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Abstract: Modern cardiac pacemakers are equipped with a function that allows the heart rate to adapt
to the current needs of the patient in situations of increased demand related to exercise and stress
("rate-response" function). This function may be based on a variety of mechanisms, such as a built-in
accelerometer responding to increased chest movement or algorithms sensing metabolic demand for
oxygen, analysis of intrathoracic impedance, and analysis of the heart rhythm (Q-T interval). The
latest technologies in the field of rate-response functionality relate to the use of an accelerometer
in leadless endocavitary pacemakers; in these devices, the accelerometer enables mapping of the
mechanical wave of the heart’s work cycle, enabling the pacemaker to correctly sense native impulses
and stimulate the ventricles in synchrony with the cycles of atria and heart valves. Another modern
system for synchronizing pacing rate with the patient’s real-time needs requires a closed-loop system
that continuously monitors changes in the dynamics of heart contractions. This article discusses the
technical details of various solutions for detecting and responding to situations related to increased
oxygen demand (e.g., exercise or stress) in implantable pacemakers, and reviews the results of clinical
trials regarding the use of these algorithms.

Keywords: cardiac pacemakers; rate response; chronotropic incompetence; physical exercise;
physical capacity

1. Introduction

Chronotropic incompetence (CI) refers to a heart’s inability to adapt (increase to reach
85% of the maximum age-predicted heart rate) its rate to improve cardiac output to meet
metabolic demands during exercise and stress. In this disorder, an inadequate heart rate is
generated relative to the needs of the organism, resulting in an insufficient blood supply,
fatigue, shortness of breath, limited ability to exercise, and a reduced quality of life [1].
CI is an independent predictor of major adverse cardiovascular events and overall mor-
tality [2]. The disorder is often associated with other dysfunctions of the cardiovascular
system, including heart failure [3,4]. Implanted pacemakers have been successfully used
to treat some of these dysfunctions [5]. Modern pacemakers are equipped with a number
of functions and algorithms that adjust the basal rate of pacing to situations associated
with increased demands of the body—this requires sensors for accelerometer-based mea-
surements; measurements of minute ventilation; measurements of myocardial contractility;
and the analysis of myocardial, transthoracic, and transvalvular impedances [6]. Some of
these functions are based on processing or mapping an electrocardiography (ECG) signal,
including analysis of the QT interval or processing of the vibration associated with valve
closure into the mapping of the atrioventricular interval in ventricular pacing triggered by
atrial sensed beats (VDD mode) with the use of a leadless pacemaker.
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2. Chronotropic Incompetence

The sympathetic branch of the autonomic nervous system is responsible for accelerat-
ing the heart rate according to the current body state, among other functions. The primary
neurotransmitter released by the sympathetic nervous system is norepinephrine. The auto-
nomic system innervates the heart through the jugular ganglia and the cardiac plexus—the
body’s natural pacemakers. The heart rate reflects the balance between the sympathetic
and parasympathetic parts of the autonomic nervous system [7]. The sinoatrial node is
responsible for generating and regulating the heart rate. In a healthy person, the sinoatrial
node generates impulses that are then conducted through the fibers of the conduction
system to the atrial musculature and to the atrioventricular node and the His–Purkinje
system, ultimately causing excitation of the muscles of the right and left ventricles of the
heart. Dysfunctions of the cardiac conduction system can lead to the development of
numerous disorders of heart function, including heart failure. Some of these dysfunctions,
such as atrioventricular conduction blocks (2nd and 3rd degree or complete block) and
diseases of the sinus node (tachycardia–bradycardia syndrome, sinus bradycardia, sinus
arrest, no acceleration of sinus rhythm from effort, vasovagal syndromes, and others), can
be treated with the use of implantable cardiac devices—pacemakers.

The most commonly used definition of chronotropic failure is an inability to reach
85% of the maximum heart rate limit for one’s age during maximal exertion; however, it
also encompasses delayed achievement of heart rate appropriate to the exercise intensity,
inadequate variation in heart rate during exercise, or inadequate dynamics in returning to
resting heart rate after exercise [3]. Disorders of automatism and conduction are character-
ized by the fact that they may come and go as conditions fluctuate, for example occurring
with changes in body position or only at a particular heart rate [8]. The causes of CI are not
fully understood. According to the available data, one possible cause is a decrease in the
density and sensitivity of beta receptors, secondary to an increased sympathetic drive [9].
Undoubtedly, the use of beta-blockers, which are commonly used in patients with cardiac
arrhythmias, has a strong influence on chronotropism [10–12]. CI is often observed in obese
patients and in patients with type 2 diabetes, trisomy 21, rheumatoid arthritis, end-stage
renal disease, kidney transplantation, or COVID-19 [13–20]. In patients with hepatic fail-
ure, the altered chronotropic response correlates with the degree of organ failure, making
it a valuable criterion in cardiovascular assessment when selecting candidates for liver
transplantation [21]. In patients that have undergone Fontan surgery, chronotropic failure
correlates with impaired exercise capacity, liver dysfunction, and platelet abnormalities;
the heart rate reserve in these patients may be an indicator of organ complications, and
it may serve as a precursor for development of bradyarrhythmia and the future need for
treatment with an implantable cardiac electronic device [22]. Within the population of
pacemaker patients, predictors of CI include coronary artery disease, acquired heart valve
disease, and the patient’s recorded condition after cardiac surgery. Interestingly, age and
gender; left ventricular ejection fraction; time after pacemaker implantation; and the diag-
nosis of arterial hypertension, cardiomyopathy, or congenital heart defects have not been
associated with the presence of CI in previous studies [23]. In terms of pharmacotherapy,
the use of digitalis glycosides, beta-blockers, and amiodarone are important predictors
of CI. The use of class I and IV antiarrhythmic drugs does not have a significant effect
on CI risk [23]. Similar indicators have also been observed in studies of patients with an
implanted cardioverter-defibrillator [24].

