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Abstract: Visible-infrared person re-identification (VIPR) has great potential for intelligent trans-
portation systems for constructing smart cities, but it is challenging to utilize due to the huge modal
discrepancy between visible and infrared images. Although visible and infrared data can appear to be
two domains, VIPR is not identical to domain adaptation as it can massively eliminate modal discrep-
ancies. Because VIPR has complete identity information on both visible and infrared modalities, once
the domain adaption is overemphasized, the discriminative appearance information on the visible
and infrared domains would drain. For that, we propose a novel margin-based modal adaptive learn-
ing (MMAL) method for VIPR in this paper. On each domain, we apply triplet and label smoothing
cross-entropy functions to learn appearance-discriminative features. Between the two domains, we
design a simple yet effective marginal maximum mean discrepancy (M3D) loss function to avoid an
excessive suppression of modal discrepancies to protect the features’ discriminative ability on each
domain. As a result, our MMAL method could learn modal-invariant yet appearance-discriminative
features for improving VIPR. The experimental results show that our MMAL method acquires state-
of-the-art VIPR performance, e.g., on the RegDB dataset in the visible-to-infrared retrieval mode, the
rank-1 accuracy is 93.24% and the mean average precision is 83.77%.

Keywords: deep learning; maximum mean discrepancy; visible-infrared person re-identification

1. Introduction

Visible-infrared person re-identification (VIPR) [1–6], as illustrated in Figure 1a,
is important in smart city constructions because it can help find suspicious persons from
massive traffic videos. As shown in Figure 1b, VIPR not only suffers from pose variations
and viewpoint variations that commonly exist in traditional person re-identification [7–10]
based on visible images but also encounters a huge modal discrepancy between visible and
infrared images. The huge modal discrepancy is a serious challenge to VIPR because it leads
to different identities of the same modality that are more similar than the same identity of
different modalities. Therefore, how to to properly deal with modal discrepancies is crucial
to VIPR.

To reduce the adverse effect of modal discrepancies, on the one hand, recent VIPR
approaches [11–15] focus on adversarial-based modal conversion, which learns convert
between visible and infrared data to ensure the two different modalities are uniform.
For example, Wang et al. [16] applied a generative adversarial network (GAN) to pro-
duce fake infrared images from visible images and trained the VIPR model on both fake
and real images to alleviate any modality discrepancies. Liu et al. [17] designed deep
skip-connection generative adversarial networks to realize a high-quality cross-modal
style translation to reduce modality discrepancies. Huang et al. [18] proposed using third
modality data containing both visible and infrared information to prevent the information
from the infrared modality from being overwhelmed during training. The third modal-
ity data were also produced by using a generative adversarial network. Choi et al. [19]
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proposed a hierarchical cross-modality disentanglement method to automatically disen-
tangle the identity-discriminative factors and identity-excluded factors, creating a bridge
between visible and infrared images to reduce modality discrepancies. Hu et al. [13] applied
two modality-specific encoders and a modality-generic encoder to learn modality-specific
and modality-generic features and then used two modality-specific decoders to generate
synthetic images to compensate the missing modal data. We acknowledge that the adver-
sarial way is effectively targeted to eliminate modal discrepancies, but it requires a list
of complex sub-networks accompanied by the risk of model collapse and a high training
computation cost.

Figure 1. (a) The schematic diagram of visible-infrared person re-identification (VIPR) and (b) adverse
factors in VIPR.

On the other hand, domain adaptation [20–25] is a potential solution for VIPR because
it has the goal of aligning distributions of source and target domains. The maximum mean
discrepancy (MMD) [23–25] loss function is popular in domain adaptation and, recently, it
has been applied to VIPR [26–28]. For example, Alehdaghi et al. [26] utilized the MMD loss
function to determine the domain shift between visible and infrared modalities to provide
additional information for training VIPR models. The Gram matrix-based MMD [27]
method reduces modality variances in a latent space, learning modal-invariant features.
The class-specific maximum mean discrepancy (CSMMD) loss function [28] independently
reduces the modal discrepancies of visible and infrared images of each class. With the
help of domain adaptation, those VIPR methods gain good performance, but there is still
room for improving VIPR. Because VIPR is not a pure domain adaptation task, it has
complete identity information on both visible and infrared modalities, so that it could not
apply an unreserved maximum mean discrepancy suppression method to remove modal
discrepancies, otherwise it would lose discriminative appearance information.

