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Abstract: As the monitor probes are used more and more widely these days, the task of detecting
abnormal behaviors in surveillance videos has gained widespread attention. The generalization
ability and parameter overhead of the model affect how accurate the detection result is. To deal
with the poor generalization ability and high parameter overhead of the model in existing anomaly
detection methods, we propose a three-dimensional multi-branch convolutional fusion network,
named “Branch-Fusion Net”. The network is designed with a multi-branch structure not only to
significantly reduce parameter overhead but also to improve the generalization ability by under-
standing the input feature map from different perspectives. To ignore useless features during the
model training, we propose a simple yet effective Channel Spatial Attention Module (CSAM), which
sequentially focuses attention on key channels and spatial feature regions to suppress useless features
and enhance important features. We combine the Branch-Fusion Net and the CSAM as a local feature
extraction network and use the Bi-Directional Gated Recurrent Unit (Bi-GRU) to extract global feature
information. The experiments are validated on a self-built Crimes-mini dataset, and the accuracy of
anomaly detection in surveillance videos reaches 93.55% on the test set. The result shows that the
model proposed in the paper significantly improves the accuracy of anomaly detection in surveillance
videos with low parameter overhead.

Keywords: video anomaly detection; C3D network; attention mechanisms; Bi-GRU

1. Introduction

To maintain public safety, more and more surveillance probes are deployed at road
intersections, shopping centers, subway entrances, and other public locations, resulting
in a flood of surveillance videos [1,2]. Law enforcement officials usually spend a lot
of time watching surveillance videos to find crimes, but still frequently miss important
details. People urgently need an algorithm that automatically detects abnormal behaviors
in surveillance video to lessen the workload of law enforcement officials while also dealing
with abnormal criminal behaviors faster and more correctly [3–5].

Video anomaly detection methods can be divided into four categories: reconstruction-
based method, prediction-based method, classification-based method, and regression-based
method. The reconstruction-based method works by training normal video data to generate
a distribution representation of normal data [6,7]. The prediction-based method assumes
that a continuous normal video has a regular contextual connection and that future frames
can be predicted by learning the dependencies [8]. However, there are no such dependencies
between frames in abnormal videos [9]. The classification-based method treats the detection
of anomalies as a classification problem [10]. After learning multiple distribution patterns
of normal samples, samples that do not follow these distribution patterns are classified as
abnormal. The above three categories of methods are suitable for frame-level detection of
video, but not for large-scale detection [11].

Therefore, video anomaly detection is mostly performed by the regression-based
method. The method’s idea is to use the anomaly score as an evaluation indicator. After
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setting an appropriate threshold, the video is considered abnormal if the anomaly score is
above the threshold. The method is suitable for the large-scale video anomaly detection
due to the simple structure. The regression-based method is employed in this paper’s
multiple-instance learning (as shown in Figure 1). The C3D network is used in the feature
extraction network for multiple-instance learning. Each convolutional layer of the C3D
network convolves the input feature map directly in three dimensions, which leads to two
problems [12]. Firstly, the large size and number of 3D convolutional kernels lead to high
parameter overhead [13,14]. Secondly, the C3D network understands the input features
from only one perspective because of the direct convolution of the feature map, which
leads to poor generalization ability.

Figure 1. Multiple-instance learning. The surveillance video is divided into a fixed number of
video segments, and the segments are placed in positive and negative bags. Each video segment is
called an instance in the bags [15]. Then, the feature extraction network is used to extract features
from the fixed number of video clips in the two bags. Next, the multilayer perceptron is used to
calculate the anomaly scores of the features. Finally, the scores are used to determine whether there is
abnormal behavior.

To address the problems, we propose a feature extraction network named “Branch-
Fusion Net”. The multi-branch structure not only reduces parameter overhead but also
allows the network to understand the input feature maps from different perspectives to
improve the generalization ability.

The features extracted by networks usually contain features that are not relevant to
the detection task [16]. To suppress useless features and enhance important features, we
propose a simple yet effective Channel Spatial Attention Module (CSAM). The CSAM is
an end-to-end generic module that can be seamlessly integrated into three-dimensional
convolutional neural networks.

Since the convolutional neural networks are suitable for extracting local features [17],
we combine the Branch-Fusion Net and the CSAM as the local feature extraction network
and use the Bi-Directional Gated Recurrent Unit (Bi-GRU) for the global feature extraction.

