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Abstract: In the last decade, deep learning has enjoyed its spotlight as the game-changing addition to
smart farming and precision agriculture. Such development has been predominantly observed in
developed countries, while on the other hand, in developing countries most farmers especially ones
with smallholder farms have not enjoyed such wide and deep adoption of this new technologies.
In this paper we attempt to improve the image classification part of smart farming and precision
agriculture. Agricultural commodities tend to possess certain textural details on their surfaces which
we attempt to exploit. In this work, we propose a deep learning based approach called Selective
Context Adaptation Network (SCANet). SCANet performs feature enhancement strategy by lever-
aging level-wise information and employing context selection mechanism. In exploiting contextual
correlation feature of the crop images our proposed approach demonstrates the effectiveness of the
context selection mechanism. Our proposed scheme achieves 88.72% accuracy and outperforms the
existing approaches. Our model is evaluated on the cocoa bean dataset constructed from the real
cocoa bean industry scene in Indonesia.

Keywords: deep learning; Selective Context Adaptation; smart farming; precision agriculture;
level-wise information

1. Introduction

Recently the population of human race has surpassed 8 billion people. Food demand
is always increasing, resulting in more effort required in producing more ingredients.
As the main source of food, agriculture industry must boost its output by effectively using
available resource to fulfill this demand. Machine learning approaches, particularly deep
learning, are making their way to help solve this problem by improving the agriculture
industry in more than one way.

1.1. Background

Advancements of technology in the recent years have brought significant changes for
various different fields, with agriculture being one of them. Implementation of technology
in farming can be found in smart farming and precision agriculture. Smart farming
implements technology into automating tasks into most aspects in farming. Precision
agriculture involves establishing more control into the practice of farming with the help
of technology, such as remote sensing, ripeness classification, pest detection, drought
prediction, yield prediction, and crop diversity detection.

For decades, machine learning algorithms had been implemented in both smart farm-
ing and precision agriculture, for example in regression and image processing. For the last
decade, the deep learning revolution is abruptly changing several areas in both, enabling
new level of automation and control. In a recent research on the applying technologies
for agricultural sector, the development of smart scheme and the adoption of the current
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state-of-the-art of the advanced technology to this sector is becoming emerging research
trends. For instance, Rezk [1] proposed an Internet of Things (IoT) based scheme com-
bined with the pattern recognition to construct a platform for smart farming applications
(SFA). Using this method, the productivity of crop can be enhanced and the environmental
causal that might affect the crop production is also predicted. On the other hand, an IoT
scheme based on LoRa communication applied to the Indonesian farming area was also
presented [2]. Towards the implementation of technological advance, smart farming is
even becoming better and reliable for enhancing the productivity and sustainability of our
agriculture. Precision agriculture for object recognition, disease detection, smart irrigation
can be accurately performed with the guidance and employment of current technology [3].

Several employments of computer vision based schemes in agriculture was also intro-
duced recently [4–9]. Furthermore, the deployment of the computer vision is one of the
ways to construct an automation scheme for the smart farming application (SFA). For ex-
ample there are methods implemented for the ripeness classification [10–12]. Detecting
ripeness of the yield can help farmers decide best time for harvest and also in the harvesting
process itself. Other place would be in sorting and packaging the products. By automating
packaging or sorting part of the process, production cost can be kept low. Along the ripeness
of the crop, specific conditions of the produce can also be monitored by using object detec-
tion algorithm [13–15]. Particularly, the health of the vegetation or its yield is in general
interest, whether the degradation is caused by pest, parasite, or environmental factors.

On the other hand, in recent years image-based object classification has been re-
searched extensively in the machine learning area. One of the most extensively utilized
neural network architecture is ResNet [16]. ResNet based image classification schemes
have been implemented in many different fields of applications such as medical [17–19],
geography [20], geology [21], marine engineering [22], and military [23]. Examples of
computer vision schemes in smart farming and precision agriculture listed in the previous
paragraph also utilize ResNet in their architectures.

It can be seen that image-based classification systems hold important roles in current
smart farming and precision agriculture applications. Diverse tasks such as harvesting
ripe crops, picking out substandard fruits, detecting sickness or bad conditions of plants,
can be done by using an object classification system. However, a system require a robust
architecture. Current classification systems are not perfect and always require accuracy im-
provements. In this work we propose a method to improve the accuracy of neural network
classification system, particularly in the field of agriculture. We propose a method by using
unique contexts that proliferates in the agricultural products. However, by modifying
specific parts, this particular object classification algorithm can also be used in many other
disciplines such as health, security, production, supply chain, and others. In the future
we aim to adapt our method to other fields that we deemed are suitable for our proposed
method to generate most favorable result.

