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Abstract: Demand for data security is increasing as information technology advances. Encryption
technology based on biometrics has advanced significantly to meet more convenient and secure needs.
Because of the stability of face traits and the difficulty of counterfeiting, the iris method has become
an essential research object in data security research. This study proposes a revolutionary face feature
encryption technique that combines picture optimization with cryptography and deep learning (DL)
architectures. To improve the security of the key, an optical chaotic map is employed to manage the
initial standards of the 5D conservative chaotic method. A safe Crypto General Adversarial neural
network and chaotic optical map are provided to finish the course of encrypting and decrypting
facial images. The target field is used as a "hidden factor" in the machine learning (ML) method in
the encryption method. An encrypted image is recovered to a unique image using a modernization
network to achieve picture decryption. A region-of-interest (ROI) network is provided to extract
involved items from encrypted images to make data mining easier in a privacy-protected setting.
This study’s findings reveal that the recommended implementation provides significantly improved
security without sacrificing image quality. Experimental results show that the proposed model
outperforms the existing models in terms of PSNR of 92%, RMSE of 85%, SSIM of 68%, MAP of 52%,
and encryption speed of 88%.

Keywords: information security; biometrics; face feature encryption; image optimization; cryptogra-
phy; deep learning

1. Introduction

DL is a very powerful technique in computer vision applications. Surveillance is a
high-potential application field for DL. DL requires a large training data set to achieve
excellent performance. However, collecting enough training data while maintaining the
anonymity of people in data is expensive, especially for surveillance applications. No one
wants their images to be included in the dataset because developers can monitor anyone’s
actions. A comparable circumstance can be found during a surveillance operation. A
security camera owner can monitor anything. Image encryption is one of the methods
for maintaining privacy [1]. The picture encryption process converts an original image
into an encrypted image in which no one can recognize the contents. Image encryption
methods were primarily created to send photos securely over a public network. For people
and machines to recognize the contents of an encrypted image, the image must first be
decrypted. Anyone may recognize the contents of the image once it has been decrypted.
This means that picture decryption can compromise privacy [2].

Sensors 2023, 23, 1415. https://doi.org/10.3390/s23031415 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031415
https://doi.org/10.3390/s23031415
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4914-8722
https://orcid.org/0000-0002-6742-2094
https://doi.org/10.3390/s23031415
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031415?type=check_update&version=1


Sensors 2023, 23, 1415 2 of 19

People have entered the era of big data as a result of technological advancements.
Internet and computer technology have advanced swiftly, network popularity has grown
significantly, and information interaction technology has matured. While most people
utilize the Internet to send information, it also creates many data security risks. Data
transmission security is rapidly affecting the security of individuals, businesses, and even
countries as networks expand into new domains. Because of its visual features, an image has
a strong expression influence on the data it contains. Many information expressions favor
visuals because of their widespread use in information interaction. Owners of valuable
photographs frequently utilize the Internet to conduct an auction or post their image data.
That strategy removes geographical limits such as geography, and it is convenient and
quick, but it also saves money [3]. However, throughout the network transmission process,
insecure elements of picture data provide an opportunity for malicious attacks, and original
image data may be attacked, resulting in data leakage or destruction. The goal of the
picture encryption technique is to enhance the security of image data, minimize the risk
of data leakage and destruction, and ensure the secure transmission of original data. In
a few cases, image data are encrypted before transmission. For example, before medical
images may be transmitted over the Internet, they must be encrypted to safeguard patient
privacy. Criminal attacks such as destructive damage and data theft are common, and
picture encryption technology is continually evolving. An urgent topic to be tackled is how
to increase picture security, key transmission security, and anti-attack capability [4]. The
iris, face, fingerprint, voice, deoxyribonucleic acid (DNA), and palm positions are examples
of information properties created by human tissue structures. Because of their uniqueness,
biological traits of the human body are extensively utilized to determine recognition and
other sectors. The properties of the iris are extracted using iris recognition technology.
It is part of the human biological feature extraction technology and is of extremely high
grade. It is better for picture encryption because it improves the algorithm’s security and
anti-attack capability. The identity recognition method based on iris feature extraction
is receiving increased attention in academic and industry sectors. It has an extensive
variety of applications and is progressively implemented in various departments with
high security needs, such as finance and secrecy [5]. Applying DL techniques to the area
of image security to resolve classic challenges has also received much attention recently
and has made significant progress. However, many researchers are interested in how to
better utilize the benefits of DL in image cryptography, image authentication, and image
steganography. To assist relevant researchers in better understanding the field of DL uses
in digital image security together with its upcoming progress, the origin and development
method of DL techniques in image cryptography, steganography, and authentication were
organized from numerous perspectives in this paper, as shown in Figure 1. We then
evaluate these strategies, assess their benefits and drawbacks, and make recommendations
for future research on this subject.

Various security techniques are currently available to assist in repelling picture-based
attacks, but they are not effective in balancing security and image quality demands. Aside
from that, chaotic map behavior provides a high level of security. As a result, combining DL
and chaotic behavior can provide a superior picture encryption solution. As a result, the
suggested article proposes a model in which a DL chaotic map is employed to perform better
optimization to improve picture encryption performance. In computer vision applications,
DL is a very powerful technology. Surveillance is a high-potential application field for DL.
DL requires a large training data set to achieve excellent performance. However, collecting
enough training data while maintaining the anonymity of people in the data is expensive,
especially for surveillance applications. No one wants their images to be included in
the collection because developers can monitor anyone’s actions in real-time. During a
surveillance operation, a similar predicament can be encountered. A security camera
owner can monitor anything. Image encryption is one of the methods for maintaining
privacy. Image encryption converts an original image into an encrypted image in which the
contents of the original image are unrecognizable. Image encryption methods were created
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primarily for the purpose of securely transmitting photos over a public network. For people
and/or machines to recognize the contents of an encrypted image, the image must first be
decrypted. Anyone may recognize the contents of the image once it has been decrypted.
This means that image decryption has the potential to infringe on one’s privacy [6].
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Figure 1. The entire architecture of the digital image security survey.

