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Abstract: Voids behind a lining may develop due to insufficient backfilling, poor workmanship, water
erosion or gravity. They affect the interaction between the surrounding rock and lining and even
cause instability of the lining structure. To ensure the safe operation of tunnels, it is very important to
study the influence of voids behind the lining of the lining structure. In this paper, a laboratory model
of a tunnel lining was established by taking the voids behind the lining of the Wushan Tunnel as an
example. By changing the position and size of the voids, the corresponding stress variation law of the
lining was obtained, and the influence of the voids behind the lining on the structural stability of the
highway tunnel was analyzed. The experimental results showed that the voids behind the lining led
to an increase in the stress near the voids, especially the voids at the vault. The circumferential stress
and axial stress increased with increasing void depth and length, and the increase was greater with
increasing void depth than increasing length; that is, the void depth had a greater effect on the lining
stress. When the vault void depth was 30 mm, the axial tensile stress of the vault was 0.281 MPa, and
the maximum increase was 178.2% compared with that without voids. The safety factors at different
lining positions, from large to small, are: arch foot > spinner > arch top > arch waist. In the processes
of lining operation and maintenance, special attention should be given to the treatment of voids
behind the lining, especially deep voids.

Keywords: highway tunnel; lining void; model test; structural stability

1. Introduction

In recent years, as the state strengthens its investment in infrastructure construction,
China’s transportation construction has undergone rapid development. At present, China
is the country with the largest number of tunnel projects, the most complex structure and
the fastest development speed in the world [1]. However, with the use of highway tunnels,
various diseases often occur in the older tunnels, among which the void behind the tunnel
lining is one of the most common tunnel diseases [2]. Zhang et al. [3] investigated about
100 railway tunnels in China and found that nearly 11.56% of tunnels had contact loosening
and cavities behind the lining. The existence of lining voids reduces the stability of the
lining structure, threatens the safety of driving in the tunnel and shortens the maintenance
cycle and service life of a highway tunnel. Therefore, it is important to analyze the influence
of the voids behind the lining on the structural stability of the operational highway tunnels
and evaluate their safety.

A lot of research on the void disease behind tunnel linings has been conducted by
scholars at home and abroad. Some scholars have conducted theoretical analysis on the
stratum voids problem and obtained the calculation formula of surrounding rock stress and
lining internal force when there is a void behind the lining [4–6]. In addition, some scholars
have used finite element analysis software, such as ABAQUS, ANSYS and MIDAS-GTS,
to study the void disease behind the lining [7–12]. Zhang et al. [13] and Bao et al. [14]
established a three-dimensional numerical model to study the influence of the geometric
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size of the tunnel void on the internal force and safety of the lining structure. Ye [15] used
numerical simulation to study the influence of the voids and loose contact state between
support and surrounding rock on the safety of the lining structure. Li et al. used ANSYS
software to study the mechanical behavior of the tunnel structure when there are cavities
of different shapes and sizes behind the vault lining [16–18]. Min et al. [19] studied the
mechanical characteristics of a double-arch tunnel under the action of a void at the top of
the middle wall through numerical simulation.

Due to the complexity of tunnel engineering and the operating environment [20], the
interaction between the surrounding rock and the lining is not clear at present. If only theo-
retical analysis and numerical simulation and other technical means are used for research,
there are bound to be shortcomings because the limitations of the numerical simulation
itself. For example the theoretical framework and boundary condition hypothesis cannot
fit the reality. Therefore, some scholars used indoor model tests to conduct further research
on the voids behind the lining [21–25]. Zhang et al. [26] studied the evolution law of
tunnel structure cracks under the condition with double cavities in the tunnel vault and
the back of the arch through a 1:70 indoor model test. In recent years, some scholars have
studied the influence of void defects behind shield tunnel composite lining on structural
mechanical characteristics and contact pressure with the stratum [27–31]. Leung [32] sim-
ulated the initial pressure of a shield tunnel with a test device separating the lining from
the surrounding soil at different positions to simulate a void and studied the influence of
the void behind the lining on the earth pressure distribution on the tunnel lining. Some
scholars even used theoretical analysis, numerical simulation and model tests to carry
out related research [2,33–36]. Zhang et al. [37] used numerical simulations and model
tests to study the safety state of the tunnel structure under the condition of double cavities
behind the vault and the arch shoulder, respectively. Some scholars have improved tunnel
disease detection methods for tunnel disease detection. For example, a multi-layer SAFT
high precision ultrasonic imaging method was proposed for void disease detection [38].
Yue et al. [39] put forward a method to calculate shield tunnel displacements of a full
cross-section tunnel.