To this end, we propose a margin-based modal adaptive learning (MMAL) method
for VIPR in this paper. In our MMAL method, we apply triplet and label smoothing cross-
entropy functions to learn appearance-discriminative features and optimize maximum
mean discrepancies to encourage the learned features to be modal invariant. Different
from existing methods [27,28], our MMAL method does not focus on improving MMD to
accurately measure the difference distribution of visible and infrared modalities, but pays
attention to keeping a good balance of modal discrepancy suppression and appearance-
discrimination learning. Thus, the main novelty of this paper is that our MMAL method
designs a simple yet effective marginal strategy to avoid an excessive suppression of modal
discrepancies to protect the features’ discriminative ability for boosting VIPR.

The contributions of this paper can be summarized as follows. (1) We design a margin-
based modal adaptive learning (MMAL) method to join optimize modal discrepancies and
discriminant appearances for VIPR, which could balance modal invariant and appearance
discrimination via a marginal maximum mean discrepancy (M3D) loss function. (2) The
experimental results on RegDB [29] and RGBNT [30] datasets demonstrate that our method
acquires state-of-the-art performance, e.g., on the RegDB dataset, for the visible-to-infrared
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retrieval mode, the rank-1 accuracy is 93.24% and the mean average precision is 83.77%.
The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3
describes the proposed method in detail. Section 4 presents the experimental results to
analyze our method’s superiority. Section 5 concludes this paper.

2. Related Work

In this section, we review the related works of this paper from two aspects: (1) recent
VIPR progress and (2) domain adaption.

2.1. Recent VIPR Progress

As shown in Figure 2, VIPR has been a hot topic in the past three years and has
progressed remarkably. For example, the D2RL method [31] acquired a 43.4% rank-1
accuracy in 2019, the Hi-CMD method [19] gained a 70.93% rank-1 accuracy in 2020,
and the DFLN-ViT [32] and FMCNet [33] methods obtained a 92.10% rank-1 accuracy and
an 89.12% rank-1 accuracy, respectively, in 2022. The huge modal discrepancy of visible
and infrared images are still a great challenge for VIPR; recent methods mainly focus
on two aspects: (1) feature alignment and (2) adversarial conversion. A more detailed
survey follows.

D2RL

Hi-CMD

DDAG

HC-triplet

CM-NAS GECNet

GLMC

ADCNet

LLM

DML

DFLN-ViT

FMCNet

Figure 2. The Rank-1 (i.e., rank-1 accuracy) comparison of state-of-the-art works.

Regarding feature alignment, there are a lot of approaches [5,34–47]. The most pop-
ular architecture [5,35,48] is a double-stream deep network, where shallow layers are
independent for learning modal-specific features and deep layers are shared for learning
modal-common features. Some researchers improved the double-stream architecture via
fine part alignment designs [40,49], attention mechanisms [35,36], or new neural structures,
such as graph [27] and transformer [32,50].

In addition to architecture works, researchers also focus on designing alignment
loss functions [39,44–47,51,52]. For example, Zhu et al. [51] designed a hetero-center loss
function to constrain the intra-class center distance between two different modalities.
Feng et al. [52] learned a center for each class and pulled the sample to the center of the
same class as well as pushed the sample to the center of different classes; thus, the features
of intra-class samples of different modalities were compacted with the center.

Compared to feature alignment, adversarial conversion [4,6,13,14,19,31,41,53] is newer
on the whole. The main idea of adversarial conversion is to learn a conversion between
visible and infrared data to ensure that different styles of visible and infrared images
are uniform. For example, Wang et al. [31] converse the visible (or infrared) images to
their infrared (visible, respectively) version, which are combined to form multi-spectral
images for feature learning. Zhong et al. [53] proposed a gray-scale enhancement col-
orization network, which learns the correspondence between single-channel infrared
images and three-channel visible images by generating intermediate gray-scale images
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as auxiliary information to colorize the single-modality infrared images. Furthermore,
some disentanglement methods [13,14,19] specifically consider pedestrians’ appearance
characteristics—gender or age information are modal insensitive but clothes colors are only
for visible images—to generate synthetic images for reducing modal discrepancies.

