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Abstract: The segmentation of the left ventricle endocardium (LVendo) and the left ventricle epi-
cardium (LVepi) in echocardiography plays an important role in clinical diagnosis. Recently, deep
neural networks have been the most commonly used approach for echocardiography segmenta-
tion. However, the performance of a well-trained segmentation network may degrade in unseen
domain datasets due to the distribution shift of the data. Adaptation algorithms can improve the
generalization of deep neural networks to different domains. In this paper, we present a multi-space
adaptation-segmentation-joint framework, named MACS, for cross-domain echocardiography seg-
mentation. It adopts a generative adversarial architecture; the generator fulfills the segmentation task
and the multi-space discriminators align the two domains on both the feature space and output space.
We evaluated the MACS method on two echocardiography datasets from different medical centers
and vendors, the publicly available CAMUS dataset and our self-acquired dataset. The experimental
results indicated that the MACS could handle unseen domain datasets well, without requirements
for manual annotations, and improve the generalization performance by 2.2% in the Dice metric.

Keywords: echocardiography segmentation; adversarial learning; domain adaptation

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death among adults worldwide.
Echocardiography, the non-invasive imaging inspection tool, is widely applied in the
clinical routine of CVDs [1]. The analysis of echocardiography is often used clinically for
appraising cardiac morphology and function. For example, the ejection fraction (EF) [2] of
the left ventricle (LV) is one of the famous clinical indices to quantify the LV systolic func-
tion. The LVEF can be calculated by the volume of the left ventricle. The width of the left
ventricular myocardium also contains pathological information. The exact segmentation of
the left ventricle endocardium (LVendo) and the left ventricle epicardium (LVepi) provides
the clinical quantitative measures mentioned above. However, manual echocardiography
labeling requires a doctor with rich clinical expertise to spend a lot of time, which seri-
ously affects diagnostic efficiency. Smart health [3,4] can assist clinical diagnosis, such as
automatic echocardiography segmentation. Automatic echocardiography segmentation
remains an unresolved challenge due to the low signal-to-noise ratio and low contrast.
The boundaries between anatomical structures are ambiguous and sometimes missing
in echocardiography, and the performance of traditional segmentation methods [5,6] is
not satisfactory.

The development of deep learning [1,7] has promoted automatic echocardiography
segmentation. The U-Net [8] has provided a good idea for medical image segmentation.
Further, the RU-Net [9] merges two U-Nets as an attention mechanism to obtain the region
of interest (ROI) in the image. The first U-Net is used for preprocessing to simplify the
ultrasound image, and the second U-Net is corrected on this basis in order to produce
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the final segmentation result. Then, the Res-U [10] network couples the advantages of
the ResNet and U-Net to denoise the ultrasound images. More recently, some methods
have adopted echocardiography prior knowledge to help with LV segmentation. The
anatomical constrained neural network (ACNN) [11] incorporates the prior knowledge
of the heart anatomy structures to enhance the constraints on the segmentation bound-
aries. Veni et al. [12] propose a network that combines deep learning and a shape-driven
deformable model for LV segmentation. Cui et al. [13] propose the multi-constraint aggre-
gation learning (MCAL), which judges the boundary by anatomical knowledge and gives
the boundary region a higher weight. Painchaud et al. [14] deform illogical results with a
variational autoencoder that learns the cardiac shape. Ensemble learning also plays a role
in echocardiography segmentation. The TRSA-Net [15] adopts an innovative co-attention
learning structure for both segmentation and quantification tasks. The CLAS [16] achieves
temporal-consistent segmentation on echocardiographic sequences with co-learning from
the appearance and shape.

As a result of the diverse imaging devices and imaging protocols, echocardiography
datasets are greatly different from each other in domain styles, such as grayscale distribu-
tion. Figure 1 shows an example of echocardiography from diverse centers. These images
are inconsistent in the grayscale distribution and spatial texture. This discrepancy causes
the segmentation network trained on one dataset (source domain) to not be able to exert
effectively on another dataset (target domain) directly. This problem is expected to be miti-
gated via unsupervised domain adaptation, i.e., unpaired image-to-image translation. It
causes one domain image to be visually similar to another domain image, while preserving
the content information in the source images. Domain adaptation models based on the
generative adversarial network (GAN) have been widely used in natural image processing.
The SAGAN for image-to-image translation [17] introduces a self-attention network to
the GAN and bidirectionally translates the style feature with the global information. The
F-LSeSim [18] captures the spatial relationships of two domains and preserves the scene
structure consistency via a new self-supervised learning method. The CUT [19] is a con-
trastive learning method for patch-based image-to-image translation. The F-LSeSim and
CUT only learn the translation in one direction.
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The above-mentioned domain adaptation methods perform well in natural images, 
but are not fully functional in medical images; this is because most medical images have 
low color contrast. It is difficult to maintain the key structure by the domain adaptation 
in the image space [20], and a reasonable approach is the domain adaptation in other 
spaces. Recently, several approaches have been tried in this way on optical medical im-
ages. The p-OSAL [21] is a patch-based output space adversarial learning network for 
segmenting optical medical images from different datasets. The BEAL [22] network uses 
two discriminators driven by the boundary and entropy in the output space. The IOSUDA 
[23], based on the BEAL, aligns different datasets in both the input and output space. 
There is also some related research on grey-scale medical images. Yan et al. [24] propose 
a multi-output adapter for cross-vendor left ventricle segmentation on cine MRI se-
quences. The SIFA [25] accomplishes synergistic image and feature alignment across CT 
and MR images. However, there has been no research on domain adaptation for echocar-
diography segmentation. 

