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Abstract: In this paper, we introduce a one-class learning approach for detecting modifications in
assembled printed circuit boards (PCBs) based on photographs taken without tight control over per-
spective and illumination conditions. Anomaly detection and segmentation are essential for several
applications, where collecting anomalous samples for supervised training is infeasible. Given the
uncontrolled environment and the huge number of possible modifications, we address the problem
as a case of anomaly detection, proposing an approach that is directed towards the characteristics
of that scenario, while being well suited for other similar applications. We propose a loss function
that can be used to train a deep convolutional autoencoder based only on images of the unmodified
board—which allows overcoming the challenge of producing a representative set of samples contain-
ing anomalies for supervised learning. We also propose a function that explores higher-level features
for comparing the input image and the reconstruction produced by the autoencoder, allowing the
segmentation of structures and components that differ between them. Experiments performed on a
dataset built to represent real-world situations (which we made publicly available) show that our
approach outperforms other state-of-the-art approaches for anomaly segmentation in the considered
scenario, while producing comparable results on a more general object anomaly detection task.

Keywords: anomaly detection; autoencoder; deep learning; manufacture; visual inspection

1. Introduction

Detecting anomalies in assembled printed circuit boards (PCBs) is an important prob-
lem for fields such as quality control in manufacturing [1,2] and fraud detection [3]. One
instance of the latter is the detection of fraud in gas pumps, a common problem in countries
such as Brazil and India [4,5]. For example, modifying the gas pump PCB by replacing,
adding, or removing components allows offenders to force the pump to display a fuel
volume different from the one put into the tank. It may be difficult for law enforcers to
detect this fraud simply by testing the pump, since the offender can use a remote control
to deactivate the fraud during inspections. Thus, inspectors have to remove the PCB
from the gas pump and visually compare the suspicious board to a reference design or
sample—for example, in Brazil, gas pump PCB designs are approved and controlled by a
regulatory body, and cannot be changed without authorization. To mitigate concerns over
legal action from gas station owners who lose profits while the pump cannot be operated,
inspections should be quick, but this is frequently not possible given the complexity of
these PCBs. Figure 1 shows an example of a PCB containing modifications—the amount of
small components makes it hard even for a specialist to notice these modifications. The
task is further complicated if inspectors are not specialists, which leads them to rely solely
on visual comparisons. For these reasons, a system that assists inspectors by automatically
detecting modifications or suspicious regions can be interesting. Such a system must be
flexible enough to work on-site, without requiring large capture structures, controlled
lighting, or fixed camera positioning.

Sensors 2023, 23, 1353. https://doi.org/10.3390/s23031353 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031353
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2888-6208
https://orcid.org/0000-0001-6441-8543
https://orcid.org/0000-0002-1415-5527
https://doi.org/10.3390/s23031353
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031353?type=check_update&version=2


Sensors 2023, 23, 1353 2 of 21

Figure 1. An example of PCB containing modifications. Some of them are easier to identify, while
others require more attention. The modifications consist of adding small IC chips, and a jump wire in
one case.

While we have the fraud detection scenario as our main motivation, this problem
shares most characteristics with the image-based inspection of PCBs in general—a task for
which several methods have been proposed in recent years. Some methods are used to
detect defects in unassembled PCBs [6–10], where common anomalies are missing holes
and open circuits, while other methods deal with assembled PCBs [3,11,12]. These methods
are usually based on supervised machine learning, where a decision model is trained by
observing samples with and without defects or anomalies. One of the foremost challenges
when working with this kind of data-driven technique is providing a representative dataset
containing a wide range of situations that reflect the variety of possibilities faced in practice
well enough to allow generalization. For an unmodified board, that means having samples
with varied lighting conditions and camera angles, but a representative set of anomaly
samples is harder to obtain, because anomalies are rare, expensive to reproduce, or may
manifest in unpredictable ways.

We adopt a one-class learning approach and address the task as an anomaly detection
problem. In this formulation, models are only trained on normal samples, learning to
describe their distribution, using the premise that it is possible to detect anomalies based
on how well the learned model can describe a given sample—i.e., samples containing
anomalies are not well described by the model, and will appear as outliers. Many recent
studies aimed at industrial inspection in various settings explore this idea [1,2,13–20].

In this paper, we address the problem of detecting modifications in an assembled PCB
using a deep neural network. More specifically, we propose using a convolutional autoen-
coder architecture for reconstruction-based anomaly detection. This kind of architecture
compresses the input image to a feature vector, called “latent space”, and then reconstructs
the same image only based on these features. The rationale behind the proposed method is
that, if the model is trained only with anomaly-free samples, it can only reconstruct this
kind of sample. Thus, when it receives an image containing anomalies as input, it will
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be unable to properly reconstruct the output, or even reconstruct the image without its
anomalies. This idea is illustrated in Figure 2.

Figure 2. The reconstruction-based inference process using a convolutional autoencoder. The au-
toencoder is trained to reconstruct only anomaly-free samples, so the reconstructed output does not
show the modification when it receives an image containing anomalies as input. Thus, it is possible
to segment the anomaly by comparing the input and the output.

We performed experiments comparing our proposed method to other state-of-the-
art one-class anomaly detection methods [2,13,15,16] that achieved good performance on
the MVTec-AD dataset [1], a general anomaly detection image dataset. In experiments
performed on a dataset containing PCB images under varied illumination conditions and
camera angles, our method outperformed these state-of-the-art techniques, producing a
more precise segmentation of the modifications and obtaining better scores on the measured
metrics—pixel-wise intersection over union (IoU), precision, recall, F-score, and detection
and segmentation area under the receiver operating characteristic curve (AUROC). Addi-
tionally, on the more general MVTec-AD dataset, our method performed similarly to the
other methods, achieving better results for adding or removing objects. We also performed
an ablation study about the loss function to identify each loss component’s contribution
and verify the proposed method’s effectiveness.