Many scholars have conducted studies of the stability of tunnels with defective engi-
neering. Much of their research has investigated the influence of voids behind the lining
on the safety of the lining structure. However, most of those studies have focused on
numerical simulations and shield tunnel research. Too many assumptions have been made
in those studies, which made it difficult to accurately describe the development of tunnel
defects under actual working conditions. More studies are needed to verify the universality
and rationality of the results of those studies. It is difficult to prevent the influence of size
effects due to the small size of most laboratory tests. Therefore, a horizontal loading test
device was designed to simulate the surrounding rock pressure through jacks in light of the
complex original working conditions of the tunnel. To avoid the influence of size effects, a
large scale model (1:10) is selected in this paper to simulate a typical mountain highway
tunnel damage project. The influence of the voids behind the lining on the stability of the
lining structure are systematically simulated for different sizes and positions of the cavity
and analyzed experimentally, providing references for the maintenance and reinforcement
of tunnels with void disease.

2. Similar Model Test
2.1. General Information of the Tunnel Project

The Wushan Tunnel, located at the southeast part of Gansu Province, is an important
part of the Tianshui to Dingxi section of the National Highway G30, as shown in Figure 1.
The upper line of the tunnel is 2.5 km long, with a maximum depth of 270 m. The tunnel
mainly passes through the surrounding rock of grade IV and V, and the engineering
geological conditions are quite complex. As shown in Figure 2, the secondary lining
prototype section of the tunnel is a two-lane four-center circle. The section size of the lining
is 1186 cm wide, 963 cm high, 50 cm thick concrete equal section structure. The lining
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section is symmetrical left and right, so only the radius and radian of arcs on the right side
of the section are marked in the figure. According to the inspection, there are 57 voids
behind the secondary lining of the upper tunnel, with a cumulative length of 244.0 m,
accounting for 9.8% of the total length.
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2.2. Similarity-Scaling Relationship

In this paper, the geometric similarity ratio of the prototype and model was set as
CL = 10. Using this as the basic similarity ratio, we derive the similarity ratios of the
prototype and model for each of the physical and mechanical parameters according to the
similarity theory: heavy similarity ratio Cγ = 1, Poisson’s ratio Cµ = 1, internal friction
angle Cφ = 1, elastic modulus similarity ratio CE = 10 and cohesive force similarity ratio
Cc = 10.

2.3. Similar Materials and Similar Models

In the safety model tests of the lining structure, gypsum was used as a material similar
to plain concrete. Gypsum, as a common brittle material, is similar to concrete in fracture
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mechanics, so it is an ideal elastic model material. The secondary lining of the tunnel
prototype is a C25 concrete structure, and the mechanical parameters were set according to
the actual engineering values. The elastic modulus was 28 GPa, the ultimate compressive
strength was 16.7 MPa, and the ultimate tensile strength was 1.78 MPa. In this paper, a
mixture of gypsum and water was used to simulate the lining structure. Lining of according
to the model To obtain the physical and mechanical parameters for the direct shear test
and the compression test for the model, we adjusted the lining material proportioning of
water and gypsum according to a similarity ratio of 0.6:1 mixture. Model physical and
mechanical parameters are shown in Table 1. In addition to the specimen density and C25
concrete, ideal similar material bulk density was large, but severe differences have little
impact on the content of the study for the test, Other physical and mechanical parameters of
the model material basically meet the test needs. The material ratio of the tunnel secondary
lining structure similarity model was water: gypsum = 0.6:1, and the specific parameters
are shown in Table 1.