In this study, we present a multi-space adaptation-segmentation-joint network for 
extracting the LVendo and LVepi in echocardiography. The method is named the MACS. It 
adopts a GAN architecture, integrating the segmentation part (generator) and domain ad-
aptation part (multi-space discriminators) to handle the cross-domain echocardiography 
analysis. The segmentation part utilizes an attention mechanism to extract the multi-scale 
features. Then, a dual-branch prediction module decodes the features into segmentation 
masks, with an emphasis on both the target region and boundary. The domain adaptation 
part aligns the samples from different domains in both the feature space and output space, 
enforcing generators to refine the segmentation results.  

Our main contributions lie in the following. The MACS achieves the segmentation of 
the LVendo and LVepi in multi-domain echocardiography datasets using labels of only one 
domain for training. Specifically, it adapts the source domain and the target domain on 
both the feature space and output space, which avoids the side-effect of direct translation 
on the original ultrasound images [23] and improves the segmentation accuracy. The joint 

Figure 1. Echocardiography samples from different medical centers and vendors (a) CAMUS dataset:
GE Vivid E95 ultrasound scanners with a GE M5 S probe and (b) self-acquired dataset: Vinno G86
ultrasound scanners with a S1–6 PX probe.
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The above-mentioned domain adaptation methods perform well in natural images,
but are not fully functional in medical images; this is because most medical images have
low color contrast. It is difficult to maintain the key structure by the domain adaptation
in the image space [20], and a reasonable approach is the domain adaptation in other
spaces. Recently, several approaches have been tried in this way on optical medical
images. The p-OSAL [21] is a patch-based output space adversarial learning network
for segmenting optical medical images from different datasets. The BEAL [22] network
uses two discriminators driven by the boundary and entropy in the output space. The
IOSUDA [23], based on the BEAL, aligns different datasets in both the input and output
space. There is also some related research on grey-scale medical images. Yan et al. [24]
propose a multi-output adapter for cross-vendor left ventricle segmentation on cine MRI
sequences. The SIFA [25] accomplishes synergistic image and feature alignment across
CT and MR images. However, there has been no research on domain adaptation for
echocardiography segmentation.

In this study, we present a multi-space adaptation-segmentation-joint network for
extracting the LVendo and LVepi in echocardiography. The method is named the MACS.
It adopts a GAN architecture, integrating the segmentation part (generator) and domain
adaptation part (multi-space discriminators) to handle the cross-domain echocardiography
analysis. The segmentation part utilizes an attention mechanism to extract the multi-scale
features. Then, a dual-branch prediction module decodes the features into segmentation
masks, with an emphasis on both the target region and boundary. The domain adaptation
part aligns the samples from different domains in both the feature space and output space,
enforcing generators to refine the segmentation results.

Our main contributions lie in the following. The MACS achieves the segmentation of
the LVendo and LVepi in multi-domain echocardiography datasets using labels of only one
domain for training. Specifically, it adapts the source domain and the target domain on
both the feature space and output space, which avoids the side-effect of direct translation
on the original ultrasound images [23] and improves the segmentation accuracy. The
joint adaptation on the feature space and output space promotes the model adaptation.
Furthermore, detailed experiments were performed on two datasets from different medical
centers and devices. The ablation studies illustrate the contributions of each module of
the MACS. The comparisons with the state-of-the-art methods confirm that our method
achieves accurate segmentation on the unseen domain dataset. To the best of the authors’
knowledge, it is the first model [1] for cross-domain echocardiography segmentation.

The paper is organized as follows. Section 2 details the proposed method. Section 3
describes the experiment details. The experimental results are reported in Section 4 to
demonstrate the effectiveness of our method. In Section 5, we provide the extended
discussion. The conclusion is given in Section 6.

2. Methods

The MACS framework is shown in Figure 2. It consists of a generator (an attention-
based dual-branch segmentation module, ASDB) and multi-space discriminators. First,
images and annotations from the source domain datasets are used to optimize the ASDB
and obtain the intermediate features as well as the segmentation predictions. Entropy maps
are further calculated from the segmentation predictions. Simultaneously, images from the
target domain datasets also pass by the ASDB to generate the intermediate features and
entropy maps. Then, a feature discriminator and an entropy discriminator distinguish the
features and entropy maps from the different domains, respectively. The game between
the generator and discriminators forces the distributions of the predictions on the target
domain to fit that on the source domain. Thus, the MACS achieves accurate segmentation
on both the labeled source domain and the unlabeled target domain.
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Figure 2. Overview of the proposed MACS. The MACS consists of an attention-based dual-branch
segmentation module (ASDB), a discriminator in feature space, and a discriminator in the output
space. Source domain images (XS) and target domain images (XT ) are segmented by the ASDB
which is optimized using only source domain samples. The output of the segmentation network
contains predicted masks (Pm

X ) and high-level intermediate features (FX ). The entropy map (EX)

is calculated from the segmentation prediction Pm
X . and EX from two different domains are forced

to be aligned by discriminators, making the ASDB output accurate segmentation on unseen target
domain dataset.