The contributions of our work include:

(1) We propose the Branch-Fusion Net, which not only greatly reduces parameter over-
head, but also improves the generalization ability of feature extraction by under-
standing the input feature maps from multiple perspectives. The network achieves
state-of-the-art performance for behavior recognition tasks on multiple benchmarks.

(2) We propose a simple yet effective CSAM to ignore useless features during the model
training. The CSAM focuses attention on key channels and spatial feature areas in
turn. Adding the CSAM to the mainstream 3D convolutional neural networks can
significantly improve the feature extraction effect.

(3) We establish a surveillance video dataset called ‘Crimes-mini’ containing five cate-
gories of abnormal behaviors. The model we propose achieves the detection accuracy
of 93.55% on the test set.
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2. Related Work
2.1. Anomaly Detection Methods

There are four methods to deal with anomaly detection, including the reconstruction-
based method, prediction-based method, classification-based method, and regression-based
method. Table 1 shows the advantages and disadvantages of the four methods.

Table 1. Comparison and summary of different kind of methods.

Category Judgment Basis Advantages Disadvantages

Reconstruction-
based

method

Small reconstruction errors for normal
video frames and large reconstruction

errors for abnormal video frames.

High accuracy in detecting
location-related anomalies.

There are reconstruction
errors for anomalous video

frames.

Prediction-based
method

Small prediction errors for normal
video frames and large prediction
errors for abnormal video frames.

High accuracy in detecting
motion-related anomalies.

It ignores the fact that normal
video frames can be

unpredictable.

Classification-based
method

The samples that do not follow the
normal sample distribution are

considered abnormal.

The distribution of normal
samples can be well-learned.

If the normal sample
distribution is complex, the

classification model may fail.

Regression-based
method

The samples with anomaly scores
above the threshold are considered

abnormal.

The model is simple and
suitable for large-scale video

anomaly detection.

The threshold for video
anomalies is not easy to

determine.

Reconstruction-based method. Hasan et al. propose two Auto-Encoder-based methods
that can perform anomaly detection without supervision [18], but the abnormal samples
are sometimes subject to reconstruction errors. To address the shortcoming, Gong et al.
propose an improved Auto-Encoder [19], named the “Memory-augmented Auto-Encoder
(MemAE)”. The method obtains the encoding from the encoder based on the input, and
then uses it as a query to retrieve the most relevant memory item for reconstruction. To
better remember normal samples, Park et al. propose a memory module that can be
updated according to the scheme [20].

Prediction-based method. Medel et al. propose the Convolutional Long Short-Term
Memory Network (Conv-LSTM) [21], which incorporates convolution operation into the
Long Short-Term Memory Network (LSTM). Anomaly detection is achieved by recon-
structing past frames and predicting future frames. Lu et al. combine the Variational
Auto-Encoder (VAE) with the Conv-LSTM to propose the Convolutional Variational Re-
current Neural Network (Conv-VRNN) for generating future frames [22]. To address the
possible blurring of future frames, Mathieu et al. [23] use alternating convolution and
Rectified Linear Unit (RLU) to generate future frames and propose a method to fuse mul-
tiple feature learning strategies to generate clear future frames. Ye et al. propose a novel
deep Predictive Coding Network (AnoPCN) [24], which implements anomaly detection by
unifying reconstruction and prediction methods into a framework.

Classification-based method. Sabokrou et al. [25] propose a single classification-based
video anomaly detection method inspired by the Generative Adversarial Network (GAN)
for training models. Based on Sabokrou’s study, Wu et al. propose a deep single classifica-
tion neural network that is capable of obtaining compact single-class classifiers considering
only normal samples [26]. Xu et al. propose an adaptive intra-frame classification net-
work [27]. The network extracts and classifies the input appearance and motion features
into several sub-regions, and then classifies the sub-regions. If the test classification result
of the sub-region is different from the true classification, the video is considered abnormal.

Regression-based method. Sultani et al. propose an anomaly detection method based
on multiple-instance learning by scoring abnormal and normal video clips and then picking
out the clips with the highest anomaly scores to train the model [28]. Since the hinge
loss function used for multiple-instance learning training is not smooth, Kamoona et al.
propose a loss function to make the model robust to output anomaly scores [29]. Zhu et al.
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output anomaly scores by feeding the calculated optical flow into a sequence-enhancement
network [30].

