the lowest average weight. The focus on inputs
for decision making in the generated Greedy Algorithm remains on the DOF-EO input
followed by the RF and EO CCA variate inputs.

Lastly, for Scenario 2(2D), which holds the highest number of potential targets between
the three, the results show that in terms of average weight distribution the DOF-EO input
remains the largest impact on the decision-making process. RF CCA variates have the
second highest average weight, followed by a larger gulf between RF CCA variates and
the EO CCA variates than in Scenario 2C. The results in indicate that, as always, the P-RF
histogram input average weight remains the lowest of the four main features provided by
the data frame input. From these results, it appears that while the EO CCA variates input
does have moments in which its weight is higher than that of the RF CCA variates, globally
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and on average the decision-making is focused on the DOF-EO image input, then the P-RF
CCA variates, followed by the EO CCA variate inputs, and finally the P-RF histograms.

6. Conclusions

Through the use of explainX.ai (greedy algorithm), we received insights on the LSTM-
CCA model with respect to the impact of the data inputs used. P-RF data collected from
the I/Q data passively collected without any signals are generally not used, especially for
target identification and detection, unless the situation incentivizes the use of the data for
confirmation or detection. This research provides an understanding of how P-RF data can
contribute to vehicle tracking and detection within an urban environment and showcases
the results using real data from the ESCAPE dataset. More specifically, it provides insights
into the black box necessary to utilize this information via greedy algorithm. From these
results, we can infer and demonstrate the impact of P-RF and CCA data in the decision-
making process of the LSTM-CCA model.

While the model predominantly utilizes EO data for its decisions, in cases where
the EO data are insufficient, either due to there being a duplicate vehicle or the vehicle
being out of sight of the EO source, the model relies more on the P-RF data. These results
support our understanding of how the P-RF and EO data are utilized in different scenarios
and provide more transparency for the importance of their respective impacts in decision
making. While the target tracking application of a smaller dataset is relatively simpler to
work with, having only a maximum of five targets at a time, the larger question is how to
best measure the impact of the passive RF data with respect to detection and tracking. The
results in terms of the P-RF histograms average weight in prediction and decision making,
combined with the visualizations, indicate a more intuitive decision-making process that
the fusion model follows for target differentiation and tracking.
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