Table 1. Physical and mechanical indicators of lining.

Parameter Severe
γ (KN/m3)

Elastic Modulus
E (GPa)

Poisson Ratio
µ

Compressive Strength
Rc (MPa)

Tensile Strength
Rt (MPa)

Original material 25 28 0.2 16.7 1.78
Model material 11.8 2.651 0.2 1.674 0.168

As shown in Figure 3, the lining was prefabricated in a mold and maintained under
certain temperature and humidity conditions after demolding. All reduced model section
sizes were 1/10 of the prototype according to Figure 2; that is, the model geometry size
was 1/10 of the prototype. The lining section and the thickness of the lining model was set
as 0.05 m, the span was 1.19 m, the height was 0.96 m, and the axial length was 0.45 m.
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2.4. Tunnel Similarity Model

The self-made indoor model platform consists of the similar lining mode, a loading
system and a data monitoring system. The tunnel lining–soil complex was used to simulate
the actual working conditions, and the horizontal loading mode was adopted. The test
system could simulate the dead weight stress field of the tunnel lining, and the surrounding
rock was filled with clay to simulate the lining under uniform stress. The outer layer of the
soil layer was enclosed by a 1 cm thick steel plate, a pressurizing system composed of a jack,
and the counter-force frame was welded with I-beam steel to simulate the surrounding
rock to provide reaction force. The entire model diagram is shown in Figure 4. The actual
picture of the model is shown in Figure 5.
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2.4.1. Loading System

The loading system consists of a pressure jack and a reaction steel frame, as shown
in Figure 4. The test jacks were FCY-10100 hydraulic jacks, and the specifications were
10T horizontal loading hydraulic jacks. Each jack was equipped with a CP-180 manual
pump, 1.5-m oil pipe and a pressure gauge. The vertical uniform pressure on the lining
structure was simulated by jacks J3 and J4 located at the vault of the tunnel lining model.
The horizontal distribution pressure on the tunnel lining structure was simulated by J1 and
J2 on the left side of the tunnel lining and J5 and J6 on the right side of the tunnel lining.
The jacks converted the point load into a uniform load to act on the lining structure of the
tunnel through the 1cm thick steel plate at the front end and the silty clay medium between
the steel plate and the lining structure.
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The earth pressure sensors P1, P2, P3 and P4 were, respectively, fixed at the left arch
waist, the left side of the arch, the right side of the arch and the right arch waist on the
surface of the lining structure and connected with the DH5956 dynamic signal test and
analysis system. The accurate loading of the tunnel lining structure was achieved based on
the readings of the earth pressure sensor. The lower parts of the jacks were in contact with
the reaction frame, and the model was loaded by the reaction force provided by the frame.

2.4.2. Data Monitoring System

The data monitoring system consists of several strain gauges, earth pressure gauges,
two DH3817 dynamic and static strain testing systems, and one DH5956 strain collection
analyzer. This test mainly monitors the stress change of the tunnel lining under the action
of ground stress and uses a 120-50AA resistive strain gauge for measurement. As shown
in Figure 4, strain gauges S1–S6 were pasted on the left wall, left arched waist, left arched
shoulder, vault, right arched shoulder, right arched waist and right wall of the inside the
lining structure. A group of strain flowers will be added to the void when the void behind
the lining is tested.

Figure 6 shows the working principle of the DH3817. The system can realize sampling,
transmission, storage, and display at the same time and can use a mass computer storage
hard disk to record multi-channel signals for a long time without interruption. In this
paper, a DH3817 dynamic and static stress and strain measurement (Taizhou City, Jiangsu
Province, China) and analysis system is used to collect the strain gauge data.
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2.5. Pressure of Model Test

The Wushan Tunnel is mainly buried deep and is part of a long tunnel buried in the
mountains, and there is no bias pressure and expansion force in the surrounding rock.
This test only considers the simulation of ground stress conditions of the tunnel under the
deep buried condition. According to the Highway Tunnel Design Code Volume I Civil
Engineering (JTG 3370.1-2018) [40], the vertical and horizontal uniform pressure of the
loose load in a deep tunnel can be calculated according to the following formula under the
condition of surrounding rock without significant bias and expansion force:

2.5.1. The Vertically Distributed Pressure

The vertically distributed pressure can be calculated according to the following equation

q = γh (1)

h = 0.45 × 2s−1ω (2)
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where q is the vertical uniform pressure; kN/m2; γ is the surrounding rock weight; kN/m3;
h is the height of the surrounding rock pressure calculation, m; s is the level of the sur-
rounding rock, with integer values of 1, 2, 3, 4, 5 and 6; ω is the width influence coefficient,
calculated as follows: ω = 1 + i (B − 5); B is the tunnel width, and m; i is the increase
or decrease rate of the surrounding rock pressure when the tunnel width increases or
decreases by 1m, as shown in Table 2 and as can be seen from the design data of the upper
line of the Wushan Tunnel, i = 0.12.

Table 2. Value of surrounding rock pressure increase and decrease rate i.

Tunnel Width B(m) B < 5 5 ≤ B < 14 14 ≤ B < 25

Rate of pressure increase or
decrease i in surrounding rock 0.2 0.1

Consider the excavation of the diversion hole
during the construction process 0.07

Up and down steps or one-time excavation 0.12

2.5.2. Horizontal Surrounding Rock Pressure

The horizontal surrounding rock pressure of the deep tunnel can be valued according
to Table 3, and the horizontal distribution pressure in this test is set as e = 0.5q.

Table 3. Water level distribution pressure of deep buried tunnels.

Surrounding Rock Level I, II III IV V

Horizontal spread pressure (e) 0 <0.15q (0.15~0.3)q (0.3~0.5)q

According to the geological conditions of the Wushan Tunnel, the surrounding rock
weight is 20 kN/m3. The vertical distribution pressure of the surrounding rock is q = 0.263 MPa,
and the horizontal distribution pressure e = 0.5q = 0.132 MPa can be obtained.

2.6. Test Loading Scheme

This model test was mainly based on the disease of the Wushan Tunnel. According
to the possible location and size of the hole behind the tunnel, a step-by-step loading
method was adopted to simulate the following parameters: simulation of voids at different
positions behind the lining, different depths behind the vault and different lengths behind
the vault. Nine test conditions were set up to study the stress characteristics of the void
defect lining, as shown in Table 4.

Table 4. Test conditions for the void behind the lining.

Test Conditions Void Location Void Size (Length × Width × Depth)

1 There is no /
2 vault 50 mm × 20 mm × 10 mm
3 vault 50 mm × 20 mm × 20 mm
4 vault 50 mm × 20 mm × 30 mm
5 vault 100 mm × 20 mm × 10 mm
6 vault 150 mm × 20 mm × 10 mm
7 spandrel 50 mm × 20 mm × 10 mm
8 hance 50 mm × 20 mm × 10 mm
9 The arch foot 50 mm × 20 mm × 10 mm

2.6.1. Voids of Different Depths behind the Vault

In working conditions 2, 3 and 4, a void with a depth of 1 cm, a void with a depth of
2 cm and a void with a depth of 3 cm were successively installed on the outer wall of the
vault, as shown in Figure 7a–c. In addition, seven groups of strain gauges were affixed to
the left wall, left arch waist, left arch shoulder, vault, right arch shoulder, right arch waist
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and right wall in the inner side of the lining structure according to the scheme, and one
group of strain gauges was affixed to the void of the outer wall. The pressure system was
controlled to slowly pressure the lining until the vault pressures P2 and P3 both reached
the vertical distribution pressure q of 0.263 MPa, and the arch waist pressure P1 and P4 on
both sides reached the horizontal distribution pressure e of 0.132 MPa, and the pressure
was stopped.
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2.6.2. Voids of Different Lengths behind the Vault

Figure 8a–c correspond to working conditions 2, 5 and 6, respectively. Voids with a
length of 5 cm, a length of 10 cm and a length of 15 cm were set successively on the outer
wall of the vault. According to the scheme, seven groups of strain gauges were arranged
on the inner wall of the void, and one group of strain gauges was arranged at the outer
wall void. The pressure system was controlled to slowly pressure the lining until the arch
pressures P2 and P3 reached the vertical distribution pressure q of 0.263 MPa, and the arch
waist pressures P1 and P4 on both sides reached the horizontal distribution pressure e of
0.132 MPa, and the pressure was stopped.
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Figure 7. Vault void at different depths. 