Among the four methods, only the regression-based method is suitable for dealing
with large-scale video data, which can be applied in practical scenarios. Therefore, we use
multiple-instance learning of the regression-based method for anomaly detection. With the
multiple-instance learning for anomaly detection, how to efficiently extract the features is
crucial to the detection result.

2.2. Feature Extraction Network for Video

The networks for feature extraction in videos can be divided into a two-stream network
architecture and a three-dimensional convolutional neural network architecture.

The three-dimensional convolutional neural network architecture was firstly proposed
in [12]. The 3D convolution adds a temporal dimension to the 2D convolution to extract
features in both temporal and spatial dimensions. The output of the 3D convolution is still a
3D feature map. Specifically, the 3D convolution moves in three dimensions: height, width,
and depth, for multiple video frames. At each position, element-by-element multiplication
and addition provide a value. Since the filter is sliding through 3D space, the output values
are also arranged in 3D space. The C3D network is shown in Figure 2, and the size of each
layer is shown in Table 2.

Figure 2. C3D network architecture.

Table 2. The size of each layer in C3D network.

Layer Name Size Stride

Conv1a 3 × 3 × 3 1 × 1 × 1
pool1 1 × 2 × 2 1 × 2 × 2

Conv2a 3 × 3 × 3 1 × 1 × 1
Pool2 2 × 2 × 2 2 × 2 × 2

Conv3a 3 × 3 × 3 1 × 1 × 1
Conv3b 3 × 3 × 3 1 × 1 × 1
pool3 2 × 2 × 2 2 × 2 × 2

Conv4a 3 × 3 × 3 1 × 1 × 1
Conv4b 3 × 3 × 3 1 × 1 × 1
pool4 2 × 2 × 2 2 × 2 × 2

Conv5a 3 × 3 × 3 1 × 1 × 1
Conv5b 3 × 3 × 3 1 × 1 × 1
pool5 2 × 2 × 2 2 × 2 × 2

The three-dimensional convolutional neural network architecture can directly utilize
three-dimensional convolution to extract spatiotemporal features, so the network structure
is simple. However, the increase in the dimensionality of 3D convolution leads to a large
number of parameters in the network.

The two-stream architecture (as shown in Figure 3) was firstly proposed in [31]. Spatial
Stream Convnet and Temporal Stream Convnet are used to extract the spatial and temporal
features of the video, respectively, and finally, the two networks are fused by late fusion.
Specifically, the input of Spatial Stream Convnet is a single video frame, which is responsible
for extracting the appearance features of the frames. Multiple optical stream frames are
input into Temporal Stream Convnet. The addition of an optical stream makes it easier to
capture motion information in the neural network, and directly provides the model with
motion information between frames. However, the optical flow needs to be pre-extracted,
and it leads to the spatiotemporal feature extraction being time-consuming.
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Figure 3. Two-stream network architecture.

3. The Network Architecture

To introduce our model, we show the architecture in Figure 4, and a summary of the
size of each stage is shown in Table 3.

Figure 4. The architecture of our model.

Table 3. The size of each stage in our model.

Stage Output Size The Size of the Stage

Conv1 64 × 8 × 28 × 28 3 × 3 × 3, 64

Conv2 256 × 8 × 28 × 28
1 × 1 × 1, 128

3 × 3 × 3, 128
1 × 1 × 1, 256

, C = 32

× 2

Conv3 512 × 4 × 14 × 14
1 × 1 × 1, 128

3 × 3 × 3, 128
1 × 1 × 1, 512

, C = 32

× 2

Conv4 1024 × 2 × 7 × 7
 1 × 1 × 1, 256

3 × 3 × 3, 256
1 × 1 × 1, 1024

, C = 32

× 2

Conv5 2048 × 1 × 4 × 4
 1 × 1 × 1, 512

3 × 3 × 3, 512
1 × 1 × 1, 2048

, C = 32

× 2

AvgPooling
and Flattening 1 × 2048

FC0 1 × 300 2048 × 300

Bi-GRU 1 × 1 × 256 Hidden_size = 128
Num_layer = 2

FC1 1 × 128 256 × 128
FC2 1 × 4096 128 × 4096

The Branch-Fusion Net consists of five stages: Conv1, Conv2, Conv3, Conv4, and
Conv5. We combined the Branch-Fusion Net and the CSAM as the local feature extrac-
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tion network and used the Bi-Directional Gated Recurrent Unit (Bi-GRU) for the global
feature extraction.