CI is a common problem in the heart failure patient population. According to the
literature, it affects 25–70% of patients with heart failure; the wide range observed for this
measure may result from the lack of a unified definition of CI and the use of different
methods of assessment [25,26]. It is not clear whether the chronotropic failure is a cause or
a consequence of the disturbed response of the organism to exercise in these patients [27].
In a group of patients with stable heart failure, partial improvement of physical capac-
ity and reversal of chronotropic failure was achieved after cardiac rehabilitation using
exercise training [28]. Comparing patients with pacemaker-dependent and non-pacemaker-
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dependent cardiac insufficiency, chronotropic and physical performance were worse in
patients with pacemaker-dependent heart failure, which affected their quality of life and the
effectiveness of cardiac rehabilitation. This issue, particularly, should be taken into account
when selecting pharmacotherapy (especially beta-blockers; patients with a pacemaker that
are also prescribed beta-blockers typically receive a higher average dose) and when making
decisions about stimulation parameters influencing the heart rate during exercise [29].

3. Rate Response in Implantable Cardiac Pacemakers
3.1. Principles of Rate-Response Algorithms

A typical implantable cardiac pacemaker consists of a pulse generator and one, two,
or three leads that are implanted, depending on the patient’s needs, endocavitary, into the
muscularis of the right atrium, into the right ventricle, epicardially to the left ventricular
wall, or directly or indirectly to the fibers of the conduction pathways or in their vicinity
(stimulation of the bundle of His, stimulation of the left bundle branch area) [30–32]. Based
on their construction, equipment, and technical capabilities, pacemakers are divided into
classic subclavian-implanted (in most cases) systems, with leads inserted intravenously into
the heart cavities, or leadless, endocavitary-implanted pacemakers [33]. The choice of type
of pacemaker is made before implantation and is based on the indications for implantation,
age, body structure (anatomical anomalies), comorbidities (diabetes, renal failure), and
risk assessment of potential complications; additionally—in the case of patients previously
treated with other cardiac implantable electronic devices—the presence of previous systems
or components thereof (including abandoned or damaged leads), vascular patency in the
planned course of electrode placement, and any history of past infectious complications will
also be considered [34]. All currently produced pacemakers are equipped with a function
to match the pacing frequency to the patient’s current metabolic demand (a rate-response
function). However, the principles of operation; scope of application; methods of recording
the variability of metabolic, hemodynamic, and physical parameters; and the method of
processing signals related to this function can differ [35]. The general principle of the
rate-response function is that it senses a specific factor that signals the start of physical
activity or the existence of a situation related to increased oxygen demand.

These pacemakers use built-in sensors to detect a signal that indicates the need for
a faster heart rate and, in accordance with the programmed settings for the dynamics
of the response and the permitted limit of the change in the pacing rate, calculates the
number of sensor stimulations proportionally to the effort intensity; it increases the atrial
(in pacing systems operating in single-chamber atrial-responsive pacing (AAIR mode)
or dual-chamber sequential-responsive pacing (DDDR mode)) or ventricular (in single-
chamber ventricular-responsive pacing (VVIR mode)) pacing rate to match the performed
effort, up to the maximum pacing frequency limit defined by the parameter value (most
often referred to as the “upper sensor rate”) or until the effort ceases. In the parameters
of the rate-response function, there is also a mechanism for setting the dynamics of a
gradual return to the basic rate of pacing after the end of the exercise. This prevents
sudden, significant drops in the stimulation frequency in situations where the effort is
stopped abruptly. The parameters for the dynamics of increase and the dynamics of
decrease, and for the limitation of the pacing rate, are programmable in order to individually
adapt to the patient’s age, condition, needs, and lifestyle, taking into account their health
history (it is also possible for multiple and noninvasive modifications to be made using the
programming functions) [36,37].

Each type of sensor (categorized by the factor to which it responds) has its own specific
capabilities, advantages, and limitations. A common solution involves two different sensors
combined in one system in order to increase the sensitivity and specificity of stimulus
perception by the system, optimizing the stimulation frequency change under the influence
of the received factor and reducing the susceptibility to disturbances caused by interference
from other stimuli acting on the sensed parameters [38].



Sensors 2023, 23, 1427 4 of 24

According to the order in which they sense and react to the body’s increased demand
for oxygen and the consequent need to increase the pacing frequency, the rate-response
sensors can be divided into primary, secondary, and tertiary categories. The least physio-
logical are the tertiary sensors, which detect parameters resulting from exercise, e.g., ac-
celerometers. Secondary rate-response sensors detect parameters resulting from metabolic
demand, e.g., minute ventilation. The most physiological sensors, termed primary sensors,
detect parameters influencing cardiac function during exercise, e.g., closed-loop stimula-
tion [39]. In terms of the sensed stimulus, the rate-response sensors can be divided into
mechanical (accelerometer), electrical (impedance-based sensors), and algorithm-based (QT-
interval, closed loop) categories. Table 1 presents selected technological solutions related to
the rate-response functions in pacemakers currently available on the market, along with
their characteristics.

Table 1. Technological solutions related to rate-response functionality and their characteristics.

Type of Sensor Construction of
the Sensor

Method of Sensing and
Interpreting Signals

The Trigger of
the Reaction Advantages Disadvantages

Activity-based
accelerometer

Accelerometer built
into pacemaker
pulse generator

Movement (swings) detected
by counting the “peaks” on
the accelerometer to adjust

stimulation rate

Movement of body

The most common,
simple sensor,

applicable in a majority
of devices

High sensitivity
to interference,

nonphysiological and
unproportional

response to exercise,
undersensitivity to

certain types of activity,
insensitive to

emotional stress

Activity-based
piezoelectric crystal

Piezoelectric crystal
built into pacemaker

pulse generator

Vibrations sensed by the
piezoelectric crystal,

translated into electrical
signals to adjust
stimulation rate

Movement of chest

A common, simple
sensor, low

consumption of the
pacemaker battery

High sensitivity
to interference,

nonphysiological and
unproportional

response to exercise,
undersensitivity to

certain types of activity,
insensitive to

emotional stress

Minute ventilation
Circuit between pulse

generator and
pacemaker lead

Measures of changes in
thoracic impedance related

to physical effort

Respiratory rate, gas
volume in the lungs

Physiological sensor
connected with the real

oxygen demand in
exercise, responsive to

mental and
emotional stress

Limited specificity of
reaction in patients with

respiratory disorders,
underreaction in the

initial phase of exertion,
high risk of interference

with other
medical devices

QT-interval-
based sensor

Computed algorithm
for analysis of

QT interval

QT interval detected by
leads and analyzed

by device

Change of QT
interval associated

with physical, mental,
or emotional stress

Responsive to all kinds
of exercise and stress

May be underreactive
or hyperreactive in

some patients,
especially those with a
long QT syndrome or

arrhythmogenic
diseases, or patients

treated with
QT-prolonging

medications

Closed-loop
impedance-based

contractility sensor
(BIOTRONIK,

Germany)