In summary, both feature alignment and adversarial conversion methods have greatly
improved VIPR, but VIPR is still far weaker than single-modal person re-identification due to
the severe challenge of huge modal discrepancies between visible and infrared images.

2.2. Domain Adaption

Domain adaption aims to reduce the gap between source and target domains and
eliminate the domain shift, so that the trained model could learn domain-invariant fea-
tures, which has a lot of applications, such as unsupervised segmentation [54,55], un-
supervised classification [24], and cross-modal action recognition [56]. In the domain
adaption research field, the maximum mean discrepancy (MMD) [57,58] is commonly-used.
Recently, MMD has been used in unsupervised person re-identification [59–63]. For exam-
ple, Mekhazni et al. [59] proposed a dissimilarity-based maximum mean discrepancy loss
function to align the pair-wise distance distributions between source and target domains.
Yang et al. [62] explored the usability of MMD in learning multi-granularity domain-
invariant features to overcome the sub-optimal alignment of global feature distributions.

We note that there are some MMD-based VIPR methods [26–28] highly related to our
approach. The [26] method directly uses MMD, while [27,28] designs improved MMD to
measure the distribution difference of visible and infrared modalities. No matter whether
they are directly using MMD or improving MMD, those methods neglect an essential
difference between domain adaptation and VIPR, that is, both two domains of VIPR have
identity information and simultaneously require appearance discriminability. If the modal
adaption is overemphasized from using MMD or improved MMD, the discriminative
learning on visible and infrared modalities would be harmed because modal adaption
pursuing modal distribution consistency is not always in line with the appearance dis-
criminability on different modalities. Different from those MMD-based VIPR methods not
considering the potential conflict of modal-invariant and appearance discrimination, our
method pays attention to design a marginal strategy to avoid an excessive optimization of
modal discrepancies, so that it protects its appearance-discriminative ability and acquires
a good VIPR performance.

3. Methodology

In this section, we describe our method from two main aspects. (1) The margin-based
modal adaptive learning (MMAL), which aims to learn modal-invariant yet appearance-
discriminative features. (2) The deep network-based VIPR model, which explains how to
use MMAL to supervise deep network learning features and how to adopt the learned
features to realize VIPR.

3.1. Margin-Based Modal Adaptive Learning

The MAL consists of two types of loss functions, i.e., marginal maximum mean
discrepancy (M3D) and appearance-discriminative loss functions. The former is responsible
for modal-invariant and the later is in charge of appearance-discriminant functions.

3.1.1. Marginal Maximum Mean Discrepancy Loss

Assume that a mini-batch consists of X and Y, which are two matrices carrying N × d
features extracted from visible and infrared images, that is, X = [x1, x2, . . . , xN ] ∈ RN×d and
Y = [y1, y2, . . . , yN ] ∈ RN×d, where N is the number of visible or infrared samples, and d is
the dimension of features extracted from images. The deep network for extracting features
will be described later. The maximum mean discrepancy (MMD) loss function [57,58] is
defined as follows:
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(1)

where φ(·) is a feature map function, if it is an identity function, the MMD loss function
could simply compute the discrepancy between the samples’ means; H represents a re-
producing kernel Hilbert space; ‖·‖ is a norm calculation; and K(x, y) is a kernel function,
i.e., K(x, y) = 〈φ(x), φ(y)〉. In practice, the combination of multiple Gaussian kernels is
a good choice for constructing a kernel function K(x, y), as follows:

K(x, y) =
L

∑
i=1

βiGi(x, y), βl ≥ 0,
L

∑
i=1

βi = 1, (2)

where Gi represents the i-th Gaussian kernel; βi is related to the variance of Gi, which is to
guarantee that K is characteristic.

Considering that both the two domains of VIPR have supervisory information, VIPR
could not completely pursue homogeneous features, otherwise, the features’ discriminative
ability would be harmed. Therefore, we design a margin strategy to avoid an excessive re-
duction in modal discrepancies. The margin strategy is formulated as a marginal maximum
mean discrepancy (M3D) loss function in Equation (3).