2.1. Attention Segmentation with Dual-Branch(ASDB)

Semantic segmentation in ultrasound images is affected by ambiguous boundaries and
speckle noise. The multi-scale attention mechanism [26,27] has been proven to perform well
on ultrasound image segmentation. The ASDB (Figure 3) is inspired by the structure of the
Deep Attention Feature (DAF) [26,27] and obtains both the global and local context from the
features of the multiple levels. The layer-wise attention mechanism can assign the attention
weight of individual layers to comprehensively optimize the segmentation model. The
two branches of the ASDB are the output mask predictions (Pm

X ) and boundary predictions
(Pb

X), respectively. The dual-branch structure learns from the multi-scale features for the
robust segmentation.
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Figure 3. The architecture of the Attention Segmentation with the Dual-Branch (ASDB) module. The
encoder extracts multiply single-layer feature maps. The multi-layer feature is the fusion of these
feature maps. Single-layer features and multi-layer feature pass by the deep attention model (DAM)
for the refined feature. The dual-branch structure generates the prediction of the mask and boundary.
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The ASDB extracts four feature maps of different scales using the continuous ResNeXt.
The low-level and high-level features contain detailed and semantic information, respec-
tively. The layers of features are refined by the deep attention model (DAM). Specifically,
the multi-level features are fused and reweighted to form the multi-layer feature (MLF).
The MLF and single-layer feature maps are fed into the DAM for the refined feature maps.
The mask branch combines the original feature maps and the refined feature maps from
all levels and averages them for the final segmentation prediction. The boundary branch
learns from the refined feature maps of the lowest two feature layers.

The loss function of the ASDB module is:

Lseg = ∑n
i=1 L

i
bce + L

b
mse, (1)

where Li
bce represent the binary cross-entropy loss of the i-th layer prediction, Lmse is the

mean square error (MSE) loss for the boundary regression.

2.2. Multi-Space Discriminators

Multi-space discriminators take the segmentation predictions of both the source and
target domains as inputs and classify them according to their similarity of the distribution.
The discrepancy between the echocardiographies from different domains mainly contains
the grayscale distribution, the spatial texture, the ventricular location, the angle of probe
scanning, etc. While the echocardiography may appear different, the feature and output of
the segmentation share strong similarities (e.g., shape and topology). Therefore, adversarial
learning on the feature space and output space encourages a narrowing of the distribution
gap of the segmentation results between the source and target domain datasets. Then,
the segmentation network overcomes the performance degradation caused by the domain
migration and works on the target domain images.

2.2.1. Discriminator on Feature Space

The well-trained segmentation without the domain adaptation tends to produce
inaccurate predictions on target domain images. To obtain the semantic segmentation
information from the global features extensively, we chose higher-level features, extracted
by the segmentation network as inputs of the feature discriminator. As high-level features
contain lots of contexts and semantic information, their alignment could force the encoded
features of the source domain images and the target domain to be semantically consistent.

The feature discriminator Df aligns the high-level feature distributions by classifying
whether the feature is produced from the source domain or the target domain. When the
discriminator cannot judge from which domain features are extracted, the source domain
and target domain are successfully aligned on the feature space. Otherwise, gradients of
the discriminator Df are delivered backward to encourage the features of the target domain
to be more similar to the source domain.

The adversarial loss of the feature discriminator Df is:

LD f =
1
M ∑xs∈XS LD

(
P f

xs , 1
)
+

1
N ∑xt∈XT LD

(
P f

xt , 0
)

, (2)

where LD is the binary cross-entropy loss, and M and N are the number of source domain
images and target domain images, respectively; XS is the source domain dataset and XT is
the target domain dataset; P f

x is the predicted fused feature of the image x.

2.2.2. Discriminator on Output Space

Adversarial learning on the feature space ensures the high-level feature distributions
of the source domain and target domain are consistent, and encourages the segmentation
network to produce a structurally correct prediction. Nevertheless, this is not enough for
accurate segmentation. In addition to the high-level semantics, low-level details also have
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a huge impact on the segmentation predictions. Thus, adversarial learning on the output
space is further used to ensure the source-target consistency on the segmentation details.

For the domain adaptation on the output space, we utilize the entropy map discrimi-
nator De to align the entropy map calculated by the pixel-wise mask. The entropy is the
expected value that measures the uncertainty of the predicted mask (pm

x ). We calculate the
entropy map with the formula:

Ex = pm
x · log(pm

x ). (3)

As a rule of thumb, the prediction on the target domain is more uncertain than the
prediction on the source domain. In other words, the segmentation network optimized
by the source samples would perform better on the source domain. Therefore, we enforce
entropy maps of the target domain to approximate that of the source domain. Similarly to
the feature discriminator, the alignment on the output space is completed when the entropy
maps from the target domain and source domain are difficult to distinguish from each
other. The loss function of the entropy map discriminator De is:

LDe =
1
M ∑

xs∈XS

LD(Exs , 1) +
1
N ∑

xt∈XT

LD(Ext , 0) (4)

2.3. Training Procedure and the Overall Loss Function

We use source domain images (XS) and labels (YS) and target domain images (XT)
as training data. The images from both the source domain and the target domain are
input into the segmentation module ASDB to gain the predicted masks and boundaries.
The ASDB is optimized with the Lseg between the prediction PXS on the source domain
images and manual annotations YS (Equation (1)). Multi-space discriminators distinguish
the entropy maps and features from two domains, respectively. Two discriminators are
optimized independently.

The segmentation network and multi-space discriminators achieve the alignment of
the source and target domain through adversarial learning. The segmentation network
generates fused features and entropy maps for both of the domain datasets. Multi-space
discriminators need to identify the source domain membership as true and the target
domain membership as false. For the whole framework, the adversarial loss of Df and
De are:

L f
adv =

1
N ∑xt∈XT LD

(
P f

xt , 1
)

, (5)

Le
adv =

1
N ∑xt∈XT LD(Ext , 1). (6)

The minimum of the adversarial loss renders the segmentation prediction on the target
domain and the source domain indiscernible, and more similar features and entropy maps
force discriminators to improve their discriminating ability. The ASDB and discriminators
are optimized in turn for the domain adaptation at the model level and finally complete
the segmentation task in the target domain.