The contributions of this research are as follows:

• To propose a novel technique for face feature encryption with image optimization
using cryptography and deep learning architectures;

• To develop a secure Crypto General Adversarial neural network and optical chaotic
map for encryption and decryption of face images with optimization of images.

The rest of this research article is organized as follows. Section 2 of this paper shows
the related work. In Section 3, novel techniques for face feature encryption with image
optimization using cryptography and deep learning structural design are deliberated. In
Section 4, experimental analysis and discussions are displayed. Section 5 of this paper
contains its conclusion.

2. Related Work

This section contains traditional study projects that are only focused on image security.
Furthermore, the literature uses picture encryption using chaotic methods [7]. However,
achieving a suitable balance between security efficiency and encryption significance is
difficult with these methods. DL, which uses multilayer neural networks (NNs) to extract
features from raw input photos, has also attracted much interest in solving the problem. The
advantages of convolution neural networks (CNNs) [8] are established in computer vision
applications and picture domain transfer [9]. Image transfer from one domain to another is
thought of as a texture transfer issue, to learn mapping connection amid an input image
and output image from a set of matched image pairs. The most common image-to-image
conversion approach is the cycle-reliable adversarial system [5], which offers two-cycle
reliability losses that shift the image from one domain to another and then rebuilds back
to the original image. DL technique is used to manage the image-denoising problem [10].
Image noise is interference data in image data that cause some useful image data to become
invisible. The process of image denoising is considered image restoration [11]. The authors
of [12] proposed a new cross-image, pixel scrambling-based rotation domain, dual-image
encryption technique. In [13], the authors suggested a dual-image encryption method that
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incorporates DNA spatiotemporal chaos, deletion, and insertion to improve the security of
the encryption process, and scramble real as well as imaginary sections of data produced
by every round of encryption [14]. The approach encrypts two images simultaneously by
combining DNA sequence insertion and deletion methods with scrambling and diffusion
methods. Reference [15] introduced a new dual-image compression encryption method
that improves the secrecy and resilience of the dual-image encryption approach. These
techniques can employ the same encryption method to encrypt two photos separately,
which requires decryption twice to extract the two images [16]. The authors of [17] proposed
a method for medical picture cryptography based on a combination of chaotic and neural
networks in their study. The major goal of the proposed method is to verify the safety
of medical photographs using a less sophisticated method than current methods. Test
findings supported the proposed method’s performance and efficiency, which meets digital
imaging and communications in medicine criteria. In [18], the authors proposed a new
multikey compressed sensing and ML privacy-preserving computing system. A user, a
cloud, and a trusted third party make up this computer architecture, and the trusted third
party is in charge of distributing random compressed sensing keys. In [19], a machine
learning technique was used for an issue involving health, commercial, or other sorts
of sensitive data, which necessitates not only precise estimates. Because the cloud does
not have access to keys required to decrypt the data, encryption assures that it remains
private. Table 1 presents a summary of image encryption techniques, including their
benefits and limitations.

Table 1. Different image encryption techniques.

Sr. No. Image Encryption Technique Overview Advantages Disadvantages

1. Image encryption based on a
public key [20]

Public key encryption
uses a pair of keys, one
for encryption and one

for decryption,
providing secure

communication and
nonrepudiation for

image data.

Public key encryption provides
secure communication as only the
intended recipient can decrypt the

image using their private key. It
also allows for nonrepudiation
and the ability to encrypt large

amounts of data.

Public key encryption can be
slower and more computationally

expensive than symmetric key
encryption. Additionally,
managing and securely

distributing the public and private
keys can be complex and difficult.

2. Chaos-based encryption
technique [21–23]

Random starting
circumstances.

Numerous iterations are
required; a sophisticated

mapping process.

Chaos-based encryption
techniques use chaotic systems to

generate encryption keys,
providing high levels of security
and randomness. They also have

the ability to resist known
plaintext attacks and are resistant

to differential cryptanalysis.

Chaos-based encryption
techniques can be complex to

implement and may have
limitations in terms of encryption
speed and scalability. They also

may be sensitive to initial
conditions and perturbations in

the chaotic system.

3. Visually meaningful image
encryption technique [24,25]

Mentions an image that
is at least twice as large

as the original. A
successful embedding
method. A powerful
encryption method.

Visually meaningful image
encryption techniques help to

preserve the visual features of an
image while still encrypting it,

making it more user-friendly and
easy to understand. This also
allows for more efficient and

effective image transmission and
storage.

Visually meaningful image
encryption techniques may not

provide as much security as other
encryption methods and can be

vulnerable to attacks such as
stegonography and visual

cryptanalysis. Additionally, it may
be more computationally
expensive and complex to

implement.

4. Partial image encryption
techniques [26,27]

Extraction of important
areas from images. Any
safe encryption method.

Partial image encryption
techniques allow for selective

encryption of important or
sensitive parts of an image,
enhancing security while

preserving the overall visual
quality of the image. It also allows

for more efficient storage and
transmission as only certain parts

of the image are encrypted.

Partial image encryption
techniques may not provide as

much security as full image
encryption, as attackers may focus

on the unencrypted parts of the
image. It also may be more

complex to implement and may
require additional information to

properly decrypt the image.
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Table 1. Cont.