LM3D = max(LMMD − τ, 0) (3)

where τ > 0 is a margin used to keep a boundary to avoid an excessive optimization of
MMD. The default value of τ is 0.01.

3.1.2. Appearance-Discriminative Loss

In this paper, we apply two types of appearance-discriminative loss functions, namely,
the hard mining triplet (TRI) loss function [64] and the label-smoothing cross-entropy
(LSCE) loss function [65]. The hard mining triplet (TRI) loss function is defined as:

LTRI =
1
M

M
∑

i=1
log[1 + e

max
fp∈Pi

‖ fi− fp‖2− min
fn∈Ni

‖ fi− fn‖2
], (4)

where M = 2× C× K denotes the number of images in a mini-batch and C represents the
number of classes and K denotes the number of visible images or infrared images of each
class in the mini-batch; fi ∈ Rd is a d-dimensional feature corresponding the i-th image;
and Pi and Ni denote the positive set and the negative set of the i-th image, respectively.
Here, the positive set Pi contains images of the same class to the i-th image and the negative
set Ni includes images of different classes from the i-th image.

The label-smoothing cross-entropy (LSCE) loss function is defined as follows:

LLSCE = − 1
M

M
∑

m=1

K
∑

k=1
εm,klog(pm,k), (5)

where pm,k represents the posterior probability of the m-th image belonging to the k-th class,
which is calculated using a softmax function; εm,k is a label-smoothing indicator function
formulated as follows:
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εm,k = {
1− (K−1)ζ

K , xm ∈ k−thclass,
ζ
K , xm /∈ k−thclass,

(6)

where ζ is a manual setting constant used to control the label-smoothing degree, which is
usually set to 0.1 in practice.

3.2. Deep Network-Based VIPR

Following the existing VIPR works [35,38,41], we apply the popular residual net-
work [66], namely, ResNet50, to construct a backbone for VIPR, as shown in Figure 3.
Regarding the architecture, ResNet50 is a sequence with a stem layer (Stem), four residual
groups (i.e., Layer-1–Layer-4), a generalized-mean pooling (GeP) [38] layer, and a batch
normalization (BN) [64] layer. The Stem is a sequence of a 3× 3 convolutional layer, a BN
layer, a ReLU [67,68] layer, and a 2-stride max-pooling layer. Regarding the supervision,
we assign the LTRI of Equation (4) on the GeP layer and set the LLSCE of Equation (5)
and the M3D loss function LM3D of Equation (3) on the BN layer following the GeP layer.
The supervision is further formulated as follows.

Apperance Discriminative Loss
Visible images

Infrared images

...
...

Feature ExtractionShared Parameters

Pull
Push

ResNet50

LSCE
L

TRIL

Approaching
Marginal Max Mean Discrepancy Loss

Margin

Figure 3. The visible-infrared person re-identification model via margin-based modal adaptive learning.

LTotal = λLBN
MMAL + LGeP

TRI + LBN
LSCE, (7)

where λ > 0 is a hyper-parameter used to control the contribution of the M3D loss func-
tion, so that it keeps a good balance of modal-invariant and appearance-discriminative
optimizations. LBN

MAL means the LMAL is applied to the BN layer following the GeP
layer and both LGeP

TRI and LBN
LSCE have similar naming schemes. As a result, both modal-

adaptive and appearance-discriminative loss functions are jointly applied to guide the
ResNet50 to learn modal-invariant yet appearance-discriminative features for VIPR. In
summary, the flowchart of the margin-based modal adaptive learning for VIPR is organized
as Algorithm 1.

In the testing process, the `2 normalized features from the GeP and BN layers are
fused for evaluating the VIPR performance. First, both query and gallery images are fed
into the ResNet50 to acquire features. Second, based on the features, the distances among
the query and gallery images are computed. Third, distances are sorted in ascending order
to find the top-k gallery images similar to how the query images obtain retrieval results
for VIPR.
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Algorithm 1 Margin-based Modal Adaptive Learning for VIPR

Input: A training dataset DB containing visible and infrared images and class labels,
the number of training epochs E, and an initial deep network Net.