The overall loss function of the MACS is:

Ltotal = Lseg + λ
(
L f

adv + L
e
adv

)
, (7)

where λ is the variadic parameter for the function balance.

3. Experiments
3.1. Dataset

We evaluated the MACS on two echocardiography datasets, acquired with different
ultrasound equipment.

The public dataset CAMUS [28], collected from 450 patients, included 1800 frames
of cardiac ultrasound images with annotations. The apical two-chamber (A2 C) view and
apical four-chamber (A4 C) view were acquired by GE© M5 S for each patient. Three
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cardiologists provided and revised the manual contour of the LVendo and LVepi in the
end-diastole (ED) and end-systole (ES).

Our self-acquired echocardiography dataset was collected from 11 subjects by Vinno©
G86. The size of each image was 980 × 650 pixels. Each patient provided sequence images
of multiple cardiac cycles in the A2 C view and A4 C view. The dataset was composed of
images, sampled every ten frames apart from the echocardiographic sequence. We used the
same contouring protocol as the CAMUS for labeling. A cardiologist labeled these images.
We utilized 900 unlabeled images and 477 annotated images of this dataset to complete the
following experiment.

3.2. Implementation Details

The images were interpolated or cropped to the equal length and width and resized
to 256 × 256 pixels for the memory consumption reduction. Data augmentation was
accomplished by random crop, adding salt pepper noise, and adjusting intensity.

We implemented the network based on PyTorch (version 1.9.1) and trained the model
on two 12 GB Nvidia© TITAN Xp GPUs. The discriminator De and Df were optimized
with the SGD optimizer. The SGD optimizer applied an initial learning rate of 10−3 and
was divided by 0.2 every 100 epochs. The segmentation network ASDB was optimized
with the Adam optimizer. The initial learning rate of Adam was 2.5 × 10−5. The batch size
of the model was 8 and the network was trained for 200 epochs without warmup epochs.
Validation ran every 10 epochs for the model selection by mean dice index.

3.3. Evaluation Metrics

We quantitatively evaluated the segmentation performance on echocardiography
through the Hausdorff Distance (HD), the Dice index (DI) and the Jaccard index (JI). The
HD is a metric based on the boundary of the segmentation prediction, and the DI and JI are
region-based segmentation metrics.

The criteria are defined as:

HD = max
{

max
xεX

min
yεY
‖Pm

x − y‖, max
yεY

min
xεX
‖y− Pm

x ‖
}

, (8)

D I =
2× NTP

2× NTP + NFP + NFN
(9)

JI =
NTP

NTP + NFP + NFN
, (10)

where NTP, NFP, and NFN are the number of true positive, false positive, and false negative
pixels of the Pm

X , respectively, and Y is the ground truth of segmentation.

4. Result

In this section, we conduct a set of experiments on the CAMUS dataset and our
self-acquired dataset to evaluate the MACS. The ablation study in Section 4.1 analyzes
the importance of each component of the proposed model. Then, we alter the number
of unlabeled target domain images that participate in the training model and explore
the impact in Section 4.2. In Section 4.3, the MACS is compared with groups of domain
adaptation and segmentation networks to demonstrate the superiority of the joint model.
Section 4.4 presents the comparison with joint adversarial learning methods, which displays
the effectiveness of our model. The further experiment in Section 4.5 confirms that our
cross-domain segmentation model can achieve competitive accuracy.

4.1. Ablation Study

The ablation study is conducted to confirm the effectiveness of the key modules of
the MACS we proposed. Specifically, we use the four following modules to segment the
LVendo and LVepi:
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• ASDB, w/o Domain Adaptation (DA);
• ASDB + Feature discriminator, w/o Entropy Domain Adaptation (EDA);
• ASDB + Entropy discriminator, w/o Feature Domain Adaptation (FDA);
• Our proposed method (MACS).

In the ablation study, the self-acquired dataset and the CAMUS dataset are defined as
the source and the target domain, respectively.

Figure 4 displays the representative LVendo and LVepi segmentation predictions on
the CAMUS. The ASDB can recognize the ROI of the cross-domain segmentation task, but
the prediction masks are not ideal. The segmentation predictions of the ASDB without
any discriminator have a large structural error. Either a single discriminator in the feature
space or the output space corrects the structural mistake and encourages the segmentation
network to obtain accurate results. The integrated MACS with multi-space discriminators
further improves the segmentation performance of the boundaries and achieves the best
segmentation result of all of these modules.
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are a total of 1600 source domain images taking part in the training, we randomly sample 
200, 400 and 800 unlabeled images from the target domain for the rate of 1:8, 1:4 and 1:2 

Figure 4. Representative visual segmentation results of the ablation study. Different model configura-
tions are compared, including the ASDB, the ASDB + Feature discriminator (Df), the ASDB + Entropy
discriminator (De), and the full framework of the MACS. The green and blue contours indicate bound-
aries of the LVendo and LVepi, respectively. The yellow and orange colors denote the ground truth.

Table 1 demonstrates the quantitative results of the segmentation performance with
different modules. The addition of discriminators improves the mean DI by 2.2% for the
segmentation result in the CAMUS dataset.

For the full MACS model, the average running time of segmenting LVendo and LVepi
on a single echocardiography is approximately 0.175 s.
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Table 1. Ablation studies on the proposed MACS. The fully domain adaptation (DA), entropy domain
adaptation (EDA) and feature domain adaptation (FDA) are ablated, respectively. The up arrow
indicates expecting a higher value.