Sr. No. Image Encryption Technique Overview Advantages Disadvantages

5. Symmetric key encryption
techniques [28–30]

Symmetric key
confidentiality.

Mechanism for safe key
sharing and codec

conformity.

Symmetric key encryption uses
the same key for encryption and
decryption, providing fast and

efficient encryption. It also
requires less computational power

and is simpler to implement
compared to other encryption

methods, making it more practical
for many use cases.

Symmetric key encryption
requires secure key distribution

and management, as the same key
is used for encryption and

decryption, if the key is
compromised the security of the

encrypted data is lost. It also does
not provide nonrepudiation,
meaning that the sender and

receiver cannot prove who sent
the message.

6.

Proposed encryption
technique based on

cryptography and deep
learning (DL) architectures.

Here, the input face
image is processed and
mapped using optical

chaotic maps, which are
utilized for efficient

encryption and
decryption of the image.

The proposed encryption
technique provides high security

by combining the strengths of
both methods. The technique can
also adapt to changing encryption

needs, improve the encryption
efficiency, and resist attacks that

traditional encryption techniques
may fall prey to.

It may be computationally
expensive and require specialized

hardware and expertise to
implement.

Consider two scenarios: the training and operating phase. In both cases, the network
will most likely require a simple image dataset (see [31] for complete details). Typically,
simple images are used to train the network. The original plain images should be decrypted
to train the network, even if the image collection is encrypted. The individual who trains
the network is referred to as a trainer in this context. The data holder who holds the training
dataset is frequently not the same as the trainer. The data holder cannot then provide the
dataset to the trainer using those two existing approaches, because doing so would violate
the data holder’s privacy policy. In the operational phase, the scenario is similar to that
in the training phase. To detect or classify an object, the network requires a basic image.
The images should be decrypted for the network even if the encrypted images are stored in
the surveillance system. In this way, the operator who runs the networked surveillance
system may always examine the original plain photographs. As a result, a new picture
encryption challenge is presented here. The fundamental difference from the existing image
encryption challenge is that the encrypted images have desired qualities. The algorithm
should encrypt images against both humans and networks in the present image encryption
challenge. In the image encryption challenge discussed here, encoded images should be
encrypted for humans while the network can be trained on encoded images. This type of
encryption is known as learnable image encryption. Learnable image encryption is capable
of encrypting images for human use. It means that the data owner can give their dataset
while being compliant with the privacy policy. Trainers can use encrypted photos to train
directly. The development of networks is extremely beneficial because the data holder and
the trainer can avoid privacy concerns. The learnable image encryption is also effective
during the operation phase. Encrypted images are used to train the network. As a result,
without decrypting original plain photos, the network can recognize or classify objects
using directly encrypted images.

3. System Model

This section discusses a novel technique of face feature encryption with image opti-
mization using cryptography and deep learning architectures. Here, the input face image
has been processed and mapped using optical chaotic maps that are utilized for efficient
encryption and decryption of the image. Then, the secure crypto general adversarial
neural network was developed for encryption and the decryption method with image
optimization. The overall proposed method is represented in Figure 2.
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3.1. Digital Optical Chaotic Mapping (Op-Ch_M)-Based Digital Image Encryption Technique

Xiong et al. offer a new chaotic map-based digital picture encryption technique.
The surname initials of the author, abbreviated as XZQ, are used for brevity. The XZQ
algorithm’s encryption phases are listed below.

Phase 1. Select chaotic mapping to produce a chaotic sequence with beginning specifica-
tions of x0, and a number sequence of = (n1, n2 , n3. . . , nk), 0 < ni < n and ∑k

i=1 ni = n
where n is the picture row size.

Phase 2. Create a double-precise chaotic sequence {x1, x2, . . . , xn} using a chaotic
mapping f (x) = µx(1− x) arranging n items in the real sequence set {x1, x2, . . . , xn} in
increasing order to generate a systematic sequence

{
x
′
1, x′2, . . . , x′n

}
to produce a permuta-

tion address set {t1, t2, . . . , tn}; at this point, ti numbers in {1, 2, . . . , n}; commute pixels
in first row based on {t1, t2, . . . , tn}, namely transposing pixels ti, i = 1, 2, . . . , n.

Phase 3. Set x1 = xn+n, and redo the process in Phase 2 in residual rows; ni = nk,
repeatedly utilize δ from n1 reintroduced δ.

Phase 4. Perform the same modifications in the image’s rows to LG =

minG

(
Ex∼pdata(x) log(1− D(G(x ))

)
) to complete image encryption.

G network starts with a convolution stage to encode and compress pictures spatially,
and useful characteristics retrieved in this phase are then utilized in the transformation
that follows. Finally, a 7 × 7 convolution kernel exports the forecast. Furthermore, the
decryption network F has a similar structure as encryption network G; encryption network
G has successfully converted original patient images. Therefore, encrypted network G’s
loss LG is given by Equation (1):

Lreconstruction = Ex∼pdata (x)
‖ Y− X ‖1 (1)

G stands for an encryption network, and D stands for a discriminator network. G loss
aims to reduce discriminator network D’s success rate in detection ciphertext produced
by encryption network G. Aside from encryption, another suggested technique is to make
certain that the restored image retains the original image’s texture data even when it is
encrypted. Reconstruction loss estimates dissimilarity between G(x) and the original image for
every image x from domain X, x→ G(x)→ F(G(x)) ≈ x. L is calculated using Equation (2):

Lreconstruction = Ex∼pdata (x)
‖ Y− X ‖1= Ex∼pdata (x) ∑n

i=1|yi−xi|
= Ex∼pdata (x)