Output: An updated deep network Net.
1: for t = 1:E do
2: Sampling: Randomly choosing a mini-batch from the training dataset DB and the

mini-batch consists of K visible and K infrared images of C classes.
3: Extraction: Using the deep network Net to extract features from images of the

mini-batch.
4: Loss Calculation: Using the total margin-based modal adaptive learning loss func-

tion (i.e., LTotal in Equation (7)) to compute the loss on the mini-batch.
5: Updating: Using the mini-batch stochastic gradient descent optimizer to calculate

the gradients of LTotal to update the deep network Net.
6: end for

4. Experiments

In this section, we evaluate our MMAL method and compare it with state-of-the-
art approaches recently published in top conferences (e.g., CVPR, ICCV, and ECCV) or
journals (e.g., IEEE T-CSVT, T-IP, T-MM, and T-NNLS). Two open datasets (RegDB: https://
drive.google.com/file/d/1gnVt9GIQSvium_mcxc7AWLhSXm6lNWsa/view RGBNT201:
https://doi.org/10.1609/aaai.v35i4.16467, mail to: ziwang1121@foxmail.com, accessed
on 16 December 2022), namely, RegDB [29] and RGBNT201 [30], are applied to construct
experiments.

4.1. Datasets

The RegDB [29] dataset includes 4120 pedestrian images of 412 classes and each class
has five visible images and five infrared images. The evaluation protocol on RegDB is
based on the average of ten trials and each trial randomly selected 206 classes of 2060 im-
ages as a training set and the non-overlapping rest as a testing set. Besides, there are
two retrieval modes, i.e., visible-to-infrared (V2I) and infrared-to-visible (I2V). The V2I
retrieval mode applies visible probes to search from a infrared gallery and the I2V retrieval
mode is the opposite.

The RGBNT201 [30] dataset is a newly released three-modal (i.e., visible, infrared,
and thermal) pedestrian image database. According to the data division of [30], the training
subset consisting of 141 classes of 3280 visible images and 3280 infrared images and the
testing set of 30 other classes of 836 visible images and 836 infrared images. However,
different from [30], we only use visible and infrared images of each class for VIPR. Similar
to the evaluation on the RegDB dataset, there are V2I and I2V retrieval modes. Regarding
the V2I retrieval mode, the probe set is constructed by randomly selecting 10 visible images
from each class of the testing set and the gallery set contains all the infrared images of the
testing set. The I2V retrieval mode has the similar probe and gallery constructions but
the modality configuration are opposite to the V2I retrieval mode. For both V2I and I2V
retrieval modes, the average of ten for testing is reported as the final result.

4.2. Performance Metrics

Similar to existing works [5,36,38], the cumulative match characteristic (CMC) curve
and the mean average precision (mAP) are applied to evaluate the VIPR performance,
which are formulated as follows.

Assume that K is the number of gallery images; the indicator function is represented
by Match and, if a query q correctly appears in the top-n retrieval results, Match(q, n) is
equal to 1 and 0 otherwise. Then, the CMC is defined in Equation (8).

CMC(n) =
1
N ∑N

q=1 Match(q, n), (8)

https://drive.google.com/file/d/1gnVt9GIQSvium_mcxc7AWLhSXm6lNWsa/view
https://drive.google.com/file/d/1gnVt9GIQSvium_mcxc7AWLhSXm6lNWsa/view
https://doi.org/10.1609/aaai.v35i4.16467
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where CMC(1) is represented as Rank1, which represents a rank-1 accuracy. Compared to
CMC, mAP is a more comprehensive performance metric, which takes both precision and
recall into account. The definition of mAP is formulated in Equation (9).

mAP =
1
N ∑N

q=1 AP(q), (9)

where AP(q) is the area under the precision-recall curve of the query q.