Measurement of
impedance tissue

around the tip of the
ventricular lead

Measures of changes in
intracardiac impedance

associated with contractility

Increases in
contractility of
heart muscle

Responsive to all kinds
of exercise and stress,

additional effect of
prevention of

vasovagal syncope

Undersensitive for
patients after

myocardial infarction or
patients taking negative

inotrope drugs

Activity-based
contractility sensor
(PEA sensor) (Sorin

Group, Italy)

Accelerometer built
into tip of

pacemaker’s lead

Measures of maximum
endocardial acceleration

Detection of first and
second cardiac tone

related to isovolumic
contraction

and relaxation

Responsive to all kinds
of exercise and stress,
precise measurement

related to hemodynamic
parameters

Necessity of using a
dedicated lead

compatible with the
pulse generator

Transvalvular
impedance

(MEDICO S.R.L., Italy)

Circuit between the
atrial and

ventricular lead

Hemodynamic response
for exercise

Changes of
transvalvular

impedance which
increases during

ventricular systole
and decreases during
the passive and active

filling period.

Responsive to all kinds
of exercise and stress,
precise measurement

related to hemodynamic
parameters

Available only in
dual-chamber

pacing systems
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3.2. Rate-Response Algorithms Based on Patient Activity

The simplest, most commonly used system for sensing a patient’s activity and the
related need to adjust the pacing rate to their effort is an accelerometer that is built into
the pacemaker’s pulse generator. In this type of sensor, the device detects the patient’s
movement on the basis of the change in the position of the pulse generator, i.e., the deflection
that naturally accompanies the movement of the chest while walking or running. The
device continuously counts the number and frequency of recorded movements. It then
converts this information into a proportional change in the pacing frequency in accordance
with the dynamics programmed for a given patient, as well as the difference between
the baseline pacing rate and the maximum limit to which stimulation may be increased
during exercise. This sensor, however, has several significant disadvantages: it responds to
increased effort with a delay and it is susceptible to disturbances in the form of external
vibrations unrelated to, or disproportionately related to, the patient’s activity (e.g., while
on a swing, riding over bumps, or riding a horse) [40,41].

The operation of an activity sensor based on the incorporation of a circuit with a
piezoelectric crystal works similarly. In pacemakers with a rate-response function based on
a built-in piezoelectric crystal, the sensed mechanical energy related to vibration, muscle
tension, and body movement is converted into electrical signals, triggering an algorithm re-
sponsible for adjusting the pacing rate. Research studies have shown that sensors based on
accelerometers more quickly and precisely select the frequency of stimulation appropriate
to the effort than pacemakers with sensors based on the piezoelectric effect [40,42]. Despite
this finding, a study that compared the primary endpoint of death or stroke and mortality,
hospitalizations for heart failure, the incidence and duration of atrial fibrillation episodes,
and the quality of life in patients with sinus node dysfunction (MOST Trial), found no
statistically significant differences in patients with an accelerometer-based rate-response
pacemaker when compared to patients with pacemakers with an embedded piezoelectric
crystal. Interestingly, this study also observed a group of patients with blended-sensor
pacemakers consisting of an accelerometer and piezoelectric circuit— this group of pa-
tients demonstrated significantly worse results in terms of quality of life and physical
performance [43]. Figure 1 shows the construction of a pulse generator with a built-in
accelerometer-based activity sensor and one with a piezoelectric crystal. Advanced work is
being carried out on a new pacemaker rate-response system based on a piezoelectric sensor
that has a higher sensitivity and accuracy in response to exercise. An additional, significant
advantage is that the battery consumption due to system maintenance is decreased [44–46].

3.3. Rate-Response Algorithms Based on Minute Ventilation

Adjustment of the stimulation frequency can also be based on a minute-ventilation
sensor, which acts as a physiological sensor of increased metabolic demand associated
with stress or exercise. Minute ventilation, which is calculated on the basis of respiratory
rate and tidal volume, correlates well with heart rate in patients without sinus node
dysfunction; it may, therefore, serve as an ideal pattern to utilize for adjusting the pacing
frequency to exercise in patients receiving cardiac pacing [47,48]. This system has also been
successfully validated in pediatric patients [49,50]. Minute ventilation can be measured
by assessing intrathoracic impedance due to fluctuating gas-to-tissue and -fluid ratios
in the area throughout the respiratory cycle. In pacemakers, minute ventilation is based
on monitoring changes in intrathoracic impedance measured in the circuit between the
pulse generator and the tip of the pacing lead [51–53]. Figure 2 shows a diagram of the
rate-response algorithm based on the assessment of minute ventilation by measuring
intrathoracic impedance.
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by measuring intrathoracic impedance. Adapted from reference [46] with permission. Assessment
of minute ventilation is based on constant measurement differences in voltage (v) between the tip
of pacing lead and pacemaker can after masurement of current (i) between the ring of lead and
pacemaker can.
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Unfortunately, this parameter has its limitations. It is susceptible to disturbances and
changes in intrathoracic impedance that are not related to effort. Previously conducted
measurements showed that the accuracy of this sensor may be impaired in situations of
different body position (sitting vs. lying) and depending on the required effort (running vs.
cycling) [54]. This sensor is also of limited use in patients with respiratory diseases [55]. A
significant disadvantage of this solution is its susceptibility to interference associated with
other medical equipment. There have been reports of inappropriate control of the pacing
rate in patients with mechanical ventilation systems [56] and cardiac rhythm monitoring
systems [57], and during transesophageal echocardiography [58]. There have also been
reports of incorrect pacing frequency caused by sensor malfunction as a result of damage to
the pacing lead [59,60]. In order to take advantage of the strengths and reduce the impact
of the disadvantages of this system, a common solution is to combine a minute-ventilation
sensor with an accelerometer-based sensor in a single pacemaker. This solution allows for
the benefits of the physiological response of the minute-ventilation sensor (as opposed to
the nonphysiological response of the accelerometer sensor), while also using a cross-check
method that verifies the need to activate the rate-response algorithm using the observed
movement recording by the accelerometer, reducing the risk of an inappropriate increase of
the pacing rate in response to external disturbances [61,62].