1.2. Related Works

By leveraging the efficacy of Convolutional Neural Networks (CNNs), there are
abundance attempts to demonstrate the feasibility of CNN based algorithm to achieve
good results for SFA task [7,24–30]. Ref. [7] proposed the use of deep learning approach to
conduct an experiment for fruit classifications. Hossain [7] proposed that the employment
of CNN based architecture can provide a robust classifier model for the classification tasks
and the performance of fruit classifications is improved compared to the capability of
traditional approaches. Furthermore, the study of CNN based algorithm performance was
also presented by Bai [24], which proposed the scheme for the cocoa bean classifications
called progressive contextual excitation (PCE) network to improve the accuracy reached by
the traditional model studied by Adhitya [31].

The benefits of using computer vision to agriculture were also presented by the devel-
opment of Unmanned Aerial Vehicle (UAV) by Jinya [32], which proposed the use of UAV
images for monitoring scheme. The perception from the aerial images are analyzed using
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U-Net based deep learning architecture to detect the wheat disease called wheat yellow
rust. The advantages of computer vision approaches for UAV employed in agricultural
field were also mentioned in several papers [33–36]. Deep learning approaches play as
an essential approach to achieve the precised monitoring and automation mechanism
particularly on the deployment of UAV for agricultural sector [33].

In terms of constructing an accurate model, it is clearly illustrated that leveraging the
computer vision based on CNN approach algorithms brings advantages for realizing a
powerful and reliable precision agriculture scheme. The proposed work presented in this
paper is the effort to improve the efficacy of the authors’ previous work by enhancing the
low and high level features retrieved from the backbone network as shown in [24]. We
try to further improve the model by utilizing the multi-level correlation between features
generally found in the dataset of the crop commodities. Our proposed model is made with
the assumption that by employing the context available between these multi-level features
we can add more information to the architecture. By exploiting this characteristic, we
believe we can obtain a better approach to be used in the development of the smart farming
framework compared to currently available models. Moreover, we also adopt a selection
algorithm to eliminate unwanted correlation between features and pick out the most
prominent correlations. Furthermore, we also study to construct a secure deep learning
scheme for the deployment in smart farming scenarios. To the best of our knowledge, this
is the first attempt to build a framework for a smart agriculture framework incorporating a
secure deep learning scheme.

Research gap that we aim to answer is how to further improve the accuracy of the clas-
sification model. To achieve this we utilize the widely implemented neural network image
classification architecture, ResNet, and employ a novel algorithm that utilizes correlations
of multi-level features generated from the baseline architecture. This proposed method
is made specifically to classify agricultural products which tends to possess particular
textures, but also suitable for many other applications. From the above elaborations, we
can enlist the main contributions of the proposed approach in this paper as follows:

1. We introduce a feature enhancement strategy using context adaptation mechanism
by reconstructing deep features from multi-level dependencies to give more accurate
feature representation in the SFA task.

2. We devise a method to select most effective contexts to obtain best results. This is done
to leverage level-wise information by applying a context selection mechanism. Using
the information from the selected contextual representation, an effective approach for
discriminating fine-grained categories is performed.

Our paper is further written as follows: Section 2 illustrates our proposed work for the
accuracy enhancement called Selective Context Adaptation Network (SCANet). The detail
of experimental results is presented in Section 3. The following discussions of our findings
are elaborated in Section 4. Section 5 is the summary of the proposed work, experimental
findings, and the possible future works from our approach.

2. SCANet: Selective Context Adaption Network

In this work we propose a model which utilizes the multi-level correlation between
features found in the input images. Images of crop commodities often include certain
textural pattern. Our proposed model makes use of the fact that current neural network
models utilize several layers in their algorithm. Each layer extracts different level of features
from the input. In our work we utilize ResNet architecture to extract the features to each
layer. These features can then be associated with each other and from the correlations
additional information can be further extracted. The obtained information can be used to
improve the result of the algorithm. We eliminate information with inferior value and only
select several prominent information that we deem useful to further improve the accuracy.