Methods
HD (↓) DI(↑) JI(↑)

mm val. val.

w/o DA
LVendo 6.38 0.8649 0.7738
LVepi 7.94 0.8777 0.7889

w/o EDA
LVendo 6.41 0.8630 0.7680
LVepi 7.70 0.9038 0.8278

w/o FDA
LVendo 6.56 0.8637 0.7700
LVepi 7.73 0.8949 0.8138

MACS
LVendo 6.30 0.8764 0.7881
LVepi 7.59 0.9037 0.8263

4.2. Impactation of Target Domain Images’ Number

Various numbers of target domain images may affect the effect of the multi-space
domain adaptation of the model and affect the segmentation on the target domain. To
explore the causality between these two, we train the framework with different quantities
of target domain images. In this experiment, the CAMUS dataset is the source domain
dataset and the self-acquired dataset is the target domain dataset. Considering that there
are a total of 1600 source domain images taking part in the training, we randomly sample
200, 400 and 800 unlabeled images from the target domain for the rate of 1:8, 1:4 and 1:2
between the target and source domain. In addition, we use 100 unlabeled target domain
images to represent the situation of a small amount of data for the adaptation in order to
perfect the experiment.

According to Table 2, with the increase in the number of target domain images that take
part in the training process, the DI and the JI of both the LVendo and LVepi are improved.
After the number of target domain images reaches more than 400, the accuracy of the
segmentation tends to plateau.

Table 2. Comparison of our MACS model trained with different numbers of target domain images.
The up arrow indicates expecting a higher value.

HD (↓) DI(↑) JI(↑)
Target Images Number

mm val. val.

LVendo 5.70 0.8983 0.8183
800LVepi 7.33 0.8874 0.7996

LVendo 5.65 0.9033 0.8265
400LVepi 7.64 0.8792 0.7910

LVendo 5.72 0.8967 0.8160
200LVepi 7.45 0.8832 0.7973

LVendo 5.69 0.8926 0.8094
100LVepi 7.41 0.8824 0.7950

The trends of the segmentation DI are visualized in Figure 5. With the increase in
the number of target domain images for training the model, the average of the mean DI
and the upper limit of the mean DI grows, while the median of the mean DI does not
change significantly.
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Figure 5. The mean Dice Index (DI) for segmentation results of the MACS trained with different
numbers of target domain images. (a) The line graph of the mean DI. (b) The boxplot of the mean DI.

4.3. Comparison with Unsupervised Domain Adaptation Methods

We compare our MACS with the state-of-the-art unsupervised domain adaptation
approaches: SAGAN [17], CUT [19], and F-LSeSim [18]. The image-to-image translation
is from the self-acquired dataset to the CAMUS dataset. The self-acquired dataset A4 C
view images are translated to the target domain and named XT→S, which maintain the
intrinsic content while having the style of source domain images. Then, the DAF is utilized
to segment the XT→S.

The image-to-image translation results and segmentation predictions are presented
in Figure 6. The CUT and F-LSeSim translate the echocardiography without a noticeable
deformation, but the details have been confused with the noise, which causes the failed
segmentation. The segmentation predictions on the images translated by the SAGAN are
visually similar to the ground truth, but there is a great deformation between the fake
image and the original image. The doctor cannot accept the result obtained from such a
distorted image. Thus, these domain adaptation methods cannot be applied to solve the
problem of cross-domain segmentation in echocardiography.
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The quantitative results from the comparative experiment are reported in Table 3. The
MACS reduces the mean HD by at least 3% compared with the segmentation after the
image-to-image translation. The mean DI and JI are also significantly improved.

Table 3. Comparison with the segmentation performance on images translated by the SAGAN,
F-LSeSim and CUT. The up arrow indicates expecting a higher value.

Methods

LVendo LVepi

HD (↓) DI (↑) JI (↑) HD (↓) DI (↑) JI (↑)
mm val. val. mm val. val.

SAGAN 6.03 0.8690 0.7715 7.28 0.9174 0.8419
F-LSeSim 6.60 0.8264 0.7125 7.93 0.8669 0.7707

CUT 7.01 0.7571 0.6236 8.34 0.8171 0.7020
MACS 5.79 0.8847 0.7963 7.11 0.9167 0.8475

4.4. Comparison with Joint Adversarial Learning Models

To confirm the effectiveness of our method, the MACS is compared with the state-of-
the-art adversarial learning methods: p-SOAL [21] and BEAL [22]. Considering the area
occupied by the left ventricle in the echocardiography is not exiguous, we remove the ROI
extraction module of p-SOAL. All of the adversarial learning models are trained with the
CAMUS training set and 400 unlabeled images from the self-acquired dataset, and are then
tested on 384 rest images of the self-acquired dataset. Table 4 shows the segmentation results
of the quantification. Comparing the result from the simple U-Net, all of the adversarial
learning methods improve the generalizability of the segmentation network. Our MACS
performs better on LVendo segmentation than the other two adversarial learning methods.

Table 4. Comparison with SOTA adversarial learning methods. The up arrow indicates expecting a
higher value.

Methods
HD (↓) DI (↑) JI (↑)

mm val. val.