Study results have shown that the use of this combination produces a greater improve-
ment in heart rate scores compared to the use of an accelerometer alone; this is a measure
that determines the risk of death in patients with an implanted cardioverter-defibrillator
and allows for the identification of patients that may benefit more from rate-responsive
stimulation [63]. The results for the use of two sensors are contradictory and inconclusive
in terms of the impact on physical capacity and exercise tolerance for cardiac pacing, and
thus this issue requires in-depth research to assess which patient types could benefit most
from the use of combined responsive stimulation with two activity sensors [64].

3.4. Rate-Response Algorithms Based on the Analysis of the QT Interval

Electrocardiographic QT-interval-based sensors provide a completely different solu-
tion for analyzing physiological increases in the body’s metabolic demand. These pacemak-
ers continuously record the heart rhythm by calculating the potential difference between
the poles of the pacing leads (bipolar pacing) or between the pole of the lead and the
can of the pulse generator (unipolar pacing). This registration is called an intracardiac
electrogram (EGM). An example of an intracardiac EGM obtained from the recording leads
of a dual-chamber pacemaker in bipolar mode is shown in Figure 3.
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Figure 3. Example of an intracardiac EGM obtained from the recording leads of a dual-chamber
pacemaker in bipolar mode. Speed of 25 mm/s. Voltage gain at 10 mm/mV. The recording shows
a paced rhythm (atrial pacing, preserved A-V conduction, correctly recorded native ventricular
beats). Markers "AP" indicates atrial paced events (peaks), markers "VS" indicates ventricular sensed
events (beats).
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Correct registration of intracardiac EGM signals forms the basis for the proper func-
tioning of these pacemakers. Based on the EGM recording, the pacemaker calculates the
time from the occurrence and sensing of a native or paced impulse. This allows it to send
stimulation impulses at the appropriate time and control the heart rhythm according to
programmed settings. The pacemaker also makes changes to basic pacing and sensing
parameters using EGM. By automatically adjusting the sensitivity of the electrodes by ad-
justing the low- and high-pass filters, the pacemaker reduces the risk of incorrect pacing that
could be caused by following incorrect signals registered by the lead (e.g., sensing muscle
potentials, electromagnetic interference, incorrect classification of the QRS complex due to
double or triple counting, incorrect classification of the T-wave or atrial fibrillation wave).

Based on the EGM recording, the pacemaker can also automatically assess the effec-
tiveness of stimulation during periodic tests of the pacing threshold. In the absence of a
deflection corresponding to the excitation of the atrium or ventricle after sending the test
pacing impulses, the pacemaker can register ineffective stimulation. It can then change
the amplitude of the stimulation output, reducing the risk of asystole. Additionally, the
accurate recording of beats by the EGM allows for the use of algorithms that can change the
atrioventricular interval to limit the pacing of the right ventricle. Excessive stimulation of
the right ventricle (i.e., pacing in a situation where atrioventricular conduction is preserved
with a delay that does not affect the deterioration of hemodynamic parameters) increases
the risk of developing poststimulating cardiomyopathy [65].

In the majority of currently used cardiac implantable electronic devices, it is possible
to automatically manage the pacing of the right ventricle. This is achieved by gradually ex-
tending the atrioventricular (A-V) interval in order to evaluate whether a native ventricular
beat can be detected after a sensed or paced atrial beat [66].

QT interval analysis is a tool for the management of pacing rate during exercise (rate
response) based on electrographic recordings (EGM) [67,68]. This algorithm is based on
analysis of the duration of changes in the QT interval during exercise and rest after sending
a single unipolar impulse during ventricular depolarization [69]. Under exercise or stress
conditions, myocardial contractility increases in response to autonomic nervous system
regulation, resulting in a change in the duration of the QT interval corresponding to the
period of ventricular repolarization [70–72]. The atrioventricular interval, depending on
the native atrioventricular conduction time or the programmed A-V interval settings on
the pacemaker, is also closely related to the QT interval [73–76]. Recent studies describe the
phenomenon of QT adaptation as an abrupt change in the rate or interruption of atrial and
ventricular pacing; this is indicative of the complexity of the phenomenon and the existence
of many potential factors (extrinsic, such as pacing, and intrinsic, such as pharmacotherapy
of conduction dysfunctions, electrolyte disturbances, or short- or long-QT syndromes) that
can affect this parameter [77–81]. One of the disadvantages of this sensor type is the slow
response to effort. Numerous attempts have been made to improve response time and to
allow diversification of the rhythm and pacing frequency distribution to achieve a nearly
physiological distribution of heart rate in a human undertaking various forms and degrees
of intensity of exercise [82–85].

Unfortunately, pacing rate control based on the analysis of changes in the QT interval
has been associated with a susceptibility to malfunction and inadequate acceleration or
deceleration of pacing under nonexercise conditions affecting QT interval duration. Addi-
tionally, inappropriate control of rate modulation pacing has been reported in association
with drugs that affect the duration of myocardial repolarization [86]. In patients with
coronary artery disease, there is a particular need for care when using QT-based rate modu-
lation pacing settings. In these patients, ischemic pain may induce a pacemaker response
in the form of an increase in heart rate by increasing the adrenergic response, which carries
a small risk of increasing pain in a vicious circle by increasing the heart rate [87–89].