2.6.2. Voids of different lengths behind the vault 

Figure 8a–c correspond to working conditions 2, 5 and 6, respectively. Voids with a 
length of 5 cm, a length of 10 cm and a length of 15 cm were set successively on the outer 
wall of the vault. According to the scheme, seven groups of strain gauges were arranged 
on the inner wall of the void, and one group of strain gauges was arranged at the outer 
wall void. The pressure system was controlled to slowly pressure the lining until the arch 
pressures P2 and P3 reached the vertical distribution pressure q of 0.263 MPa, and the 
arch waist pressures P1 and P4 on both sides reached the horizontal distribution pressure 
e of 0.132 MPa, and the pressure was stopped. 

   
(a) Void length 5 cm (b) Void length 10 cm (c) Void length 15 cm 

Figure 8. Vault void with different lengths. Figure 8. Vault void with different lengths.

3. Analysis of Test Results

By controlling the loading system, the lining was slowly pressurized until T2 and
T3 reached the vertically distributed pressure q = 0.263 MPa, and T1 and T4 reached
the horizontally distributed pressure e = 0.132 MPa. The stress–strain data of the lining
under different working conditions were obtained. According to the stress—strain data
and morphological changes of the tunnel lining under nine groups of test conditions, the
influence process and corresponding law of void on the stability of lining structure under
different working conditions were analyzed.
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3.1. Stress Analysis of Tunnel Lining without Void

When there was no void behind the lining, the external surface of the lining was
under pressure, and the internal surface was under positive tension (the same below).
Figure 9 shows that under the condition of no void defect, the stress values of the lining
vault and the arch shoulder are positive tensile stress, while the stress values of the arch
waist and the arch foot are negative compressive stress. However, whether it was tensile
stress or compressive stress, the circumferential stress was generally greater than the axial
stress at the same monitoring point. The inner circumferential tensile stress of the vault
was 0.506 MPa, and the inner axial tensile stress was 0.101 MPa. The peak values of
circumferential and axial tensile stresses appeared at the vault, while the peak values
of circumferential and axial compressive stresses appeared at the arch waist, which can
explain why the inner wall of the vault was mainly damaged by tensile stress, and the inner
wall of the arch waist was mainly damaged by extrusion.
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3.2. Stress Analysis of Cavities at Different Positions

The size of the void was controlled to be 50 mm × 20 mm × 10 mm (length × width
× depth), and the positions of the void behind the lining were transformed into vault, arch
shoulder, arch waist and arch foot in order to obtain the circumferential and axial stress
values at different positions of the lining, as shown in Figures 10 and 11. (1) When the
void was located at the vault, the circumferential tensile stress of the vault was 0.604 MPa,
which increased by 19.37% compared with the condition without the vault void. The axial
stress of the inner wall was 0.142 MPa, and the increase was 40.59% compared with that
of the vault without void. When the void was located at the arch shoulder, the arch waist
and the arch foot, compared with the lining without the void, the circumferential and
axial stress values of the lining did not change much at the same monitoring position. It
shows that the void has the greatest influence on the stress of the lining structure when it is
located at the vault but has little influence on the stress of the lining structure when it is
located at other positions. (2) When the voids were located at the vault, shoulder, waist and
foot, the circumferential stresses at the void were −0.613 MPa, −0.543 MPa, −0.545 MPa
and −0.468 MPa; the axial stresses were −0.0564 MPa, −0.0321 MPa, −0.0463 MPa and
−0.0128 MPa. According to the test data, with the change of the location of the void, the
stress value of voids in the descending order was: arch > arch waist > arch shoulder > arch
foot. The presence of void disease will lead to different degrees of increase in axial force
and bending moment near the void position.
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3.3. Stress Analysis of Vaults with Different Void Depth