3.1. Branch-Fusion Net

We noted that group convolution not only reduces the parameter overhead but also
understands the input features from different perspectives after dividing different channels
into groups, so we proposed the multi-branch structure based on group convolution. We
firstly introduce how group convolution reduces the parameter overhead.

For the feature map of C × D × H × W, we can generate N × D × H × W by using N
convolution kernels of C × d × h × w (assuming that the image size remains the same after
pooling). Then, we assumed that the size of the input feature map was still C × D × H × W
(Channel × Depth × Height × Width) and the number of output feature maps was N. If
we divide it into 2 groups (as shown in Figure 5), the size of the input feature map is C/2 ×
D × H × W for each group, and the number of output feature maps of each group is N/2.
The size of each convolution kernel is C/2 × d × h × w. The number of convolutional
kernels in each group is N/2. The kernels only convolve with the input feature map of the
same group. Therefore, the total number of convolutional kernels was N × C/2 × d × h ×
w. It can be seen that the total number of parameters was reduced to 1/2 of the original.
When the number of groups is G, the number of parameters is reduced to 1/G.

Figure 5. Group convolution diagram when the number of groups was 2.

Since each group in group convolution understands the input features independently
and information does not circulate among different groups, this leads to the fact that each
branch will understand the features from a different perspective.

Since group convolution groups input features from channel dimensions, which is
not conducive to extracting global channel features, we improved group convolution by
proposing the multi-branch structure, as shown in Figure 6. The first convolutional layer
consisted of 128(4 × 32) convolutional kernels of 1 × 1 × 1. The number of convolution
kernels was greatly reduced compared to the number of channels of input features. The size
of the input feature map of the Branch-Fusion Net block was 256 × 16 × 64 × 64 (Channel
× Depth × Height × Width), and the output feature map of each group was 4 × 16 × 64
× 64. We used 1 × 1 × 1 convolution for global feature preservation and completed the
dimensionality reduction by making the total number of all grouped convolution kernels
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smaller than the number of channels in the input feature map, which greatly reduced the
number of parameters of the network.

Figure 6. Block 2 of Branch-Fusion Net.

The second layer is the group convolution layer, which consisted of 128(4 × 32)
convolution kernels of 3 × 3 × 3. The number of channels in the input feature map is the
same as the number of convolution kernels. In this layer, we performed group convolution
of the input feature maps with branches as groups. The feature map of 128 × 16 × 64 × 64
was divided into 32 groups from the channel dimension, and each group had a feature map
of 4 × 16 × 64 × 64. Each group of input features was convolved by 3 × 3 × 3 to obtain
an output feature map of 4 × 16 × 64 × 64. By group convolution, we further reduced
the number of parameters of the network and improved the generalization ability of the
network by understanding the input feature from multiple perspectives.

3.2. Channel-Spatial Attention Module

The CSAM includes the Channel Attention Module (CAM) and the Spatial Attention
Module (SAM), as shown in Figure 7. The CAM is used to focus attention on the channels
that have a greater impact on the final result at different times, and the SAM is used
to focus attention on the regions of temporal and spatial features that are favorable for
classification, which is complementary to the CAM. For the intermediate feature map
of three-dimensional convolutional neural networks, the CSAM generates two attention
maps along two independent dimensions, the channel and spatial, and then multiplies the
attention by the input feature maps to perform adaptive feature refinement on the input
feature maps.

Figure 7. Channel Spatial Attention Module.
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3.2.1. Channel Attention Module

In the convolutional neural network, each convolutional kernel has a different impact
on the features. We used channel attention to focus our attention on the channel that has a
great impact on the final result at different times. The CAM consists of two pooling layers,
a multilayer perceptron, and an activation function. The structure is shown in Figure 8.

Figure 8. Channel Attention Module.