In patients with an implanted pacemaker that modulates the pacing rate based on
QT interval analysis, changes in the pacing rate have been observed both during and after
fever [90]. Due to the ability to monitor subtle changes in the QT interval and the response
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to physiological changes associated with inflammatory processes, an attempt was made
to use this method as a noninvasive tool for diagnosing early signs of rejection in heart
transplant recipients; however, the trials did not result in a sufficient level of diagnostic
sensitivity and specificity to allow the solution to be considered clinically useful [91].
As with the previously described sensors, the combination of two different methods for
recognizing increased metabolic demand could eliminate the impact of the disadvantages
and enhance the advantages of using algorithms based on the analysis of the QT interval.
Currently used pacemakers are, however, not equipped for this type of monitoring of
physical activity [35,92].

3.5. Rate-Response Algorithms Based on Closed-Loop Stimulation

An innovative type of rate-response sensor is based on the closed-loop stimulation
(CLS) algorithm. The principle behind this method is the continuous observation (in a
closed loop) of changes in unipolar intracardiac impedance related to the filling of the
ventricles with blood in the diastolic phase and the change in the ratio of the volume of
fluid (blood) to tissue (walls of the myocardial chambers) in the contraction phase, under
the direct influence of stimuli from the autonomic nervous system [93]. Figure 4 shows a
diagram of a functioning CLS-based rate-response pacemaker.
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Figure 4. Diagram of a functioning CLS pacemaker. Reproduced with permission of BIOTRONIK,
Berlin, Germany.

In CLS systems, a series of subthreshold electrical pulses are sent to enable impedance
measurements in the tissue immediately surrounding the tip of the pacing lead placed in
the chamber. A pacemaker with a CLS system adjusts the pacing rate by continuously
analyzing the rate of change in impedance associated with changes in myocardial contractility
during increased metabolic demand caused by emotions, exercise, or other conditions. It
then calculates the difference between gradient sums of actual and reference impedance
measurements [94]. CLS sensors are one of the most physiological options among the currently
used cardiac implantable devices because they detect and respond to parameters influencing
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cardiac function simultaneously with the changing demand, rather than secondarily after
the recording of parameters resulting from exercise or metabolic demand. This ensures
a proportionate improvement in physical capacity and allows daily living activities to be
performed with less effort [95–97]. Figure 5 shows a diagram of the function of this algorithm.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 26 
 

 

 359 

Figure 5. Scheme of the closed-loop stimulation algorithm. Reproduced with permission of BIO- 360 
TRONIK, Germany. 361 

CLS (Biotronik, Germany) works based on the measurement of intracardiac imped- 362 

ance of the area of about 0.5-1 cm diameter around the ventricular electrode (blood and 363 

endocardial tissue), on the basis of which it builds a model of the instantaneous work of 364 

the heart (details shown in Figure 6). Changes in the impedance of the right ventricle are 365 

correlated with dP/dtmax of the right ventricle, which corresponds to the rate of contrac- 366 

tion of the right ventricle. Thus, during the contraction of the heart, there is greater contact 367 

between the electrode and the endocardial tissue, which increases the impedance and, as 368 

a result, sends information about the need to increase the heart rate—i.e., the stronger the 369 

contraction, the greater the impedance causing the acceleration of the heart rate. Changes 370 

in intracardiac impedance are often illustrated by impedance curves, and changing the 371 

shape of these curves causes CLS activation. Despite the known mechanism of action of 372 

CLS and the undeniable benefits in counteracting vasovagal syndrome (VVS) syncope, it 373 

is not fully known what activates this algorithm during such an episode—it may be the 374 

acceleration of the activity and the increase in the force of contraction of the heart in the 375 

first phase of the presyncope state, which is a physiological response to prevent it. Acti- 376 

vation of CLS in this mechanism also allows the minute volume to be maintained at the 377 

time of pressure drop during the vascular reflex. After the reflex (when CLS-activating 378 

factors have subsided), the cardiac pacing rate gradually returns to baseline values ac- 379 

cording to the pacing program. It should be mentioned that there are no universal recom- 380 

mendations for programming CLS in the case of VVS, and the program of the device 381 

should be set individually so that the patient does not feel discomfort due to the increased 382 

frequency of stimulation or its overlong duration. It seems that in cases of VVS, it may be 383 

beneficial to program a higher CLS activation [98,99,100,101]. 384 
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CLS (Biotronik, Germany) works based on the measurement of intracardiac impedance
of the area of about 0.5–1 cm diameter around the ventricular electrode (blood and endo-
cardial tissue), on the basis of which it builds a model of the instantaneous work of the
heart (details shown in Figure 6). Changes in the impedance of the right ventricle are corre-
lated with dP/dtmax of the right ventricle, which corresponds to the rate of contraction
of the right ventricle. Thus, during the contraction of the heart, there is greater contact
between the electrode and the endocardial tissue, which increases the impedance and, as a
result, sends information about the need to increase the heart rate—i.e., the stronger the
contraction, the greater the impedance causing the acceleration of the heart rate. Changes
in intracardiac impedance are often illustrated by impedance curves, and changing the
shape of these curves causes CLS activation. Despite the known mechanism of action of
CLS and the undeniable benefits in counteracting vasovagal syndrome (VVS) syncope, it
is not fully known what activates this algorithm during such an episode—it may be the
acceleration of the activity and the increase in the force of contraction of the heart in the first
phase of the presyncope state, which is a physiological response to prevent it. Activation
of CLS in this mechanism also allows the minute volume to be maintained at the time of
pressure drop during the vascular reflex. After the reflex (when CLS-activating factors
have subsided), the cardiac pacing rate gradually returns to baseline values according to
the pacing program. It should be mentioned that there are no universal recommendations
for programming CLS in the case of VVS, and the program of the device should be set
individually so that the patient does not feel discomfort due to the increased frequency of
stimulation or its overlong duration. It seems that in cases of VVS, it may be beneficial to
program a higher CLS activation [98–101].