U-Net
LVendo 6.47 0.8457 0.7462
LVepi 8.10 0.8630 0.7675

p-OSAL LVendo 5.68 0.8982 0.8178
LVepi 7.68 0.8734 0.7820

BEAL
LVendo 5.72 0.9030 0.8260
LVepi 7.29 0.8865 0.8021

MACS
LVendo 5.65 0.9033 0.8265
LVepi 7.64 0.8792 0.7910

Figure 7 presents the Bland-Altman analysis of our MACS and other adversarial
learning methods on the segmentation results of the self-acquired dataset. The Bland-
Altman plots reflect the consistency of the segmentation results and the ground truth. In
each subplot, the forest green or royal blue line indicates the average bias of the organ area,
and the brown lines indicate 95% confidence intervals (CI) of the area bias. For our method,
the average bias of the LVendo and LVepi areas are 0.45 and 2.8 compared with the ground
truth. The plots show that the average bias of the MACS is less than the other two methods
and the segmentation for the LVendo has a higher performance than for the LVepi. Figure 8
displays the representative segmentation performance on the self-acquired dataset.
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4.5. Comparison with SOTA Supervised Methods on the CAMUS Dataset

To show a more intuitionistic opinion of the performance, all 477 annotated images
in the self-acquired dataset are used for training the MACS, and the well-trained model
is tested on the CAMUS testing set. The segmentation results are compared with those
of some state-of-the-art fully-supervised methods on the CAMUS and the inter/intra -
observer variability, offered in [28]. These supervised methods are trained by 1600 images
with labels in the CAMUS. We show the results in Table 5.

Table 5. Comparison with SOTA supervised methods on the CAMUS dataset. The up arrow indicates
expecting a higher value.

Methods
HD (↓) DI (↑) JI (↑)

mm val. val.

Inter-obs
LVendo 8.50 0.8545 —
LVepi 6.45 0.9035 —

Intra-obs
LVendo 4.55 0.9375 —
LVepi 5.00 0.9540 —

DAPIS mean 5.26 0.9240 —

CLAS
LVendo — 0.9130 —
LVepi — 0.9400 —

TRSA-Net
LVendo 0.67 0.9543 —
LVepi 1.33 0.8678 —

DAF
LVendo 5.07 0.9335 0.8774
LVepi 6.44 0.9549 0.9143

MACS
LVendo 6.30 0.8764 0.7881
LVepi 7.59 0.9037 0.8263

Our method achieves a segmentation accuracy comparable to the intra-observer vari-
ability; this is particularly true for the segmentation of the LVendo as the DI of the MACS
segmentation results exceeds the inter-observer discrepancy by 2.5%. However, the seg-
mentation prediction still has a gap with the inter-observer variability. In addition, we can
observe that some of the existing state-of-the-art methods have also not attained a perfor-
mance higher than the inter-observer on the CAMUS. Compared with the state-of-the-art
supervised models, our MACS is trained with fewer annotated images and does not use
labels of the public dataset at all.

5. Discussion

In this work, we proposed a multi-space adaptation-segmentation-joint framework,
named the MACS, for generating an accurate segmentation prediction of the unseen target
domain. It addresses the challenge of enlarging the model generalizability when the domain
shifts. With the domain adaptation in the feature space and the output space, the MACS
trained by the source domain dataset generalizes to the target domain dataset.

Current echocardiography segmentation methods mainly focus on a single dataset.
However, imaging devices and medical centers affect the gap between different datasets.
As a result, the current segmentation models trained by one echocardiography dataset
cannot be generalized to another dataset. For a single medical center, physicians cannot
apply a model trained by other center’s datasets to their own images, they have to invest
a lot of time labeling their data and retraining the model. This reduces the usability of
automated segmentation methods in real clinical diagnosis.

The image-to-image translation is a commonly used strategy for cross-center tasks,
which can visually bridge the gap between the source and target domain. However, as
shown in Figure 6, image-to-image translation methods cannot fully preserve the features
and content concerned with the segmentation task when generating medical images. The
loss of the segmentation-related information greatly influence the following task. Therefore,
directly adapting the domain by image-to-image translation is not able to solve the cross-
domain segmentation in echocardiography. Our MACS avoids the interference of the
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information loss via the domain adaptation on the intermediate feature space and output
space. The adversarial learning strategy allows the model to learn the segmentation
features from the original images. The model can heed the segmentation-related detail of
images during the adaptation and generalizes the segmentation performance to the target
domain. According to Table 3, the joint framework performs significantly better than the
segmentation operation after the domain adaptation is conducted separately.

The MACS improves the segmentation performance in the target domain via the adver-
sarial learning between the segmentation network and discriminators. As demonstrated in
Table 5, the MACS trained by the self-acquired echocardiography dataset attains the mean
DI of 0.89 on the CAMUS dataset, which is better than the inter-observer segmentation
consistency offered. It is worth stressing that the MACS achieves such accuracy without
the use of the manual label of the CAMUS dataset, while other supervised methods are
required to be trained with thousands of annotated images. The results show that the
MACS can avoid many of the labeling costs in clinic and create a premise for automatic
echocardiography segmentation in clinical applications. The MACS is a practical method
for aiding clinical diagnosis.

Although the MACS has improved the segmentation performance on unseen domain
echocardiography, there are still limitations waiting to be consummated. The feature
discriminator and the entropy map discriminator are optimized independently during
adversarial learning, while the high-level fused feature and the segmentation mask are not
independent of each other. The relation between them may also affect the adaptation of the
model. In the future, the more effective strategy will be explored to collectively optimize
two discriminators to improve the segmentation performance of the model.

6. Conclusions

We present a segmentation framework named the MACS for LVendo and LVepi seg-
mentation in echocardiography from different domains. The domain adaptation on both
the feature space and output space in the model assists in maintaining the performance
of the segmentation network on unseen domain images. Concretely, the model extracts
fused features and entropy maps from different domains, then aligns them with adversarial
learning. The effectiveness of each component is appraised through the ablation study.
Our method outperforms the state-of-the-art methods on two datasets, which verifies the
elegance and accuracy of the MACS on cross-domain echocardiography segmentation.
Considering our self-acquired dataset is not able to cover various cardiac pathological
situations, future research will evaluate the model on a larger dataset.