In Figure 8, ⊕ denotes the bitwise summation and
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denotes the sigmoid activation
function. Firstly, the spatiotemporal information of the input features was aggregated using
three-dimensional average pooling and three-dimensional maximum pooling to generate
two different spatiotemporal context descriptors. Then, the descriptors were fed into a
multilayer perceptron with shared weights to obtain two feature maps. Finally, the two
feature maps were summed element-by-element and activated by the sigmoid function to
obtain the final channel attention weights. The CAM is computed as:

Mc(F) = σ(MLP(AvgPool3d(F)) + MLP(MaxPool3d(F))) (1)

where MLP denotes the two-layer neural network and the sigmoid activation function.
Since the input was a video sequence containing temporal information, the CAM was
three-dimensional. The input was changed from (batchsize, channel, height, width) to
(batchsize, channel, time_sequential, height, width).

3.2.2. Spatial Attention Module

The SAM was designed to focus attention on regions of spatiotemporal features that
are favorable for classification, and it complements the CAM. The SAM consists of two
pooling layers, a convolutional layer, and an activation function. The structure is shown in
Figure 9.

Figure 9. Spatial Attention Module.
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Firstly, the channel information of the input features was aggregated using average
pooling and maximum pooling to generate two different channel context descriptors. Then,
the two different channel context descriptors were stitched together, and the information
was aggregated by the convolutional layer with the convolutional kernel of 7 × 7 × 7.
Finally, the attention weights were obtained by activating the sigmoid function. The spatial
attention is calculated as:

Ms(F) = σ( f 7×7×7([AvgPool(F); MaxPool(F)])) (2)

where f 7×7×7 denotes the convolution kernel of 7 × 7 × 7 and σ denotes the sigmoid
activation function. Similar to the CAM, the average pooling, maximum pooling, and
convolution in spatial attention were three-dimensional.

3.3. Bi-GRU

We first introduce the Gated Recurrent Unit (GRU), as shown in Figure 10b.

Figure 10. (a) The structure of Bi-GRU; (b) The structure of GRU.

The calculation process in the GRU is summarized as follows:

zt = σ(Wz•[ht−1, xt]) (3)

rt = σ(Wr•[ht−1, xt]) (4)

h̃t = tanh(W•[rt ∗ ht−1, xt]) (5)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (6)

The Gated Recurrent Unit (GRU) uses two gate functions to ensure that important
features are not lost after long-term propagation. zt is the update gate responsible for
controlling the amount of data that can be saved to the current moment in the forward
parameter information, and rt is a reset gate to control how much of the past information
to forget.

The idea of the Bi-Directional Gated Recurrent Unit (Bi-GRU) is to ensure the features
obtained at time t have both the past and the future information. The network was divided
into two independent GRUs, and the input sequences were input to the two GRUs in
forward and reverse order for feature extraction. The two output vectors were stitched
together to form the final feature representation. The structure of the Bi-GRU is shown in
Figure 10a.

4. Experiment
4.1. Dataset

UCF-Crimes is a large dataset containing 128 h of surveillance video. It includes
1900 surveillance videos, divided into 14 categories of behavior. There exist some serious
problems in the dataset, such as the low resolution and repetition of some video frames.
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In this paper, we selected five categories in UCF-Crimes: arson, burglary, explosion, road
accident, and stealing, and established the Crimes-mini dataset after the preprocessing
operations, including cropping, de-duplication, regrouping, and expansion. The training
set, validation set, and test set were randomly selected in the ratio of 6:2:2. Some of the
sample images in the dataset are shown in Figure 11. The number of videos of each anomaly
in our dataset is shown in Table 4.

Figure 11. Sampling images with Crimes-mini dataset.

Table 4. Number of videos of each anomaly in our dataset.

Anomaly No. of Videos

Arson 100
Burglary 100

Explosion 100
Road accident 150

Stealing 120
Normal events 320

4.2. Evaluation Index

In this paper, we chose the accuracy rate as the important evaluation metric for our
experiments. Since the overall performance of the model is also critical, we considered
parameter overhead and F1 values in our analysis. The accuracy and F1 values are shown
in Figure 12.

Figure 12. Confusion Matrix.

Accuracy is calculated as:

acc =
TP + TN

TP + TN + FN + TN
× 100% (7)
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F1 value is calculated as:

F1 = 2• Precise•Recall
Precise + Recall

(8)

Recall is calculated as:
Recall =

TP
TP + FN

(9)

Precise is calculated as:
Precise =

TP
TP + FP

(10)

Parameter overhead is used to measure the size of the model. The lower the parameter
overhead, the fewer parameters required to save the model. Parameter overhead of the 3D
convolutional layer is calculated as:

params = C0 × (kw × kh × kd × Ci + 1) (11)

where C0 denotes the number of output channels, Ci denotes the number of input channels,
kw denotes the convolutional kernel width, kh denotes the convolutional kernel height,
kd denotes the length of the convolutional kernel in the time dimension, +1 denotes bias,
brackets denote the number of parameters of a convolutional kernel, and C0 denotes that
the layer has C0 convolutional kernels.