During the test, the length × width of the void behind the lining was kept unchanged at
50 mm × 20 mm, and the depths were changed to 10 mm, 20 mm and 30 mm, respectively.
As shown in Figures 12 and 13: (1) When the depth of the vault void was 20 mm, the
circumferential tensile stress of the inner wall of the vault was 0.715 MPa, which was 41.3%
higher than that without the void; the axial tensile stress of the inner wall of the vault was
0.165 MPa, an increase of 63.4% compared with that without void. (2) When the depth of
the vault void was 30 mm, the circumferential tensile stress of the vault was 0.802 MPa,
an increase of 58.5% compared with that without void; the axial tensile stress of the vault
was 0.281 MPa, an increase of 178.2% compared with that without the void. Both the
circumferential stress and the axial stress of the inner wall of the lining vault increase with
the increase of the void depth, and the increase of the axial stress becomes larger. (3) As
the depth increases to 10 mm, 20 mm and 30 mm, the circumferential stresses at the voids
of the outer wall of the corresponding lining vault were −0.613 MPa, −0.787 MPa and
−0.862 MPa, respectively; the axial stresses at the voids were −0.0564 MPa, −0.0712 MPa
and −0.13 MPa, respectively; that is, both the circumferential stress and the axial stress at
the void of the outer wall of the lining vault increase with the increase of the void depth.
In summary, the increase in the void depth of the vault has a more obvious impact on the
stress of the inner and outer walls of the lining vault.
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3.4. Stress Analysis of Vault with Different Void Length

During the test, the width × depth of the void behind the lining were kept unchanged
from 20 mm × 10 mm, and the length of the void was changed to 50 mm, 100 mm and
150 mm, respectively. As shown in Figures 14 and 15: (1) When the vault void length was
100 mm, the circumferential tensile stress of the vault was 0.655 MPa, which increased by
29.4% compared with that without void. The axial tensile stress of the vault was 0.152 MPa,
which increased by 50.5% compared with that without the void. (2) When the vault void
length was 150 mm, the circumferential tensile stress of the vault was 0.708 MPa, which
was 39.9% higher than when there was no void; The axial tensile stress of the vault was
0.182 MPa, an increase of 80.2% compared to the absence of voids. Both the circumferential
and axial stresses on the inner walls of the lining vault increased with the increase in the
length of the void, and the increase of the axial stress was larger. (3) As the length increased
sequentially to 50 mm, 100 mm and 150 mm, the circumferential stresses at the voids behind
the corresponding lining vault were −0.613 MPa, −0.63 MPa and −0.662 MPa, respectively;
and the axial stresses at the voids were −0.0564 MPa, −0.047 MPa and −0.0508 MPa,
respectively. The circumferential stresses and axial stresses of the voids behind the lining
vault had little change with the increase of the cavity length; that is, the stresses of the
voids behind the lining vault had little influence on the change of the cavity length. In
addition, the stresses in other locations of the lining were not greatly affected by changes in
the length of the voids.
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3.5. Variation Law of Axial Force and Bending Moment of Lining

According to the inner stress value σ1 and the outer stress value σ2 of the lining section,
the unit section bending moment M and axial force N can be calculated as [41]:

M = bh2(σ1 − σ2)/12 (3)

N = bh(σ1 + σ2)/2 (4)

where σ1 is the stress on the inner wall of the lining; σ2 is the stress of lining outer wall; b is
the unit length, taken as 1000 mm; and h is the lining thickness, which is taken as 50 mm.

China’s Code for Design of Highway Tunnels (JTG 3370.1-2018) and Code for Design of
Railway Tunnels (TB 10003-2005) both provide clear calculation formulas and measurement
standards for the safety factor of tunnel linings. When the calculation result K ≥ 2, the steel
bar does not reaches ultimate strength or concrete does not reaches ultimate compressive or
shear strength, the structure is relatively safe. In contrast, a calculation result K < 2 means
that the steel bar has reached the ultimate strength or the concrete has reached ultimate
compressive or shear strength, the safety and stability of the steel bar and concrete are
insufficient, and the secondary lining structure needs to be further strengthened.