4.3. Experimental Conditions and System Configurations

As performed in [35,38], data augmentation is a sequence of 144 × 288 uniformly
resizing, z-score normalizing, random cropping, random erasing [69], and horizontal
flipping operations and the ImageNet [70] pre-trained Resnet50 is applied to initialize
the backbone. The network optimizer is the stochastic gradient descent (SGD) [71]. Each
mini-batch has four classes and each class contains five visible and five infrared images.
The network’s weight decays are set to be 0.0005 and the momentums are set to be 0.9.
There are 50 epochs for the training process. The learning rates are initialized to 0.001
and linearly warmed up [72] to 0.01 in the first 10 epochs. Then, the learning rates are
kept at 0.01 from the 11st to the 30th epochs. At last, the learning rates are maintained
at 0.001 from the 31st to the 50th epochs. The software tools are Pytorch 1.7, CUDA 11.1,
and Python 3.8. The operation system is Ubuntu 18.04.5 LTS. The hardware device is
a GeForce RTX 3090 GPU.

4.4. Results

The comparisons of our MMAL method and state-of-the-art approaches on the RegDB
and RGBNT201 datasets are, respectively, listed in Tables 1 and 2.

As compared in Table 1, our MMAL method achieves the best performance for both
V2I and I2V retrieval modes. For the V2I retrieval mode, our MMAL method acquires
93.24% Rank1 and 83.77% mAP, which outperforms GLMC [40] with a 1.40% higher Rank1
and a 2.35% larger mAP and HC-Triplet [5] with a 2.19% higher Rank1 and a 0.49% larger
mAP. In addition, compared with the two MMD-based methods, namely, CM-NAS [28] and
ECGRAPH [27], our MMAL method outperforms CM-NAS [28] with an 8.70% higher Rank1
and a 3.45% larger mAP and outperforms ECGRAPH [27] with a 17.66% higher Rank1
and a 15.91% larger mAP. Compared with the disentangle method called ADCNet [13],
our MMAL method achieves a 20.34% higher Rank1 and a 17.27% larger mAP. For the I2V
retrieval mode, we find that, although our MMAL still wins the first place in terms of Rank1
and mAP, the advantage is relatively weaker compared to the V2I mode. We hypothesize
that the reason is that we do not separate the optimizations of the visible-infrared and
infrared-visible pairs.

Due to the RGBNT201 dataset being newly released and not for VIPR initially, there
are few studies reporting their results. Under this background, we select several state-of-
the-art approaches that have performed well on the RegDB dataset according to Table 1 as
competitors to our MMAL method on the RGBNT201 dataset. The comparison results are
shown in Table 2. We can observe that our MMAL method achieves the best performance
for both V2I and I2V retrieval modes.

To create a more concise comparison, we compared our M3D loss function and the class-
specific max mean discrepancy (CSMMD) [28] loss function under the same conditions,
i.e., using the same backbone and the same appearance-discriminative loss functions.
The comparisons are shown in Figures 4 and 5. We found that our M3D loss function
consistently outperforms the CSMMD loss function for both V2I and I2V retrieval modes
on the two datasets in terms of mAP and Rank1. For example, as shown in Figure 4a, λ is
set to 1.0, 1.5, and 2.0, meaning our M3D beats the CSMMD by 1.37%, 3.32%, and 11.48%
higher Rank1s, respectively. As shown in Figure 4b, when λ is set to 1.0, 1.5, and 2.0, our
M3D is superior to the CSMMD by 4.70%, 5.17%, and 13.89% higher mAPs, respectively. We
deduce that the disadvantage of CSMMD is because the class-specific modal discrepancy



Sensors 2023, 23, 1426 9 of 17

reduction more easily becomes redundant because of the intra-class distance optimization
of the appearance-discriminative learning.

Table 1. The performance comparison of our MAL and state-of-the-art methods on the RegDB dataset.
The V2I and I2V denotes the visible-to-infrared and infrared-to visible retrieval modes. The red, green
and blue rows represents the 1st, 2nd and 3rd places, respectively.