(|y1−x1|+ . . .+|yi−xi|)
(2)
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The primary value of the 5D conservative chaotic method is evaluated by using
pseudo-random sequence LCon based on the technique given below:

x0 =∑x
l=1 Lcon(l)

ω0
+α0

y0 =
n
∑

l=1
Lcon(l)×ψ0+β0

u0 =∑x
l=1 Lcon(l)×0.48

ϕ0
+y0

v0 =
log 2 ∑x

l=1 Lcon(l)×0.48
ϕ0

+δ0

where n ∈ N, and n < d0. I = 1, 2, . . . , n is the index value. Initial control specifications
are: α0 = −0.16, β0 = 5.52, γ0 = −2.24, δ0 = −1.2. ε0 = −0.3. Initial scale coefficients
are ω0 = 40318, ψ0 = 0.0004, ς0 = −2176, φ0 = −15140, ϕ0 = 8.667. By Equation (13),
the initial values of the 5D conservative chaotic method are evaluated as x0 = 0.2536,
y0 = 7.0021, z0 = −2.0216, u0 = 2.5102, v0 = −0.7109.

Phase 2. Arbitrary sequences X, Y, Z, U, V are given by iterating the 5D conservative
chaotic method, and arbitrary matrices RM1, RM2, K1, K2, K3 are obtained by transforma-
tion: 

RM1= mod
(

X× 1015, 256
)

RM2= mod
(

Y× 1015, 256
)

K1= mod
(

Z× 1015, 256
)

K2= mod
(

U× 1015, 256
)

K3= mod
(

V× 1015, 256
)

RM1 and RM2 are arbitrary stage masks utilized for optical encryption channels, and
K1, K2, K3 are the keys to the digital diffusion channel’s encryption.

Phase 3. Optical encryption is performed on the image with low-bit scrambling PLP2
to obtain low-bit encrypted image ELP2. The encryption technique is described by the
equation below:

ELP2(x, y) =
FP2FP2

{
FPnFppy

[
PLp2

(x, y)× RM1(u, v)
]
×RM2(u, v)

}
where FPx2 FPy is fractional Fourier transform through order px for the x-axis and order
py for the y-axis. The high-bit scrambled image with dynamic adaptive inverse diffusion
PHP1 yields EHP1.

EHP1(τ) = bitxor(K1(τ), PHP1−µ)
EH(τ + 1) =

bitxor ( bitxor (EHPP1(τ), PHP1(τ + 1), K2(τ + 1)))
EHP1(τ − 1) =

bitxor ( bitxor (EH
P1(τ), PHP1(τ − 1), K2(τ − 1)))

where µ is the dynamic diffusion control specification fixed by the user and τ is the dynamic
diffusion direction control specification,

τ = mod


M
∑

1=1

N
∑

j=1

(
K2+255

3

)
3×M×N

× 1016, M×N

, τ ∈ (1, M×N)

The choice to balance data in two ciphertext pictures can be made based on application
needs. The option to delete the 4-bit information when the communication proportion is
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higher can also be considered. If the image’s details are sought, it is essential to stabilize
the data of an image with a high 4-bit ciphertext and an image with a low 4-bit ciphertext
to obtain C1 and C2. In this example, the image balance approach is illustrated.

C1, C2 ←


ξ3 = EHP1(x1(i), y1(j))

EHP1(x1(i), y1(j))= ELp2(z1(i), w1(j))
ELp2(z1(i), w1(j))= ξ3

Discriminator network D seeks to distinguish between translated samples by maximiz-
ing discriminator network D’s classification accuracy, which is the inverse of the encryption
network G’s goal Equation (3):

LD= Ex∼pdata(x)logD(x) + Ex∼pdata(x)log(1−D(G(x))) (3)

The private key for encryption is the final specifications of network G. In contrast, the
private key for decryption is the final parameters of network F. The following is the proce-
dure for producing a privacy key: For encryption, every convolutional layer’s parameters
are initially arbitrarily initialized as given: Wn = random

[
wn,1, wn,2, . . . , wn,j, . . .

]
where

wn is the nth convolutional layer. As a result, the encryption privacy key W is made up of
all specifications of every convolutional layer, which is described as follows: W = consist
[W1, W2, . . . , Wn, . . .].

In addition to forward propagation, the BP method transfers network loss between
convolutional layers. Improve performance by updating the parameters in each layer. The
gradient descent is defined by Equation (4):

θj= θj − α ∨ J(θ)

= θj − α
δ

θj
J(θ)

= θj − α
δ

θj

1
2 m

m

∑
i=1

(
hθ
(

xi
)
− yi

)2

= θj − α
1

2 m

m

∑
i=1

δ

θj

(
hθ
(

xi
)
− yi

)2

= θj − α
1

2 m

m

∑
i=1

2
δ

θj

(
hθ
(

xi
)
− yi

)( δ

θj

(
hθ
(

xi
)
− yi

))

= θj − α
1
m

m

∑
i=1

(
hθ
(

xi
)
− yi

)
×
(

n

∑
i=1

δ

θi
θixi −

δ

θi
yi

)

(4)

The procedure of creating a privacy key for decryption is the same as producing a
privacy key for encryption, excluding that the decryption network’s initial input becomes
the encryption network’s projected output. Furthermore, the reconstruction loss is the loss
of the decryption network, as shown in Equation (5).

Lreconstruction = Ex∼pdata (x)

n

∑
i=1
|F(P(xi))−O(xi)| (5)

The encryption algorithm is as follows:

1. Calculate the H value by extracting the characteristic value of the image to be encrypted.

xi= mod
((

abs(xi)−floor(abs((xi)))×1044, 256
)

i = 1, 2, 3, 4

2. To carry out the process, utilize initial chaotic value x0 and H value, producing
initial value x 0’ utilized in scrambling chaotic sequence {Ci, i = 0, 1, . . . , M ∗ N − 1}
as explained in Figure 3.
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3. Arrange the chaotic sequence Ci in descending order; the resulting sequence is C
′
i .