Author Contributions: Conceptualization, T.C., M.X. and Y.W.; methodology, T.C.; software, T.C.;
validation, T.C.; formal analysis, T.C.; investigation, T.C. and M.X.; data curation, T.C. and M.X.;
writing—original draft preparation, T.C.; writing—review and editing, T.C., M.X., Y.H., J.J. and Y.W.;
visualization, T.C. and M.X.; supervision, Y.W.; project administration, Y.W.; funding acquisition, Y.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant 82227803).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The authors do not have permission to share data.

Acknowledgments: This study received data support from Vinno Corporation, China.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 1479 15 of 16

References
1. Chen, C.; Qin, C.; Qiu, H.; Tarroni, G.; Duan, J.; Bai, W.; Rueckert, D. Deep Learning for Cardiac Image Segmentation: A Review.

Front. Cardiovasc. Med. 2020, 7, 25. [CrossRef]
2. Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.;

Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from
the American Society of Echocardiography and the European Association of, Cardiovascular Imaging. Eur. Heart J. Cardiovasc.
Imaging 2016, 17, 412. [CrossRef]

3. Shen, Y.; Zhang, H.; Fan, Y.; Lee, A.P.; Xu, L. Smart Health of Ultrasound Telemedicine Based on Deeply Represented Semantic
Segmentation. IEEE Internet Things J. 2021, 8, 16770–16778. [CrossRef]

4. Shankar, K.; Perumal, E.; Elhoseny, M.; Taher, F.; Gupta, B.B.; Abd El-Latif, A.A. Synergic Deep Learning for Smart Health
Diagnosis of COVID-19 for Connected Living and Smart Cities. ACM Trans. Internet Technol. 2022, 22, 1–14. [CrossRef]

5. Belous, G.; Busch, A.; Rowlands, D.; Gao, Y.S. Segmentation of the Left Ventricle in Echocardiography Using Contextual Shape
Model. In Proceedings of the International Conference on Digital Image Computing—Techniques and Applications (DICTA),
Gold Coast, QLD, Australia, 30 November–2 December 2016; pp. 765–771.

6. Noble, J.A.; Boukerroui, D. Ultrasound image segmentation: A survey. IEEE Trans. Med. Imaging 2006, 25, 987–1010.
[CrossRef] [PubMed]

7. Ren, P.; Xiao, Y.; Chang, X.; Huang, P.-Y.; Li, Z.; Gupta, B.B.; Chen, X.; Wang, X. A Survey of Deep Active Learning. ACM Comput.
Surv. 2022, 54, 1–40. [CrossRef]

8. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany,
5–9 October 2015; pp. 234–241.

9. Leclerc, S.; Smistad, E.; Grenier, T.; Lartizien, C.; Ostvik, A.; Cervenansky, F.; Espinosa, F.; Espeland, T.; Berg, E.A.R.; Jodoin, P.-M.;
et al. RU-Net: A refining segmentation network for 2D echocardiography. In Proceedings of the IEEE International Ultrasonics
Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 1160–1163.

10. Ali, Y.; Janabi-Sharifi, F.; Beheshti, S. Echocardiographic image segmentation using deep Res-U network. Biomed. Signal Process.
Control. 2021, 64, 102248. [CrossRef]

11. Oktay, O.; Ferrante, E.; Kamnitsas, K.; Heinrich, M.; Bai, W.; Caballero, J.; Cook, S.A.; de Marvao, A.; Dawes, T.; O’Regan, D.P.;
et al. Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation.
IEEE Trans. Med. Imaging 2018, 37, 384–395. [CrossRef] [PubMed]

12. Veni, G.; Moradi, M.; Bulu, H.; Narayan, G.; Syeda-Mahmood, T. Echocardiography Segmentation Based On A Shape-Guided
Deformable Model Driven By A Fully Convolutional Network Prior. In Proceedings of the 15th IEEE International Symposium
on Biomedical Imaging (ISBI), Washington, DC, USA, 4–7 April 2018; pp. 898–902.

13. Cui, X.; Zhang, P.; Li, Y.; Liu, Z.; Xiao, X.; Zhang, Y.; Sun, L.; Cui, L.; Yang, G.; Li, S. MCAL: An Anatomical Knowledge Learning
Model for Myocardial Segmentation in 2-D Echocardiography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022, 69, 1277–1287.
[CrossRef] [PubMed]

14. Painchaud, N.; Duchateau, N.; Bernard, O.; Jodoin, P.M. Echocardiography Segmentation With Enforced Temporal Consistency.
IEEE Trans. Med. Imaging 2022, 41, 2867–2878. [CrossRef] [PubMed]

15. Cui, X.; Cao, Y.; Liu, Z.; Sui, X.; Mi, J.; Zhang, Y.; Cui, L.; Li, S. TRSA-Net: Task Relation Spatial Co-Attention for Joint Segmentation,
Quantification and Uncertainty Estimation on Paired 2D Echocardiography. IEEE J. Biomed. Health Inform. 2022, 26, 4067–4078.
[CrossRef] [PubMed]

16. Wei, H.; Cao, H.; Cao, Y.; Zhou, Y.; Xue, W.; Ni, D.; Li, S. Temporal-Consistent Segmentation of Echocardiography with Co-learning
from Appearance and Shape. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI), Lima, Peru, 4–8 October 2020; pp. 623–632.

17. Kang, T.; Lee, K.H. Unsupervised Image-to-Image Translation with Self-Attention Networks. In Proceedings of the IEEE
International Conference on Big Data and Smart Computing (BigComp), Busan, Republic of Korea, 19–22 February 2020;
pp. 102–108.