Parameter overhead of the fully connected layer is calculated as:

params = (I + 1)× O = I × O + O (12)

where I × O denotes the number of weights of O layers, and the number of bias is O.

4.3. Hyperparameter Setting

The setting of hyperparameters is critical, and it directly affects how well the model is
trained. Therefore, we experimented with the setting of hyperparameters on the valida-
tion set.

4.3.1. Number of Branches

We used the Branch-Fusion Net as the local feature extraction network. The general-
ization ability of the network directly affects our detection accuracy, and the number of
branches determines the generalization ability. Therefore, we set the number of branches to
16, 24, 32, and 48, and analyzed the effects of different branch numbers on the generalization
ability. The experimental result for different branch numbers is shown in Figure 13.

Figure 13. The effect of different numbers of branches on the accuracy rate.
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The experimental result shows that the detection accuracy was the highest when
the number of branches was 32. When the number of branches was 16 or 24, the lack
of generalization ability of the network led to low accuracy due to the small number of
branches. When the number was 48, the accuracy was slightly lower than 32 branches, and
the parameter overhead was the largest. Therefore, we chose 32 as the number of branches.

4.3.2. Learning Rate Setting

The learning rate is an important hyperparameter when we train the model. For the
gradient descent method, the choice of learning rate is critical. If it is too large, it will
cause the model to fail to converge, and if it is too small, it will converge too slowly. We
conducted experiments at different learning rates, and the experimental result is shown in
Figure 14.

Figure 14. The effect of different learning rates on F1 values.

As can be seen from the figure, when the number of branches was 32, the F1 value
was generally higher than in the other three cases, which is consistent with the results of
our previous experiment. The accuracy rate and F1 value reached the maximum when
the number of branches was 32 and the learning rate was 0.0005, which were 93.22% and
89.87%, respectively.

4.3.3. Number of Layers of Bi-GRU

We used the Bi-GRU to accomplish the global feature extraction, so its performance
is also critical to the overall model. We trained Bi-GRU on the test set for 60 rounds in
different layers. The result is shown in Figure 15.

The experimental results show that global features extracted using the single-layer
network are not enough, while the features extracted by the three layers are too abstract.
Both will interfere with the subsequent training and make it less effective. When Bi-GRU
used two layers, it could effectively complete the extraction of global complex information.
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Figure 15. The training effect of Bi-GRU with different numbers of layers.

4.4. Structure Setting of CSAM

The CSAM includes two modules, the CAM and the SAM. To find the optimal con-
nection for these two modules, we experimented with behavior recognition tasks with
different connections using Branch-Fusion Net on the test set, and the experimental result
is shown in Table 5.

According to the data in the table, adding either the CAM or the SAM to Branch-Fusion
Net alone will improve the performance of the network, but the combination of the two
is more effective than using individual modules. After connecting the two in series and
parallel, we found that the “CAM + SAM” series connection was the most effective.
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Table 5. Combining methods of channel and spatial attention.

Description Accuracy (%)

Model (Branch-Fusion Net) 86.29
model + CAM 89.56
model + SAM 90.08

model + CAM and SAM in parallel 93.57
model + SAM + CAM 92.83
model + CAM + SAM 93.43

4.5. Comparison Experiments with Branch-Fusion Net

To evaluate the generalization capability of Branch-Fusion Net, we reproduced the
mainstream feature extraction networks on the multiple benchmarks (UCF-101, HMDB51,
and Kinetics) to conduct a comparison experiment for the behavior recognition task [32].
The Kinetics dataset is much larger than the UCF-101 dataset and the HMDB51 dataset, so
it is more challenging. Therefore, we removed the networks (two-stream, C3D, and R3D)
with poor feature extraction ability on the UCF-101 dataset and HMDB51 dataset, and then
showed the TOP-1 accuracy and TOP-5 accuracy of the remaining networks on the Kinetics
dataset. The experimental result is shown in Tables 6 and 7.