Calculate mapping matrix A for converting Ci to C
′
i , for example, C

′
i = A ∗ Ci.

4. To obtain the final encrypted image G
′
0, utilize matrix A to scramble the image G0

according to the pixel location. G
′
0.G

′
0 = A ∗ G0.

5. Decryption method: Extract the characteristic value of the image to be decoded.
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Step 1. Calculate the hyperchaotic system’s generated random sequence using Equa-
tions (6) and (7).

xi= mod
((

abs(xi) − floor(abs((xi)))×1044, 256
)

i = 1, 2, 3, 4 (6)

Obviously, xi ∈ [0, 255]
↼
x 1= mod((x1+x2+x3+x4), 4) (7)

Step 2. Encrypt the acquired row–column permutation matrix and select the appropri-
ate combination from Table 2 based on x1[0.3].

C3×(i−1)+1 = Prc
3×(i−1)+1 ⊕ Dx1

C3×(i−1)+2 = Prc
3×(i−1)+1 ⊕ Dx2,

C3×(i−1)+3 = Prc
3×(i−1)+1 ⊕ Dx 3 ′

(8)

where Dx1,Dx2 , and Dx3 are given in Equation (9):

Dx1= mod
((

Bx1 ⊕ C3×(i−1)+1, 256
)

,

Dx2= mod
((

Bx1 ⊕ C3×(i−1)+2, 256
)

,

Dx3= mod
((

Bx1 ⊕ C3×(i−1)+3, 256
)

,

(9)

Table 2. Comparative analysis between the proposed and existing techniques.

Datasets Techniques PSNR SSIM RMSE MAP Encryption Speed

ImageNet dataset

CNN 88 78 79 61 85

IEA 90 82 71 55 86

Cry_GANN_OChaMap 92 85 68 52 88

LFW

CNN 85 83 69 65 81

IEA 88 85 65 61 82

Cry_GANN_OChaMap 90 89 61 59 89
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Obviously, Dx ∈ [0, 255], where t = 1, 2, ... relates i-th hyperchaotic iteration; signifies
XOR, Pi, i = 1, 2, . . . , M× N relates scrambled image’s pixel value; Bx1 , Bx2 , and Bx1 reflect
the corresponding combinations in Table 2 selected based on x1, Ci, i = 1, 2, . . . , M×N. Step
3. The encryption procedure is complete if all plaintexts have been encrypted; otherwise,
proceed to Step 1. The encryption and decryption processes are comparable. First, build the
same hyperchaotic sequence with the same parameters and beginning values, but replace it
with Equation (10), as follows:

Prc
3×(i−1)+1= C3×(i−1)+2 ⊕ Dx2,

Prc
3×(i−1)+1= C3×(i−1)+3 ⊕ Dx3,

(10)

Then, according to {ri, i = 0, 1, . . . , M− 1} and
{

cj, j = 0, 1, . . . , N − 1
}

, the matrix is
inversely transformed, and the original image is restored as shown in Figure 4.
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In contrast to the typical method of training, i.e., two methods as a generator and a
discriminator, three NNs are used here. A pair of NNs act as generators, while a third acts
as a modified discriminator. Three NNs will be:
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6. Encryptor: Plaintext and a shared key, both in binary sequence, are used to produce
encrypted text.

7. Decryptor: The encrypted text is used as input, and the shared key are used to produce
an output of decrypted text.

8. Eavesdropper: This only accepts the encrypted text as input, which means it intercepts
text and decrypts it without the shared key.

The general adversarial network (GAN) has the following layers; the architecture of
all three NNs is the same as the subsequent layers:

• Dense layer that is fully linked;
• Flatten layer;
• Convolutional layer.

We employed one dense, four convolutional, and one flattened layer. Strided convo-
lution is utilized to replace the pooling layer. We employed strided convolutions instead
of immediate downsampling. Activation functions used: binary sequences, 0 and 1, are
used for encryption. To standardize the output of each layer in [1, 1], the tanh initiation is
utilized, but the last layer is utilized for sigmoid activation.

The output of A on inputs FF and Key is represented by A(ωA, FF, Key), the output
of the Server is represented by S(ωServer , EFF, Key), and the output of B on input C is
represented by B(ωB, EFF).

The distance function d is also incorporated into the facial feature at the same time.

This study uses L2 distance d2

(
FF, FF

′
)
=
√

∑i=1,N(FFn
1 − FFn

2 )
2 for a specific operation,

where N is the length of the facial feature. The loss function for each instance of B is defined
by Equation (11):

LB(ωA, ωB, FF, Key)= d(FF, B(ωB, A(ωA, FF, Key ))) (11)

LB(ωA, ωB, FF, Key) reflects the inaccuracy of B when facial features are FF and key
are in Equation (12).

LB(ωA, ωB)= EFF, Key(d(FF, B(ωB, A(ωA, FF, Key)))) (12)

This research acquires the "best B" by reducing that loss, as shown in Equation (13):

OB(ωA, ωServer )= argminωB
(LB(ωA, ωB)) (13)

In a similar vein, this paper constructs a sample Server reconstruction error and applies
it to a distribution of face characteristics and keys by Equation (14):

Lserver (ωA, ωServer , FF, Key )= d(FF, Server(ωServer , A(ωA, FF, Key ), Key ))
LServer (ωA, ωServer )= EFF, Key (d(FF, B(ωServer , A(ωA, FF, Key))))

(14)

The optimal values of Lserver and LB are combined in this study to define the Server
and loss function of A by Equation (15):

LAServer(ωA, ωServer )= LServer (ωA, ωServer ) − LB(ωA, OB(ωA)) (15)



Sensors 2023, 23, 1415 12 of 19

This combination illustrates the aim of A and Server to reduce Server rebuild faults
while increasing "optimal B" rebuild errors. However, the following research discusses
beneficial alternatives.