Due to the principle underlying the CLS sensor, it characteristically reduces symptoms
associated with syncope in patients with vasovagal syndrome. Several clinical trials have
evaluated the use of CLS in patients with vasovagal reflex syncope, with a mean follow-up
of 30 months, and 88% of patients experienced a reduction in symptoms associated with
vasovagal syndrome after using CLS [102–105].
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In accelerometer-equipped pacemakers, the rate-drop response (RDR) is used to
prevent vasovagal syncope. This function is based on the short period of overstimulation
after an episode of sudden decrease in heart rate is detected (cardiodepressive mechanism
of vasovagal syncope).

The main disadvantage of this function is the late reaction. The rate-drop response
is activated after the beginning of the vasovagal mechanism, which often starts with a
hypotensive reaction. The pacemaker detects a decrease in heart rate, which can precede
syncope as a result of hypotension. Consequently, patients with vasovagal syncope achieve
only partial improvement in the form of reducing the number of syncopes and prolonging
the prodromal period, allowing them to adopt a safer body position before the syncope.

Furthermore, the rate-drop response function is based on a nonphysiological, sudden
increase in the pacing rate, which is sometimes not well tolerated by patients, interpreted
as long-lasting (even up a minute) attacks of palpitations which accompany the feeling
of upcoming syncope [106]. Closed-loop stimulation is based on continuous analysis of
intracardiac impedance, which changes along with the heart’s work cycle and under the
influence of mechanisms that change myocardial contractility.

In clinical trials comparing the effectiveness of CLS and RDR in preventing vasovagal
syncope, superior efficacy of CLS devices has been evidenced [102]. This effect was also
observed in patients with an epicardial lead [107]. Consequently, in the latest European
Society of Cardiology (ESC) 2021 pacing guidelines, the implantation of a CLS pacemaker
in patients >40 years of age with severe, recurrent, unpredictable reflex syncope caused by
asystole was placed in class I indications (recommended) [34,108].

Moreover, this sensor is capable of detecting and responding to fluctuating demands
of cardiac output due to blood flow and electrolyte changes associated with hemodialysis
renal replacement therapy [109]. In a retrospective analysis of patients diagnosed with
paroxysmal atrial fibrillation with an implanted pacemaker with a closed-loop sensor,
a lower burden of atrial fibrillation was observed when compared to patients with a
pacemaker without rate response or with a different sensor [110,111].

The limitation of this method is the need to implant a right ventricular lead (an al-
gorithm impossible to use in AAIR systems). Furthermore, some patients experience
accelerated pacing that is unsuitable for their needs and individual tolerance range. Ad-
ditionally, the use of negative inotropic drugs and the presence of postinfarction scars
in the area of the implanted right ventricular lead may reduce the effectiveness of the
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algorithm [35]. Currently, this algorithm is used only in implantable cardiac devices from
BIOTRONIK, Germany.

3.6. Rate-Response Algorithms Based on Peak Endocardial Acceleration

Another solution for using an accelerometer as the basis for a rate-response function
is to optimize the pacing rate in response to isovolumic contraction (and the first cardiac
tone) and isovolumic relaxation (and the second cardiac tone) intervals. Technically, this
is performed by analyzing endocardial vibration sensed using an accelerometer built into
the tip of the ventricular lead (usually ventricular, but it is also used in systems with an
accelerometer lead placed in the atrium). This solution allows for the assessment of systolic
isovolumic peak acceleration—mechanical activity of the heart which increases during
adrenergic stimulation, a parameter of heart contractility. It can also be used to follow the
changes in heart rate and demand during exercise. The disadvantage of this solution is
the need to use a dedicated electrode compatible with the pulse generator (Sorin Group,
Saluggia, Italy). This prevents this solution from being used in patients in whom there are
no indications for replacement or additional implantation of the leads from previously used
systems, even when replacing the pulse generator itself due to battery depletion [112–115].

3.7. Rate-Response Algorithms Based on Transvalvular Impedance (TVI)

An example of pacing rate modulation based on hemodynamic parameter analysis
is the rate-response function based on measurements of and changes in transvalvular
impedance (TVI). TVI is measured via electrical impulses in a circuit created between the
ends of the atrial and right ventricular leads. This method is based on the fact that changes
in the impedance of this area are associated with changes in the filling of the heart chambers
with blood during the heart cycle. The TVI reaches a minimum value during atrial systole
(which corresponds to the end-diastolic phase of the cycle) and a maximum at the end of
the QT period (which corresponds to the end-systolic phase) [116,117]. The maximum TVI
corresponds to the end-systolic volume and is sensitive to changes in cardiac contractility,
which allows this solution to be used to express the autonomic nervous system’s regulation
of the heart in patients with chronotropic insufficiency [118].

Changes in the TVI waveform correspond to echocardiographic recordings of filling
parameters used in the evaluation of myocardial contractility under the influence of right
ventricular stimulation. This allows for an indirect assessment of changes in ventricular
contractility with stimulation from the septal region compared to the apical region of the
right ventricle [119]. Diagnostic information on trends in TVI, due to reliable correlation
with hemodynamic parameters in preclinical studies, may prove valuable in cardiac disease
therapy in patients with an implanted device [120]. This system is available in Medico
(MEDICO S.R.L., Rubano, Italy) cardiac devices.

3.8. Rate-Response Optimization Parameters

Each manufacturer uses different technological solutions in the process of translating
information about registered movement into an adjustment in pacing rate. The possible
setups of pacemakers produced by different manufacturers are presented below. The infor-
mation is the individual opinions of the authors, based on commonly available materials,
mainly product manuals, and our own interpretations supported by clinical experience.
The statements are not authorized by medical equipment manufacturers and may only be
used by medical personnel under their own responsibility [100,121–125].

In the most commonly used devices, the rate-response sensor setup can be pro-
grammed as on, off, or passive. In passive mode, rate-response sensors do not adjust
pacing parameters to patient movement, but only register the activities (in range of time
spent on activity and exertion intensity expressed as percent of heart rate maximum) for
diagnostic purposes (Figure 7 shows example of this registration).
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Figure 7. Example of physical activity statistics recorded by a dual–chamber pacemaker (Abbott,
Chicago, IL, USA).