Method
V2I I2V

Reference
Rank1 (%) mAP (%) Rank1 (%) mAP (%)

TSLFN+HC [51] 56.96 54.95 59.74 64.91 Neurocomputing 2020
X modality [68] 62.21 60.18 N/A N/A AAAI 2020

cm-SSFT [15] 65.4 65.6 63.8 64.2 CVPR 2020
DDAG [35] 69.34 63.46 68.06 61.80 ECCV 2020

Hi-CMD [19] 70.93 66.04 N/A N/A CVPR 2020
MACE [44] 72.37 69.09 72.12 68.57 TIP 2020
AGW [38] 70.05 66.37 N/A N/A TPAMI 2021

ADCNet [13] 72.9 66.5 72.4 65.3 ICME 2021
FBP-AL [41] 73.98 68.24 70.05 66.61 TNNLS 2021

LLM [52] 74.85 71.32 N/A N/A SPL 2021
ECGRAPH [27] 75.58 67.86 N/A N/A SPL 2021

MLCNN [73] 76.2 74.1 75.8 73.8 IEEE IOT 2021
SFANet [74] 76.31 68.00 70.15 63.77 TNNLS 2021
GECNet [53] 82.33 78.45 78.93 75.58 TCSVT 2021
MPANet [42] 83.7 80.9 82.8 80.7 CVPR 2021
CM-NAS [28] 84.54 80.32 82.57 78.31 ICCV 2021

MSA [75] 84.86 82.16 N/A N/A IJCAI 2021
HC-Triplet [5] 91.05 83.28 89.30 81.46 TMM 2021

GLMC [40] 91.84 81.42 91.12 81.06 TNNLS 2021
DMiR [43] 75.79 69.97 73.93 68.22 TCSVT 2022
DTRM [36] 79.09 70.09 78.02 69.56 TIFS 2022

MMAL 93.24 83.77 91.02 81.54 Ours

Table 2. The performance comparison of our MAL and state-of-the-art methods on the RGBNT201
dataset. The V2I and I2V denotes the visible-to-infrared and infrared-to visible retrieval modes.

Method
V2I I2V

Reference
Rank1 (%) mAP (%) Rank1 (%) mAP (%)

TSLFN+HC [51] 26.4 22.9 18.4 22.0 Neurocomputing 2020
DDAG [35] 73.5 45.5 73.35 45.8 ECCV 2020

CM-NAS [28] 75.3 43.3 75.6 45.3 ICCV 2021
AGW [38] 71.2 38.9 69.0 39.6 TPAMI 2022
DTRM [36] 82.0 44.5 83.9 45.1 TIFS 2022

MMAL 92.33 54.13 91.10 53.83 Ours

4.5. Analyses

In the above subsection, the performance advantage of our MMAL method has been
validated via comparing two state-of-the-art methods. In what follows, we analyze our
MMAL method’s advantage from three aspects: (1) The modal discrepancy suppression;
(2) The role of the marginal strategy; (3) The analysis of the running time.

4.5.1. Role of Modal Discrepancy Suppression

Since the M3D loss function is responsible for the learning modal-invariant features
and λ in Equation (7) controls the weight of the M3D loss function, we adjust the λ
value to analyze the role of the modal discrepancy suppression. The results are shown in
Figures 6 and 7.
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Figure 4. The comparison between our M3D and CSMMD [28] loss functions on the RegDB dataset.
(a) V2I Rank1, (b) V2I mAP, (c) I2V Rank1, and (d) I2V mAP.
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Figure 5. The comparison between our M3D and CSMMD [28] loss functions on the RGBNT201
dataset. (a) V2I Rank1, (b) V2I mAP, (c) I2V Rank1, and (d) I2V mAP.
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On the RegDB dataset, as shown in Figure 6, along with the increase in λ, mAP and
Rank1 firstly improve and then deteriorate for both V2I and I2V retrieval modes. Given
the V2I retrieval mode as an example, the optimal λ for mAP is 0.5, which provides the
largest mAP, i.e., 83.77%, as shown in Figure 6a. Compared to the case of λ = 0, the best
performance improved the mAP by 3.32%. The best λ for Rank1 is 1.0, which leads to the
highest Rank1, i.e., 94.00%, as shown in Figure 6c, compared to the case of λ = 0, with
the best performance improving the Rank1 by 8.76%. However, an overlarge λ causes
performance degradation, such as the worst CMC curve from setting λ = 3.0. A similar
performance variation phenomenon occurs on the RGBNT201 dataset, as shown in Figure 7.
These results suggest that an overemphasized modal discrepancy restraining would harm
the features’ discriminant ability.
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Figure 6. The performance of using different modal discrepancy restraining degrees (i.e., λ in
Equation (7)) on the RegDB dataset. (a) V2I mAP, (b) I2V mAP, (c) V2I Rank1, and (d) I2V Rank1.