By reducing LA Server (ωA, ωServer ), this study obtains "Best A and Server" by
Equation (16):

(OA, OServer )= argmin(ωAωServer )(LAServer(ωA, ωServer )) (16)

3.2. Secure Crypto General Adversarial Neural Network

In this subsection, we provide the following algorithm for securing the crypto general
adversarial neural network.

Require:
c, clipping parameter, mt, batch size. β1β2, hyperparameters parameters; ncritic amount of generator

iterations per critic iteration.
1. while θ has not joined do
2. for t = 0, . . . , ncricic do 3; for i = 1, 2, 3, . . . , m do

3. Sample
{

x(i)
}m

i=1
− Pr .

4. Sample
{

2(i)
}in

i=1
− p(z).

5. a random number ε ∼ U[0, 1].
6.

↼
x ← Gθ(z)

7. t̀← εx + (1− c)
↼
x

8. L(i) ← Dw

(→
x
)
− Dw(x) + λ

(
‖∇x̀ Dw

(
P̀
)
‖2 − 1

)2

9. gw ← ∇w

[
1
w

m
∑

i=1
fw

(
x(i)
)
− 1

m

w
∑

i=1
fw

(
ge

(
z(i)
))]

10. w← w + α · RMSProp(w, 8w)
11. w← clip(w,−c, c)
12. end for
13. end for

14. w← Adam
(
∇w

1
w

m
∑

i=1
L(i), w, α, β1, β2

)
15. end for

16. Sample
{

z(i)
}m

i=1
∼ p(z).

17. gθ ← −∇θ
1
m

m1

∑
i=1

fw

(
gθ

(
z(i)
))

18. θ
′ ← θ − α · RMSProp(θ, gθ)

19. θ ← Adam
(
∇θ

1
m

m
∑

i=1
−Dω(Gθ(z)), θ’; α, β1, β2

)
20. end while

A GAN consists of two neural networks: a generator network and a discriminator
network. The generator network is trained to generate new samples that are similar to a
target distribution, while the discriminator network is trained to distinguish between the
generated samples and real samples from the target distribution.

In this algorithm, the generator network is represented by Gθ , and the discriminator
network is represented by Dw. The generator network is trained to generate samples,
denoted by x, from a noise distribution, p(z), while the discriminator network is trained to
classify samples as either real (from the target distribution Pr) or fake (generated by the
generator network).
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The training process alternates between updates to the generator network and the
discriminator network. During each generator update, the generator network generates a
batch of samples from the noise distribution, and the discriminator network is updated
to classify these samples as fake. During each discriminator update, the discriminator
network is updated to classify a batch of real samples and a batch of fake samples generated
by the generator network. The algorithm also uses various hyperparameters, such as
the clipping parameter c, the batch size m, and the Adam optimization parameters α,
β1, and β2. These hyperparameters set and tuned through experimentation to achieve the
best performance for the specific task and dataset. The root mean squared propagation
(RMSProp) optimization algorithm is also used to update the weights of the networks. The
training process continues until the generator network has converged. The threshold value
in the algorithm is the "clipping parameter" (c). It appears in the line “ w← clip(w,−c, c)”,
which sets the values of w to be within the range (−c, c). The value of c is specified as an
input to the algorithm and determines the maximum magnitude for the values of w.

A GAN’s purpose is to predict the possible distribution of existing data and produce
new data samples with the same distribution. Generator G’s ability to produce samples is
improved by creating a minimax confrontation procedure between it and discriminator D.
The GAN’s main purpose is to create a generator G from real-world data X. The model’s
objective function is given by Equation (17):

min
G

max
D

= Ex∼Pd [(log(D(x)] + Ez∼Pz [(1−D(G(z)))] (17)

The distribution and the appearance of an image become increasingly similar as those
of the cover image when a discriminator is added to the steganography system. For
example, the following is the loss function given by Equation (18):

Ldisc = Ec∼Pc [log D(c)] + Ec∼Pc,s∼Ps
[log(1−D(H(c, s))] (18)

Here, Pc and Ps are covers and secret image distributions, and H (c, s) is the steg
image produced by the generator. Throughout the training operation, the hiding network
and the extracting network are optimized to minimize the original secret image s and the
loss of image-extracted secret image s 0. To do this, we propose a novel cost function that is
reduced to enhance the method, which is given by Equation (19):

argmin 1
n

n
∑

i=1
(1− SSIM(ci, Hθ(ci, si))

Hθ
(19)

3.3. Security Analysis

Both the encryption and decryption networks include 24 levels, with a total of 2,757,936
parameters for each network. A deeper resnet-50 design is used for the ROI mining network.
The ROI-mining network’s structure is shown in Table 2. Chest X-rays [45] are the dataset.
The proposed solution is implemented on Nvidia Giga Texel Shader eXtreme (GTX) 2080Ti
graphics card. Each epoch of the model takes about 10 minutes to train the network.
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3.3.1. Analysis of Key Space

The difficulty of an exhaustive attack is computed by the size of the key space. The
number of specifications for the DL network is a key space of the proposed encryption
method in this study, with an overall of 2,757,936 specifications in experimentations. Every
specification or key is a 32-bit floating point value amid 0 and 1, which are written as
a decimal integer with 10 significant digits in the computer. As a result, the encryption
model’s key space can be stated as (1010) 2757936. Attackers will find it difficult to break
down the system, and it will be able to efficiently resist attacks.