The main modifiable parameters of the rate-response function are threshold, slope,
reactive time, and recovery time.

The threshold parameter is responsible for recognizing whether activity occurred.
In the case of a pacemaker that under- or overreacts to patient activity, the threshold
can be adjusted by changing the default sensitivity, where it is possible to set the result
of automatic measurements (e.g., auto +1 or −1, etc.) or set the parameter fixed on
one constant value. Setting a threshold value over the automatic assessment makes the
pacemaker less sensitive to movement (i.e., a greater effort will be necessary to recognize
activity by the pacemaker and as a result to adjust pacing parameters). Proper setup of
threshold parameters prevents unnecessary overreaction of the pacemaker during slight
movements of the body caused by factors other than physical activity (including muscle
tremors that occur with neurological disorders).

The slope (or response factor) is responsible for determining the change in pacing
rate when the threshold recognizes activity. Slope defines the proportion of pacing rate
change, taking into account the intensity of effort and the difference between the lower rate
and max sensor rate, linearly dividing this difference for 16 degrees of intensity (Abbott,
St. Jude Medical, Boston Scientific). Similar to the threshold parameter, the slope can be
programmed in automatic mode, which can be adjusted (e.g., +1, −0.5) or set as a fixed
value in range of 1–16. Figure 8 shows the scheme of these slopes based on the Abbott (IL,
USA) devices.
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Reaction time is responsible for mitigation of the change from a lower pacing rate
to a rate assessed by the pacemaker as adequate to ongoing activity. The purpose of this
function is to prevent abrupt changes in the pacing rate. The reaction time parameter can
be set in different modes, e.g., slow/medium/fast/very fast.

Recovery time is responsible for mitigation of the change of pacing rate from the
highest stage of activity to a lower rate after the effort has ended. Recovery time can be set
in modes, e.g., very slow/slow/medium/fast.

Apart from the lower rate/base rate and max sensor rate/upper sensor rate, in
Medtronic/Vitatron devices, another parameter is applied to define rate-response pac-
ing: the ADL rate (activities of daily living rate). This parameter defines the target desired
pacing rate during light/moderate activities of daily living (walking, household activities).

In devices manufactured by Medtronic/Vitatron, the function of Rate Profile Opti-
mization is available. This algorithm, based on registered physical activities, adjusts the
increase of pacing rate in the first stages of physical effort as well as during training with
volatile intensity in the ADL rate range and exertion rate range. Figure 9 shows the scheme
of this algorithm.
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In devices commonly used in Europe, blended rate-response sensors are available, for
example accelerometer and minute-ventilation (MV) sensors. This kind of pacemaker is
described below, based on devices manufactured by Boston Scientific. In these devices,
both sensors (or one of them) can be programmed to be active or inactive simultaneously.

During mechanical ventilation of a patient, deactivation of the MV sensor is indicated.
In patients with respiratory disorders or other states in which risk of incorrect functioning
of MV sensors is higher, individual assessment of deactivation or modification parameters
should be considered (see details in Section 3.3., “Rate-response algorithms based on
minute ventilation”).

The principle of the minute-ventilation sensor is the analysis of the difference between
short-term and long-term transthoracic impedance statistics.

These statistics are continuously collected, updated, and analyzed. Long-term statistics
are updated every 4 min and short-term statistics every 7.5 s, which allows for a quick
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reaction to the changing physiological conditions that accompany sudden physical effort.
For patient comfort and safety, the increase or decrease in heart rate caused by activation of
the rate-response function is limited to a maximum of 2 bpm in each cardiac cycle.

The ventilatory threshold parameter is intended to reflect the physiological point
beyond which ventilation increases faster than VO2. In pacemaker algorithms, this value,
expressed in beats per minute, can be programmed manually or automatically calculated
by the device based on the patient’s gender and age (if they have been entered into the
device’s memory in the appropriate way) and the patient’s lifestyle, determined by the
fitness level parameter in terms of sedentary/active/athletic/endurance sports (details in
Figure 10).
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Figure 10. Scheme of ventilatory threshold response (Boston Scientific, Marlborough, MA, USA).
Ventilatory threshold response is responsible for adapting the pacing rate in the range between the
ventilatory threshold value and the max sensor rate value, expressed in %, which corresponds to
the deflection of the curve determining the intensity of pacing rate adaptation. Reproduced from
Reference [123].

A graphical representation of the patient’s activity and sensor responses (“Sensor
trending graph”) is helpful in optimizing the device for the activity of the rate-response
function parameters.

For patients with both sensors active, the pacemaker averages calculations of the rate
estimated as appropriate by each of these sensors separately. In a situation where the
rate indicated by the accelerometer is lower than that indicated by the minute-ventilation
sensor, then the pacemaker will pace 100% according to the indications from the minute-
ventilation sensor.

If the accelerometer indications are higher than those calculated from minute ven-
tilation, the pacemaker will take into account both sensors, changing the dominance of
these sensors depending on the heart rate indicated by the accelerometer (from lower rate
to max sensor rate), starting at approximately 80% for the accelerometer decision, 20%
for MV sensor decision if accelerometer rate is at the lower rate limit, reaching 40% for
accelerometer and 60% for minute ventilation if the rate estimated by the accelerometer is
at the max sensor rate.