As can be seen in Figure 1, we extract the features using a neural network, collect
visual representations of the image from each level, and consider the contextual relation-
ships between these features. Selective Context Adaptation Network (SCANet) receives
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multi-level feature responses extracted from an input image. Then, the context adaptation
mechanism reconstructs deep features by concerning multi-level dependencies. We further
apply a context selection mechanism to adaptively modify transformed context to lever-
age level-wise information. With the selected contextual representation, the final linear
transformation layer is able to distinguish fine-grained categories. This flow can be seen in
Figure 2, and the flowchart in Figure 1.

Figure 1. Flowchart of our proposed Selective Context Adaptation Network (SCANet).

Figure 2. Our proposed Selective Context Adaptation Network (SCANet).

2.1. Preliminaries

Consider the Smart Farming Application (SFA) task conducted on a set of cocoa bean
categories C, where C denotes different types of cocoa beans as described in [31]. Given a
fine-grained image, we follow [24] to extract the deep features via the visual extractor of
ResNet-50 [16]. Next, we collect multi-level visual representations {Fl}4

l=2 as [24] owing
to the rich subtle and abstract information from the low level to the high level, where l
represents the level of visual features.
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2.2. Selective Context Adaptation Network (SCANet)

Figure 2 illustrates our SCANet by measuring multi-level dependencies from low-
level to high-level features for better tackling the fine-grained SFA task, where the visual
differences among the cocoa beans are subtle. The quality of visual representation is critical
for the smart farming application task. Toward distinguishing fine-grained cocoa beans
categories, enhanced contextual representations enable the final linear transformation layer
to discriminate similar categories benefited from the rich detailed information of low-level
features. PCE collects contextual channel-wise attention via a global-average-pooling
operation and further leverages these attentions to re-weight the visual representation at
the final layer. However, the global pooling over the entire pixels spatially may introduce
global noises potentially. We revisit the context exploration by employing the non-local
block [37,38] spatially over multi-level representations. Observed that rich detailed patterns
within the low-level features and abstract information from high-level features, we embed
the visual representations from other layers to the lth layer alternately. Precisely, instead
of directly applying the non-local block on each visual representation at the lth layer, we
reconstruct the level-wise feature concerning other features at different levels via the non-
local block to explore the inter-level relationship. We show the positive contributions with
our SCANet in the experiments for constructing robust visual representations with respect
to contextual semantics in tackling the fine-grained SFA task.

2.2.1. Attention

The attention mechanism [37,38] aims at reconstructing the input feature concerning
the pixel-wise similarity, i.e., the affinity matrix, within the feature maps. The affinity
matrix estimates the element (pixel) dependency through its key K and query Q and
then re-weights value V to highlight similar elements while suppressing dissimilar ones
simultaneously. In a nutshell, the basic attention operation f is defined as:

f (Q, K, V) = softmax(QKT)V , (1)

where Q, K, V ∈ Rs×d are embedded d-dimensional features with s elements.

2.2.2. Context Adaptation Mechanism

This step is responsible for integrating multi-level representations among different
levels. As higher level features possess powerful semantics while suffering insufficient
detailed information. In contrast, lower level features have rich subtle patterns beneficial
for the fine-grained classification. We thus apply a convolution operation to integrate
different level features. Please note that we make the spatial dimensions consistent via the
bilinear interpolation to eliminate the alias effect as [39] before adopting the convolution
operation. Briefly, we define the basic convolution operation Ψ as:

Ψ(X; k, o) = (WX + b) , (2)

where X, k, and o indicate the input visual representation, the kernel size of the convo-
lution layer, and the output channels, respectively. W and b separately represent the
learnable weight and bias. Consider that a high-level feature, i.e., F4 ∈ R7×7×2048, suffering
insufficient detailed information, we leverage lower level features with rich subtle pat-
terns to embed into the high-level feature. Precisely, we first fuse low-level features, i.e.,
F2 ∈ R28×28×512 and F3 ∈ R14×14×1024 as:

F̄2 = interpolation(Ψ(F2; 1, 2048)) ∈ R7×7×2048 , (3)

F̄3 = interpolation(Ψ(F3; 1, 2048)) ∈ R7×7×2048 , (4)

S4 = Ψ(F̄2 ‖ F̄3; 3, 2048) ∈ R7×7×2048 , (5)
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where F̄2 and F̄3 in Equations (3) and (4) both represent interpolated feature maps to
make the spatial dimensions consistent. The symbol ‖ in Equation (5) denotes the con-
catenation operation along the channel dimension. S4 collects detailed information from
low-level features and serves as a supported feature to enhance the high-level feature F4.
The enhanced high-level feature F̂4 leveraging the supported feature S4 via Equation (1) is
formally defined as:

F̂4 = f (S4, F4, F4) ∈ R7×7×2048 . (6)

Analogously, the middle-level feature F3 concerning low-level feature F2 and high-
level feature F4 is formulated as:

F̄2 = interpolation(Ψ(F2; 1, 1024)) ∈ R14×14×1024 , (7)

F̄4 = interpolation(Ψ(F4; 1, 1024)) ∈ R14×14×1024 , (8)

S3 = Ψ(F̄2 ‖ F̄4; 3, 1024) ∈ R14×14×1024 , (9)

F̂3 = f (S3, F3, F3) ∈ R14×14×1024 . (10)

2.2.3. Context Selection Mechanism

Once the feature has been extracted and constructed, therefore, we adopt the context
selection scheme. Basically, the context selection mechanism aims to dynamically select
meaningful enhanced features which are beneficial for the following fine-grained category
discrimination task. Then, the enhanced features constructed by the level-wise information
is selected to perform a classification task. The entire diagram of our approach is illustrated
in the Figure 3.

Figure 3. Diagram of Context adaptation mechanism.

3. Performance Results
3.1. Dataset
Cocoa Bean Images

In this experiment, we tested our approach using the same cocoa bean dataset as
presented by [31]. This dataset is not available for public. There are 7428 images divided
into 7 categories such as: (1) whole beans, (2) Beans fractions, (3) skin-damaged beans,
(4) fermented beans, (5) unfermented beans, (6) moldy beans, and (7) broken beans. Further-
more, the dataset is randomly divided into 75% for training, 15% for validation, and 10%
for testing. We implemented this distribution for each categories. The data were taken from
the real environment using a compact digital camera and sampled in the factory. Therefore,
the collection of the data is further processed by sorting based on the Indonesian Standard-
ization Institution especially following the rule for exporting quality [31,40]. The sample of
the data is shown in Figure 4 and the distribution of each class is presented in Table 1.
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Table 1. Distribution Class of the Cocoa Bean Images.

Classes Amount of Images Training Validation Test

Whole Beans 1187 891 178 118
Broken Beans 1046 786 156 104
Bean Fractions 426 321 63 42

Skin-Damaged Beans 822 617 123 82
Fermented Beans 916 688 137 91

Unfermented Beans 1776 1333 266 177
Moldy Beans 1255 942 188 125

Total of the Data 7428 5578 1111 739

(a) (b) (c) (d)

(e) (f) (g)
Figure 4. Cocoa Bean Image collected from Indonesian cocoa bean factory, Sulawesi, Indonesia [31].
(a) Whole Beans. (b) Beans Fractions. (c) Skin-Damaged Beans. (d) Fermented Beans. (e) Unfermented
Beans. (f) Moldy Beans. (g) Broken Beans.

3.2. Implementation Details

ResNet-50 [16] is adopted as the baseline and constructed as the visual encoder.
The training stage for the visual encoder is performed without loading any pre-trained
weight. Bilinear interpolation is used to create 224× 224 pixel images as the input images.
The initial learning rate is 1× 10−2 and decayed by 5× 10−4. The visual encoder is trained
from scratch using SGD optimizer and a batch size is 128.

3.3. Ablation Study

In order to have an understanding related to the each feature map, we conducted
ablation study. The aim of the ablation studies here is to investigate the features con-
structed from each level of features. Therefore, we have insight of the performance for the
involvement of each feature map constructed by each layer.

As presented in Table 2, we perform ablation studies on each level of the SCANet
layer. The baseline of this study is ResNet-50 as the original network then we are further
enhancing the base network using the proposed schemes. As explained that F̄2 and F̄3
represent the interpolated feature maps to be used for the enhancement of F̄4, Table 2 shows
that using the feature from F̄4 alone, the accuracy is 85.71%. By additional features from F̄2
and F̄3, the overall accuracy can be further enhanced and reaching 88.72%. In addition, we
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also conducted a study using different context selection schemes as shown in Table 3. It is
clearly seen that our proposed scheme is superior compared to other selection methods.

Table 2. Ablation study of the level transformation mechanism.

F̂2 F̂3 F̂4 Top-1 Accuracy

baseline baseline baseline 82.71
- - 3 85.71
- 3 3 88.72
3 3 3 86.09

Table 3. Ablation study of the context selection mechanism.