3.3.2. Key Randomness Analysis

With the same conditions, the encryption network is trained four times. As a result,
the parameters of these four networks, namely Key A, B, C, and D, are used as encryption
keys. These four photos are unmistakably distinct. The SSIM index between various photos
is usually less than 0.1, indicating that there is very little similarity between them. Accord-
ing to the experiment, the privacy keys for the medical picture encryption network are
completely distinct after each training since the neural network’s parameters are randomly
initialized. As a result of these differences, separate encrypted images are produced, each
of which is processed using a different encryption network. The premise is that DL network
training is inherently unstable. In different training, different initialization parameters
might lead to different end parameters. It is shown that the proposed technique is similar
to OTP and that it may be classified as an OTP technique.

3.3.3. Key Sensitivity Analysis

DL models, unlike typical encryption systems, spread errors among layers. A 3 × 3
convolution kernel is used to send the lth pixel in the Nth layer feature map to a nearby
pixel in (N + 1)th layer during the convolution process. When a feature point is incorrect,
it is transferred to the next layer’s 3 × 3 feature points. The inaccuracy of feature points
will grow by two pixels for every layer as the depth of the convolutional network increases.
This inaccuracy grows exponentially with the superposition of the deconvolution process
in the upsampling process. The attacker is assumed to have the most privacy keys in this
experiment. Only around 5% of crucial specifications are changed, which is considered an
unknown part. The encrypted image is then sent to the network with new specifications,
and the network is unable to convert the ciphertext image back to the original. This means
that even if only 5% of specifications are modified, the privacy key will fail to properly
encrypt or decode the medical image. In other words, breaking the proposed technique
requires attackers to estimate at least 95% of correct key specifications in a key space
containing (1010) 2757936.

3.3.4. Histogram Analysis

To calculate the performance of the suggested encryption network, the original image
and the encrypted image are given in Figure 5c. The pixel distribution in the original image
and the encrypted image is considerably varied, according to the experiment. The original
chest X-ray image’s pixel histogram has 57,600 * (240 * 240) pixels overall, with more than
30,000 pixels having a value of 0, and greater than 5000 pixels having a value of 255. The
original image’s pixel dissemination is fairly intense. The distribution of encrypted medical
photos, on the other hand, is more uniform, which aids statistical analysis.
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3.3.5. Entropy Analysis

In contrast to statistical attacks, encrypted image data entropy is considered a signif-
icant measurable dimension for methods to defend. Image data entropy is a statistical
property of an image’s grayscale distribution. The encrypted image should resemble ran-
dom noise in appearance, the grayscale distribution should be uniform, and the anticipated
value should equal 8.

3.3.6. Security Analysis under Various Adversary Models

Tests are being carried out to determine if an attacker can produce a key under three
various adversary methods. Hidden Factors Leakage: Four potential network structures
are investigated in this experiment: network A, network B, network C, and network D.
The training environment remains unchanged. Utilizing trained network A, the original
image is encrypted. To restore the original image, the ciphertext image is decrypted by a
decryption network retrieved from network A, network B, network C, and network D.

3.3.7. Network Architecture Leakage

Different hidden factors are used in this experiment to train encryption networks with
the same network configuration. All training circumstances remain constant.
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3.3.8. Both Network Architecture Leakage and Hidden Factors

To produce networks A, B, C, and D, the network is trained four times in this experi-
ment under the same hidden elements and training circumstances. Investigation compares
the decryption performance of these four networks on identical ciphertext images to deter-
mine if specifications produced by each are unique. Using decryption keys B, C, and D,
the image’s gray value distribution differs significantly from that of the image decrypted
with the help of decryption key A. It is seen that one network’s encryption of a medical
image prevents its decryption by utilizing specifications of another network under same
training conditions. Even if method specifications are learned using the same network
method and hidden factors, they will not be able to decode the image. Experiments reveal
that even though both network design and hidden elements are leaked, and the network is
trained under identical circumstances, the specifications of every network are completely
dissimilar, i.e., secure keys.

4. Experimental Analysis

The experiments were carried out on a personal computer (PC) with an NVIDIA
GeForce Tesla V100 32G graphics processing unit (GPU), Pytorch 1.1, and Python 3.7 as the
experimental environment. The input dataset’s image size is 32 × 32 pixels. The proposed
method block size is set to 4. After block adaptation networks [7,8], pyramidal residual
networks were created. Plain pictures, integrated cat map image encryption [9], a naive
blockwise pixel shuffle, and the suggested technique are all compared here.

ImageNet dataset was used to gather 80,000 training photos and 10,000 test images
for training network methods in this study. The Adam optimization technique was uti-
lized to automatically modify the learning rate in the training phase to optimize method
specifications. Hyper specifications were adjusted to 0.65 and 0.85, with the initial learning
proportion set at 0.0001. The maximum number of training iterations was set to 250, while
number of images per batch was set at 64. The Labeled Faces in the Wild (LFW) dataset was
used for training and testing. This is a regularly used facial recognition test set. Because the
face photographs are all taken from real-life situations, recognition difficulty is heightened,
particularly due to elements such as different positions, expressions, age, lighting, and
occlusion. Photos of the same individual are rather different. Multiple faces may appear in
certain photographs. Only the center coordinate face is chosen as the goal in these multiface
images, with the others being background interference. The LFW dataset contains 13,233
face pictures. Each photograph contains the name of the individual depicted. There are
5749 persons, and most of them have just one photo. Each photograph is 250 × 250 pixels
in size; most are color images, but some are black and white portraits.