4. Accelerometer as a Solution for Maintenance of Atrioventricular Synchrony in a
Leadless Pacemaker

Leadless pacemakers are an alternative to classic pacemakers, with leads placed in-
travenously in the heart cavities. This solution is especially recommended for patients in
whom implantation of a classic pacemaker is impossible or difficult for various reasons
(e.g., as a result of anatomical anomalies or obstacles in the form of inactive or damaged
leads from previously used pacing systems, patients experiencing complications in therapy
with implantable cardiac devices) and in patients at a particularly increased risk of infec-
tious complications (including infective endocarditis) related to the presence of a foreign
body in the cardiovascular system [126,127].
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This risk is increased in patients with a prior history of infections related to cardiac
implantable electronic devices (device pocket infections, endocarditis, lead-infective veg-
etations, and systemic infections due to the presence of an implanted pacemaker) and in
patients with systemic diseases, diabetes mellitus, or kidney failure [128]. The leadless
pacemaker (Micra ®, Medtronic, MN, USA) consists of a small, capsule-shaped generator
with hooks at the end that allow fixation of the pacemaker in the wall of the right ventricle.
Inside the pulse generator, in addition to the battery and the computer system that con-
trols the pacemaker’s algorithms, there is an accelerometer that allows the pacemaker to
properly control the rate of stimulated impulses [129].

In the single-chamber leadless system, working in the VVIR mode, the accelerometer
provides the signals for the rate-response algorithm. The system reacts by accelerating the
stimulation rate when it detects an increased frequency and intensity of vibration related
to the patient’s physical effort and adjusting the pacing within the set parameters, i.e.,
according to the dynamics of the increase and decrease of the stimulation frequency and
according to the set maximum frequency [130]. This system is most commonly used in
patients with persistent atrial fibrillation with a slow ventricular rate.

The highly advanced version of the leadless pacemaker is a device adapted to sense
and control pacing under the influence of sensed atrial activity (VDD mode pacing). In
leadless VDD pacemakers (Micra AV ®, Medtronic, MN, USA), the accelerometer, in
addition to the typical function of sensing increased metabolic demand in situations of
physical exertion, senses the mechanical wave associated with blood flow through the
valves after atrial contraction. The registration of the mechanical wave accompanying
the outflow of blood after atrial systole, during the opening of the mitral and tricuspid
valves, allows for the appropriate timing of ventricular pacing in a patient with impaired
atrioventricular conduction. This solution allows ventricular pacing to be controlled by the
intrinsic function of the atria without physically inserting the lead into the right atrial cavity.
Figure 11 shows a scheme of heart rhythm recording in leadless VDD systems. Figure 12
shows an example of this registration. The limitation of this solution is the inability to
perform atrial pacing, which excludes patients with sinus node dysfunction from treatment
with this type of pacemaker [131–133].
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allows for proper sensing of atrial systole. Reproduced from Reference [133] with permission from
Medtronic, Minneapolis, MN, USA.
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Figure 12. Example of an intracardiac EGM obtained from the recording of a leadless pacemaker
in VDD mode. Speed of 25 mm/s. Voltage gain at 10 mm/mV. The lowest channel shows atrial
activation sensed by the accelerometer built into the pacemaker, expressed in m/s2.

5. Discussion

The main role of an implanted pacemaker is to support the work of the heart in
disorders such as sinus node insufficiency or conduction blocks. Proper pacemaker
programming—in accordance with the individual needs resulting from the type of ar-
rhythmia, the indications for pacemaker implantation, and the patient’s lifestyle and
preferences—has a crucial impact on improving heart function. It is also important to avoid
replacing the intrinsic rhythm with pacing unnecessarily, due to the risk of pacing-induced
cardiomyopathy [134].

Modern implantable cardiac electronic devices are equipped with numerous algo-
rithms, the task of which is to optimize the pacing settings to match the physiological
function of the heart as closely as possible. It is difficult to imagine the heart functioning
without being able to adapt the heart rate to situations related to physical effort of various
intensities or stress levels. The technological solutions used for recording and processing
information based on the real-time demand and volatility of minute capacity differ. This
creates the opportunity to select an appropriate device, equipped with the functionalities
that offer the greatest potential benefit to the patient. The daily experience of working with
patients with cardiac implantable electronic devices, combined with many years of case
observation, has revealed no shortage of evidence or examples of diametrical changes in
well-being following pacing parameter adjustments in terms of rate-response settings. This
is especially true in patients with a high percentage of atrial pacing. However, with regard
to the impact of the rate-response function on the change in patients’ physical capacity, the
data are not clear; there are only a few results from contemporary studies available, though
further studies exploring this issue are in progress [135].

There is evidence to support the use of rate-responsive pacing in patients with per-
manent atrial fibrillation and VVIR pacing systems [136]. However, in patients receiving
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dual-chamber sequential pacing, studies have not been able to conclusively demonstrate
the benefit of frequency-adaptation stimulation [43,137].

The lack of unequivocal results from clinical trials on this subject may be due to
differences in the effectiveness of the adaptation of the stimulation frequency resulting
from technological differences in the types of sensors described in this article, as well as
differences in the way they are used. This includes the parameters that are programmed
related to the function, such as maximum pacing values during exercise and the settings for
the dynamics of the increase and decrease of the pacing rate. The method used to calculate
the maximum pacing frequency limit appropriate for a given patient may also be important.
A study conducted from 2017 to 2019 showed that programming the rate-response function
in patients with heart failure with reduced left ventricular ejection fraction under the control
of echocardiography improved the duration of physical effort; this was in contrast to the
most commonly used programming of this function depending on the patient’s age, which,
in the study’s opinion and based on their results, may cause deterioration of cardiac systolic
function and the worsening of heart failure in patients with CI and heart failure [138–140].

Currently, the most commonly used method for evaluating the distribution of heart
rate in a patient with a cardiac-implanted device, when assessing the applied pacing param-
eters, is the analysis of the heart rate histograms stored in the memory of the pacemaker.
These are based on the recorded intervals of successive heartbeats on the intracardiac
EGM [141]. Based on the intracardiac EGM signal, some implantable devices automatically
optimize settings (to a limited extent) for rate response and rate smoothing [142].

6. Summary

In summary, the use of the pacemaker rate-response function is a promising tool that
can potentially improve the quality of life and physical capacity of patients, but this tool
requires additional research efforts and further clinical trials; this will allow for a better
understanding of the mechanisms responsible for the effect of this therapy. Additional
data are needed to broaden and popularize knowledge relating to the complexities of
the technical aspects underlying the process of optimizing the stimulation parameters,
giving medical personnel the opportunity to take full advantage of the option to program
this function.
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