The following equation provides the concrete safety state discrimination standard:

KN ≤ ϕαRabh (5)
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where K is the safety factor; N is the axial pressure, kN; b is the width of the section, m;
h is the thickness of the section, m; Ra is ultimate compressive strength of concrete or
masonry, Ra = 19 MPa; ϕ is the longitudinal bending coefficient of member, ϕ = 1; and α
is the eccentric influence coefficient of the axial force, where, because the eccentricity is 0,
α = 1.

3.5.1. The Variation of Stress

The void size was controlled to be 50 mm × 20 mm × 10 mm (length × width ×
depth), and the void behind was set at the vault, spandrel, hance and arch foot in turn.
The stress values of lining the inner and outer walls at different positions were obtained,
as shown in Figure 16. As can be seen from the figure, except for the tensile stress on the
inside of the vault and the spandrel, other positions are subject to compressive stress, which
is negative. From the numerical point of view, the outer stress is greater than the inner
stress at the same monitoring point due to the concentration of stress in the void behind the
lining. When the void was in the vault, the inner and outer stress values are the largest.
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3.5.2. The Variation of Axial Force and Bending Moment

The variation law of axial force and bending moment of the structure can be obtained
by using Formulas (3) and (4), as shown in Figure 17. It can be seen from the figure that
the axial force variation law of the lining structure was similar to the stress variation
law of the outer lining void, and the maximum value was located at the arch waist. The
bending moment in descending order of arch vault > spandrel > hance > arch foot, and the
maximum bending moment of the lining structure was located at the vault.

3.5.3. Variation of the Lining Safety Factor

The lining safety factor can be obtained by using Formula (5). The variation law of
the lining safety factor with void position is shown in the Figure 18, and its variation law
is similar to the lining axial force. All safety factors are greater than two, meeting the
requirements of safety standards, which are in descending order: arch foot > spandrel >
vault > hance.
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4. Conclusions

In this paper, a large-scale 1:10 indoor lining model was made by using a self-made
horizontal test loading device to simulate the influence of the internal forces of the lining
structure under different locations and different sizes of a void disease behind the lining.
The main conclusions are as follows:

(1) In terms of the stress law of the tunnel lining structure, the circumferential stress was
generally greater than the axial stress at the same monitoring point, and the peak of
the circumferential and axial tensile stresses appears at the vault, and the peak of the
compressive stress appears at the arch waist. It can explain why the vault position
was mainly damaged by stretching, and the arch position was mainly damaged by
extrusion.

(2) In terms of the law of the influence of the void position on the lining structure, when
the void was in the vault, the stress change was more obvious, and when the void
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was in the position of the arch shoulder, the arch waist and the arch foot, compared
with the lining without a hole, the ring and axial stress values of the same monitoring
position of the lining do not change much. It was explained that when the void was
in the vault, it had the greatest impact on the stress of the lining structure, and it had
little effect on the stress of the lining structure when it was in other positions. The
presence of void diseases can lead to varying degrees of increased stress values near
the void location, and with the change of the position of the void, the stress value
at the void was in order from large to small: the vault > the arch waist> the arch
shoulder > the arch foot.

(3) In terms of the law of the influence of the void depth on the lining structure, the
circumferential stress and axial stress of the void and the inner wall of the vault
increase with the increase of the void depth, and the increase of the vault void depth
has a more obvious impact on the void and the stress of the inner wall of the vault.

(4) In terms of the law of the influence of the length of the void on the lining structure,
the circumferential and axial stresses of the inner wall of the lining vault increase with
the increase of the void length, and the increase in axial stress increases. Stresses at
other locations in the lining are not greatly affected by changes in void length.

(5) The axial force variation law of the lining structure was similar to the stress variation
law of the outer lining void, and the maximum value was located at the arch waist.
The maximum bending moment of the lining structure was located at the vault and
was in descending order of arch vault > spandrel > hance > arch foot.

(6) The safety factor of the lining at different positions was greater than two, which meets
the safety standard.
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