The comparative analysis between the proposed and existing techniques is conducted
on the two datasets, ImageNet dataset and LFW, in terms of PSNR, SSIM, RMSE, MAP, and
encryption speed. These matrices are defined below.

Peak signal-to-noise ratio, or PSNR, measures how well the original data and the
reconstructed data match in terms of quality. It is frequently used to assess the effectiveness
of data compression and reconstruction methods in the field of image and video processing.

A measure that evaluates the similarity between two pictures is called SSIM (structural
similarity index). It is predicated on the idea that structural information, such as the
association between neighboring pixels, is easily perceptible by humans due to their highly
developed visual system. Images are compared for structural similarities using SSIM.

The discrepancy between two sets of data is measured by RMSE (root mean squared
error). It is employed to evaluate the discrepancy between values that a model predicts and
values that are observed. Information retrieval and classification algorithm performance
are assessed using the MAP (mean average precision) measure. In the field of computer
vision, it is frequently used to assess how well object detection methods are working.

PSNR (peak signal-to-noise ratio) is usually expressed in decibels (dB). SSIM (structural
similarity index) is a dimensionless value that is typically expressed as a decimal value
between −1 and 1, where a value of 1 indicates that the two images are identical. RMSE
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(root mean squared error) is typically expressed in terms of the pixel values of the images.
MAP (mean average precision) is a dimensionless value that is usually expressed as a
decimal value between 0 and 1. Encryption speed is typically expressed in terms of the
number of operations per second that can be performed by the encryption algorithm.

Table 2 presents a comparative evaluation between suggested and existing methods
in face image encryption based on DL architectures. Here, the ImageNet and LFW face
datasets are compared when the proposed Cry_GANN_OChaMap and existing CNN
and IEA methods are applied. The parametric analysis was carried out regarding PSNR,
RMSE, SSIM, MAP, and encryption speed. Parametric analysis for the ImageNet and LFW
datasets are displayed in Figures 5 and 6, respectively. Initially, for the ImageNet dataset,
the proposed Cry_GANN_OChaMap obtained PSNR of 92%, RMSE of 85%, SSIM of 68%,
MAP of 52%, and encryption speed of 88%, as shown in Figure 5a through (e) respectively;
while the LFW dataset attained PSNR of 90%, RMSE of 89%, SSIM of 61%, MAP of 59%
and encryption speed of 89%, as shown in Figure 6a through (e), respectively. From this
analysis, it can be observed that the proposed technique attained optimal results in face
encryption based on DL techniques.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 21 
 

 

 
(a) PSNR 

 
(b) SSIM 

 
(c) RMSE 

 
(d) MAP 

 
(e) Encryption speed 

Figure 6. Comparative analysis between the proposed and existing techniques for the LFW dataset 

in terms of (a) PSNR, (b) SSIM, (c) RMSE, (d) MAP, and (e) Encryption speed. 

The digital optic chaotic mapping technique is utilized as a preprocessing step for the 

proposed face feature encryption technique. Chaotic mapping is being used to process 

and map the input face image, which is then fed into the Crypto General Adversarial neu-

ral network for encryption and decryption. The use of chaotic mapping allows for efficient 

encryption and decryption of the image, and the combination of chaotic mapping with 

deep learning techniques allows for the development of a secure encryption and decryp-

tion method. The results demonstrate that the proposed technique for face encryption out-

performed existing techniques. 

5. Conclusions 

This research proposed a novel technique in secure face image encryption based on 

DL architectures. Here, the input face image is processed and mapped using optical cha-

otic maps, which are utilized for efficient encryption and decryption of the image. Then, 

the secure Crypto General Adversarial neural network was developed for the encryption 

and decryption process with image optimization. The key is crucial to successful encryp-

tion and decoding in cryptography. The key's security determines information security. 

Figure 6. Comparative analysis between the proposed and existing techniques for the LFW dataset
in terms of (a) PSNR, (b) SSIM, (c) RMSE, (d) MAP, and (e) Encryption speed.

The digital optic chaotic mapping technique is utilized as a preprocessing step for the
proposed face feature encryption technique. Chaotic mapping is being used to process and
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map the input face image, which is then fed into the Crypto General Adversarial neural
network for encryption and decryption. The use of chaotic mapping allows for efficient
encryption and decryption of the image, and the combination of chaotic mapping with
deep learning techniques allows for the development of a secure encryption and decryp-
tion method. The results demonstrate that the proposed technique for face encryption
outperformed existing techniques.

5. Conclusions

This research proposed a novel technique in secure face image encryption based on
DL architectures. Here, the input face image is processed and mapped using optical chaotic
maps, which are utilized for efficient encryption and decryption of the image. Then, the
secure Crypto General Adversarial neural network was developed for the encryption and
decryption process with image optimization. The key is crucial to successful encryption
and decoding in cryptography. The key’s security determines information security. The
standard image encryption scheme is vulnerable to key sharing and repudiation attacks.
If the key is excessively long, it is difficult to remember and simple to lose. As times
demanded, biometric encryption technology arose to address the issue of key security. The
key is produced using an individual’s biometrics, and then used with appropriate picture
encryption methods to attain data encryption. Uniqueness, stability, nonaggression, and
other criteria of biological features that can be encrypted should be met. Experimental anal-
ysis was carried out for various datasets; the proposed Cry_GANN_OChaMap technique
resulted in PSNR of 92%, RMSE of 85%, SSIM of 68%, MAP of 52%, and encryption speed
of 88%.

Future research will focus on how the system learns reliable encryption algorithms for
asymmetric encryption. Additionally, it is thought that the encryption technique developed
through adversarial training may be used for a larger range of data types, including audio
and image data, in addition to character data security.
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