4.5.2. The Role of Marginal Strategy

In this experiment, we fix λ to be 0.5 according the results presented in the subsection
of analyzing the role of modal discrepancy suppression. As shown in Table 3, on the
RGBNT201 dataset, most of the cases of the differently sized margins acquire improve-
ments, compared to the naive case that does not apply any margin (i.e., τ = 0). For example,
the case of setting the margin to be 0.015 (i.e., τ = 0.015) brings about 3% mAP improve-
ments for both V2I and I2V retrieval modes. These results demonstrate that the marginal
strategy avoiding the over-optimization of modal discrepancies to protect the features’
discriminant ability has a positive effect on improving VIPR.
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Figure 7. The performance of using different modal discrepancy suppression degrees (i.e., λ in
Equation (7)) on the RGBNT201 dataset. (a) V2I mAP, (b) I2V mAP, (c) V2I Rank1, and (d) I2V Rank1.

Table 3. The performance of using different sized margins on the M3D loss (i.e., Equation (3)) on
the RGBNT201 dataset. The V2I and I2V denotes the visible-to-infrared and infrared-to visible
retrieval modes.

τ
V2I I2V

Rank1 (%) mAP (%) Rank1 (%) mAP (%)

0 89.37 52.54 90.90 52.86
0.005 89.67 53.14 93.10 52.61
0.01 92.33 54.13 91.10 53.83

0.015 90.43 55.68 92.87 56.80

4.5.3. The Analysis of Running Time

Due to feature extraction costs of the higher inference times, following [76–78], we
apply the average feature extraction time (AFET) per image as a running time indica-
tor. The smaller the AFET per image, the better the running time performance would
be. As shown in Figure 8, our MMAL method acquires the best AFET per each image
performance. To be more specific, our MMAL method’s AFET per image is 21.87 µs
smaller than that of the AGW [38] method and 18.33 µs smaller than that of the DDAG
method [35]. The reason for this that both the AGW and DDAG methods apply a partial
two-branch backbone, which is more complex than the single-branch backbone used in our
MMAL method.
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Figure 8. The running time performance of our MMAL approach and state-of-the-art methods.
The batch size is set to 100 during testing.

5. Conclusions

In this paper, we design a margin-based modal adaptive learning (MMAL) method
for visible-infrared person re-identification (VIPR). VIPR is not completely the same as
domain adaptation because VIPR has complete identity information on both visible and
infrared modalities. Thus, VIPR requires a gentle domain adaptation that keeps a good
balance of modal discrepancy suppression and appearance-discrimination learning. To this
end, rather than directly using a traditional domain adaptation loss function, we design
a simple yet effective marginal maximum mean discrepancy (M3D) loss function to avoid
an excessive suppression of modal discrepancies to protect the features’ discriminative abil-
ity on both the visible and infrared modalities. Compared to the state-of-the-art methods,
our method is competitive, e.g., on the RegDB dataset, for the visible-to-infrared retrieval
mode, the rank-1 accuracy reaches 93.24% and the mean average precision reaches 83.77%.
In addition, our experiments demonstrate that using our M3D loss function outperforms
the naive case without using any domain adaptive loss function with a 4.70% higher rank-1
accuracy and outperforms the case using the traditional maximum mean discrepancy loss
function with a 2.96% higher rank-1 accuracy on the RGBNT201 dataset.
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Abbreviations
The following abbreviations are used in this manuscript:

VIPR Visible-infrared person re-identification
GAN Genaration adversarial network
MMAL Margin-based modal adaptive learning
MMD Max mean discrepancy
M3D Margin max mean discrepancy
CSMMD Class-specific maximum mean discrepancy
GeM Generalized-mean pooling
BN Batch normalization
Tri Triplet
LSCE Label-smoothing cross-entropy
BNNeck Batch normalization neck
mAP Mean average precision
CMC Cumulative match characteristic
Rank1 rank-1 accuracy
SGD Stochastic gradient descent
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