Table 6. Accuracy (%) comparison on UCF-101 and HMDB datasets.

Architecture UCF-101 HMDB51

Two-Stream [31] 87.84 58.86
TSN [33] 93.90 70.88
TSM [34] 95.47 73.95
TEA [35] 96.63 73.12
TDN [36] 95.39 76.26

SlowFast [37] 96.20 78.04
C3D [12] 85.08 56.00
R3D [38] 85.22 53.80

R(2 + 1)D [39] 95.55 73.85
S3D [40] 96.62 75.33
X3D [41] 96.71 81.67

Two-Stream I3D [32] 97.29 80.71
NL I3D [42] 96.87 80.16

Branch-Fusion Net 97.32 82.14

Table 7. Accuracy (%) comparison on Kinetics dataset.

Description TOP-1 TOP-5

TSN [33] 68.93 87.84
TSM [34] 74.39 90.89
TEA [35] 76.20 92.27
TDN [36] 76.85 93.16
S3D [40] 74.69 93.24
X3D [41] 79.06 93.76

R(2 + 1)D [39] 74.28 91.49
SlowFast [37] 77.11 92.37

Two-Stream I3D [32] 72.02 89.89
NL I3D [42] 76.38 92.55

Branch-Fusion Net 80.03 93.81

The experimental result shows that our proposed Branch-Fusion Net can extract
features better than the mainstream networks with two-Stream architecture (two-stream,
TSN, TSM, TEA, TDN, and SlowFast) and three-dimensional convolutional architecture
(C3D, R3D, R(2 + 1)D, S3D, two-stream I3D, X3D, NL I3D). We can see that the accuracy
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of our proposed Branch-Fusion Net was the highest on the small datasets of UCF-101
and HMDB51, reaching 97.32% (UCF-101) and 82.14% (HMDB51), which indicates that
Branch-Fusion Net can fully understand the features on these two datasets. On the larger
and more challenging Kinetics dataset, the Branch-Fusion Net also achieved state-of-the-art
results, with 80.63% and 93.81% for TOP-1 and TOP-5, indicating that the Branch-Fusion
Net can understand a large number of complex features.

4.6. Ablation Experiment of CSAM

The suppression of useless features and the highlighting of useful features will be
reflected in the feature representation capability of the network with the CSAM added,
and we chose the main 3D convolutional neural networks for the ablation experiment. The
result is shown in Table 8.

Table 8. Accuracy comparison on the Kinetics dataset.

Architecture Params/M Accuracy (%)

C3D 58.378 72.93
C3D + CSAM 58.454 77.71

R3D 33.642 80.29
R3D + CSAM 33.731 83.90

R(2 + 1)D 33.641 83.08
R(2 + 1)D + CSAM 33.730 88.44
Branch-Fusion Net 14.856 89.63

Branch-Fusion Net + CSAM 16.190 93.55

The experimental result shows that the parameter overhead hardly increased after
adding the CSAM to the networks, but there was a significant improvement in the accuracy
rate, which indicates that the CSAM outperformed all the baselines without bells and
whistles, demonstrating the general applicability of the CSAM across different architectures.

4.7. Comparison Experiment with Our Model

To evaluate the performance of our models (the Branch-Fusion Net with CSAM for the
local feature extraction network and the Bi-GRU for the global feature extraction network),
we conducted a comparison experiment with good feature extraction networks (P3D [43],
R3D, and R (2 + 1)D) on the test set. The experimental result is shown in Figure 16.

Figure 16. Comparison of parameter overhead and accuracy on the Crimes-mini dataset.
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The experimental results show that our proposed model achieved the highest accuracy
with the lowest parameter overhead. The low parameter overhead indicates that the model
requires low memory, and the 93.55% accuracy indicates that our proposed model can
adequately extract the key features in abnormal videos.

5. Conclusions

We proposed a model based on multiple-instance learning, which included the local
feature extraction network and the global feature extraction network. For the local feature
extraction network, we proposed the Branch-Fusion Net to reduce parameter overhead
and improve the generalization ability at the same time. To prevent useless features from
interfering with the model training, we proposed the CSAM to suppress useless features
and enhance important features. For the global feature extraction network, we used a two-
layer Bi-GRU to complete the global feature extraction. To make the model more suitable
for mobile devices, we will reduce the parameter overhead using model compression
techniques in the future.
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