18. Zheng, C.; Cham, T.-J.; Cai, J. The Spatially-Correlative Loss for Various Image Translation Tasks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), held online, 19–25 June 2021; pp. 16402–16412.

19. Park, T.; Efros, A.A.; Zhang, R.; Zhu, J.-Y. Contrastive Learning for Unpaired Image-to-Image Translation. In Proceedings of the
16th European Conference on Computer Vision (ECCV 2020), Glasgow, UK, 23–28 August 2020; pp. 319–345.

20. Xia, M.; Yang, H.; Qu, Y.; Guo, Y.; Zhou, G.; Zhang, F.; Wang, Y. Multilevel structure-preserved GAN for domain adaptation in
intravascular ultrasound analysis. Med. Image Anal. 2022, 82, 102614. [CrossRef] [PubMed]

21. Wang, S.; Yu, L.; Yang, X.; Fu, C.-W.; Heng, P.-A. Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup
Segmentation. IEEE Trans. Med. Imaging 2019, 38, 2485–2495. [CrossRef] [PubMed]

22. Wang, S.; Yu, L.; Li, K.; Yang, X.; Fu, C.-W.; Heng, P.-A. Boundary and Entropy-Driven Adversarial Learning for Fundus Image
Segmentation. In Proceedings of the 10th International Workshop on Machine Learning in Medical Imaging (MLMI)/22nd
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Shenzhen, China,
13–17 October 2019; pp. 102–110.

http://doi.org/10.3389/fcvm.2020.00025
http://doi.org/10.1093/ehjci/jew041
http://doi.org/10.1109/JIOT.2020.3029957
http://doi.org/10.1145/3453168
http://doi.org/10.1109/TMI.2006.877092
http://www.ncbi.nlm.nih.gov/pubmed/16894993
http://doi.org/10.1145/3472291
http://doi.org/10.1016/j.bspc.2020.102248
http://doi.org/10.1109/TMI.2017.2743464
http://www.ncbi.nlm.nih.gov/pubmed/28961105
http://doi.org/10.1109/TUFFC.2022.3151647
http://www.ncbi.nlm.nih.gov/pubmed/35167446
http://doi.org/10.1109/TMI.2022.3173669
http://www.ncbi.nlm.nih.gov/pubmed/35533176
http://doi.org/10.1109/JBHI.2022.3171985
http://www.ncbi.nlm.nih.gov/pubmed/35503848
http://doi.org/10.1016/j.media.2022.102614
http://www.ncbi.nlm.nih.gov/pubmed/36115099
http://doi.org/10.1109/TMI.2019.2899910
http://www.ncbi.nlm.nih.gov/pubmed/30794170


Sensors 2023, 23, 1479 16 of 16

23. Chen, C.; Wang, G. IOSUDA: An unsupervised domain adaptation with input and output space alignment for joint optic disc and
cup segmentation. Appl. Intell. 2021, 51, 3880–3898. [CrossRef]

24. Yan, W.; Wang, Y.; Xia, M.; Tao, Q. Edge-Guided Output Adaptor: Highly Efficient Adaptation Module for Cross-Vendor Medical
Image Segmentation. IEEE Signal Process. Lett. 2019, 26, 1593–1597. [CrossRef]

25. Chen, C.; Dou, Q.; Chen, H.; Qin, J.; Heng, P.A. Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation. IEEE Trans. Med. Imaging 2020, 39, 2494–2505.
[CrossRef] [PubMed]

26. Wang, Y.; Deng, Z.; Hu, X.; Zhu, L.; Yang, X.; Xu, X.; Heng, P.-A.; Ni, D. Deep Attentional Features for Prostate Segmentation
in Ultrasound. In Proceedings of the 21st International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI), Granada, Spain, 16–20 September 2018; pp. 523–530.

27. Wang, Y.; Dou, H.; Hu, X.; Zhu, L.; Yang, X.; Xu, M.; Qin, J.; Heng, P.-A.; Wang, T.; Ni, D. Deep Attentive Features for Prostate
Segmentation in 3D Transrectal Ultrasound. IEEE Trans. Med. Imaging 2019, 38, 2768–2778. [CrossRef] [PubMed]

28. Leclerc, S.; Smistad, E.; Pedrosa, J.; Ostvik, A.; Cervenansky, F.; Espinosa, F.; Espeland, T.; Berg, E.A.R.; Jodoin, P.M.; Grenier, T.;
et al. Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography. IEEE Trans. Med. Imaging
2019, 38, 2198–2210. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s10489-020-01956-1
http://doi.org/10.1109/LSP.2019.2940926
http://doi.org/10.1109/TMI.2020.2972701
http://www.ncbi.nlm.nih.gov/pubmed/32054572
http://doi.org/10.1109/TMI.2019.2913184
http://www.ncbi.nlm.nih.gov/pubmed/31021793
http://doi.org/10.1109/TMI.2019.2900516
http://www.ncbi.nlm.nih.gov/pubmed/30802851

	Introduction 
	Methods 
	Attention Segmentation with Dual-Branch(ASDB) 
	Multi-Space Discriminators 
	Discriminator on Feature Space 
	Discriminator on Output Space 

	Training Procedure and the Overall Loss Function 

	Experiments 
	Dataset 
	Implementation Details 
	Evaluation Metrics 

	Result 
	Ablation Study 
	Impactation of Target Domain Images’ Number 
	Comparison with Unsupervised Domain Adaptation Methods 
	Comparison with Joint Adversarial Learning Models 
	Comparison with SOTA Supervised Methods on the CAMUS Dataset 

	Discussion 
	Conclusions 
	References