Context Selection Schemes Top-1 Accuracy

Average 86.47
Conv1 × 1 87.59

SCANet 88.72

3.4. Comparison with Existing Works

To compare our approach with existing similar works, we list several existing works
in Table 4. The performance comparison is conducted by using the top-1 accuracy metric
represented by the formula

TP + TN
TP + TN + FP + FN

. (11)

where TP, TN, FP, and FN in Equation (11) are the representative of true positive, true
negative, false positive, and false negative, respectively.

As depicted in Table 4, our approach which can attain 88.72% accuracy outperforms
existing works. By utilizing the context selection mechanism strategy, we can achieve better
performance compared to our previous work called PCENet. In addition, SCANet also
eliminates the post-processing enhancement strategy as proposed in [31] and shows the
superiority compared to other existing studies.

Table 4. Comparison of the classification results using cocoa bean dataset. The visual feature
enhancement employing GLCM scheme for post-processing [41] is shown by “*”.

Model Post-Process Top-1 Accu.

Adhitya’s model (SVM) no 59.14
Adhitya’s model (XGBoost) no 56.99

Adhitya’s model (SVM *) yes 61.04
Adhitya’s model (XGBoost *) yes 65.08

ResNet-50 no 82.71
PCENet no 86.09

Compressed PCENet [42] no 86.09
SCANet (Ours) no 88.72

We made further comparison using publicly available datasets of other agricultural
based scenarios: Corn, Apple, and Grape Leaf Diseases dataset. By using readily available
dataset, we can expand our comparison to include more methods. In this work we include
results from DenseNet, Modified LeNet, VGG19 + K-means, AlexNet, SVM, and LS-SCM.
In addition to expanding our comparison, by using these datasets we want to evaluate
how our proposed model handles more diverse agricultural-related scenarios. As with the
results from the cocoa bean dataset, our proposed model shows superior accuracy compared
with existing models. Table 5 shows the results from corn leaf diseases dataset, while Table 6
and Table 7 show results from apple and grape leaf diseases dataset, respectively.
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Table 5. Comparison of the classification results using corn leaf diseases dataset.

Classification Model Accuracy

VGG19 + K-means [43] 93.4
Modified LeNet [44] 97.89

DenseNet [45] 98.06
SCANet (Proposed model) 98.31

Table 6. Comparison of the classification results using apple leaf diseases dataset.

Classification Model Accuracy

DenseNet [46] 93.71
AlexNet [47] 97.62

SCANet (Proposed model) 99.69

Table 7. Comparison of the classification results using grape leaf diseases dataset.

Classification Model Accuracy

SVM [48] 93.01
LS-SCM [49] 97.66

SCANet (Proposed model) 99.88

4. Discussion

As presented in Tables 4–7, our approach gives better performance compared to other
existing approaches. Compared to the result by [24,31], our proposed scheme produces
higher accuracy for the fine grained classification task with 88.72% of which [24,31] only
produced 65.08% and 86.09%, respectively. Thus, it is shown that by leveraging a feature
selection mechanism, we can improve the performance of the deep learning based approach
for image classification especially to construct a smart farming framework.

Our previous study shows that leveraging the contextual channel-wise attention can
improve the accuracy of the fine-grained classification task on cocoa bean dataset. However,
the construction of global context introduced by such method may include global noises
that can destruct the final classification on the fully connected layer. By implementing a
context selection mechanism, more accurate results can be produced as presented in current
study. One downside of our method is the introduction of interpolation in our design
which will invariably increase the size of the resulting inference model.

5. Conclusions

In this study, we have demonstrated the improvement of fine-grained classification
task for Smart Farming Applications (SFA). Image classification always aim for improve-
ment of accuracy and current researches are trying to utilize different method to achieve
this. The context selection mechanism in our proposed scheme called SCANet can enhance
and boost the performance to address the fine-grained problems in the SFA. By leveraging
and combining the lower level and higher level features, SCANet can have more sufficient
and enriched information. Eventually, SCANet processes the constructed features by em-
ploying the context selection mechanism and can further enhance the model performance.
From the results obtained in this study, SCANet outperforms other existing approaches
by reaching 88.72% accuracy on the cocoa bean dataset. It can be seen that our method is
ideal for classifying cocoa beans images, and as such we believe it can be utilized to sort
cocoa beans in real life process, and additionally also for different types of bean. For future
studies, we are trying several improvements: implement compression techniques into our
works, add selective environment contextual correlation, and put the inference model in
real-life practical test.
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