The main contributions of this work are:

• We propose a loss function that combines the content loss concept, and the mean
squared error function for training a denoising convolutional autoencoder architecture
for reconstruction-based anomaly detection. The proposed model can be trained using
only anomaly-free images, making it suitable for real-world applications where this
kind of sample is much more common and easier to obtain than a representative set of
samples containing anomalies.

• We propose a comparison function that can be used to locate and segment regions
that differ between a given input image and the reconstructed image produced by a
convolutional autoencoder. The comparison is based on higher-level features instead
of individual pixels, leading to the detection of structures and components instead of
sparse noise.

• We employ the proposed loss and comparison functions to design a robust method to
detect modifications on PCBs that can be applied to images containing perspective
distortion, noise, and lighting variations. Thus, the method aims to work under the
circumstances commonly found in practice, e.g., during the on-site inspection of gas
pump PCBs [3], where mobile devices are used to capture images without relying
on controlled lighting or positioning. Nonetheless, it is important to highlight that
the proposed method may also be applied to other monitoring tasks with similar
characteristics, such as quality assurance in an industrial setting.

• We provide a labeled PCB image dataset for training and evaluating anomaly detection
and segmentation methods. The dataset is publicly available (https://github.com/
Diulhio/pcb_anomaly/tree/main/dataset (accessed on 10 January 2023)) and contains
1742 4096 × 2816-pixel images from one unmodified gas pump PCB, as well as 55 im-
ages containing modifications, along with the corresponding segmentation masks.

https://github.com/Diulhio/pcb_anomaly/tree/main/dataset
https://github.com/Diulhio/pcb_anomaly/tree/main/dataset


Sensors 2023, 23, 1353 4 of 21

The remainder of this paper is organized as follows. Section 2 discusses the related
work on defect and anomaly detection on PCBs, as well as anomaly detection for industrial
inspection in general. Section 3 details the proposed approach. Section 4 presents the
experimental setup and the obtained results. Finally, Section 5 draws some conclusions and
indicates directions for future work.

2. Related Work

Several algorithms have been proposed for image-based anomaly detection in PCBs.
For instance, deep learning techniques have been used to detect anomalies such as missing
holes and defective circuits in unassembled boards [6–10]. Although these approaches
were successful, they rely on controlled capture conditions, and only work for limited
types of anomalies, found in unassembled boards. For assembled boards, a common
strategy is using supervised training to produce a component detector [11,12]. The layout
of the detected components can be compared to a reference, providing a way of detecting
anomalies. However, this strategy demands considerable effort to obtain labeled training
data (for example, ref. [11] generates artificial samples from 3D models). Moreover, this
strategy is limited to detecting known components, possibly failing when the modification
involves adding some unknown component.

Of particular relevance is the system proposed in [3], which addresses the same prob-
lem as we do. We employed the same method used by that work to deal with variations in
camera angle, and the same idea of partitioning the board to analyze each region indepen-
dently. Our main test dataset includes some of the images used by that work. However, our
anomaly detection strategy differs significantly—they employ SIFT features and support
vector machines to classify each region as normal or anomalous, while we segment anoma-
lies using a deep reconstruction network. Moreover, that work uses supervised learning,
with anomalies being artificially created by placing small patches extracted from other
samples, while our model is single-class, being trained only on normal samples.

Several one-class learning methods were recently proposed, which rely only on
normal samples for anomaly detection for industrial visual inspection (not limited to
PCBs). The most successful methods are based on reconstructions or embedding simi-
larity. Reconstruction-based methods compute a compressed representation of the input
image and attempt to reconstruct the original image based on it. Our method falls into
this category. Models that can be employed for the reconstruction include autoencoders
(AEs) [1,15], variational autoencoders (VAEs) [18,21,22], and generative adversarial net-
works (GANs) [23]. The main advantage of these approaches is that it is easy for humans
to understand and interpret their results. However, if a method still reconstructs an
anomaly [24], it may remain undetected, as there is no noticeable difference between the
input and the reconstruction.

Embedding similarity methods [2,13,16,17,19,20] use deep convolutional networks pre-
trained on large generic datasets (e.g., ImageNet) as feature extractors. The distribution of
the features extracted from anomaly-free samples is then modeled as a probability density
function [2]. Given a distance metric, the feature vectors from images with anomalies tend
to be more distant from the center of the distribution (e.g., the mean vector), compared to
normal samples. These methods are applicable to new problem domains without requiring
additional training in the basic feature extractor, but their results are difficult to interpret.
Moreover, the computation of the density function can have high memory requirements
and be complicated when the dataset has high variability.

A popular benchmark for visual anomaly inspection is the MVTec-AD [1,14] dataset,
which contains 5354 images, with 70 types of anomalies for 15 kinds of objects. Most
anomaly detection methods cited above were evaluated on this dataset, so our method will
also be tested on it.
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3. Proposed Method

Many existing approaches for anomaly detection produce a binary classification that
refers to the entire sample, indicating whether it contains a modification. However, this
may be insufficient in a real-world scenario, since the specific structures or components
which characterize the modification are not identified. Methods that produce bounding
boxes or segment anomalies may be more suitable for PCB inspection. Thus, the approach
we propose in this work performs anomaly segmentation. It employs a deep convolutional
neural network for image reconstruction, trained on samples from a single class, i.e., images
without modifications/defects/anomalies.

3.1. Image Registration and Partitioning

Similarly to the work in [3], our approach assumes that the PCB is shown from an over-
head view. However, in contrast to several other studies on visual inspection [6,11,14,16],
where positioning is strict to avoid variations, we suppose that the input image may be
the product of an image registration step. In other words, the PCB may be photographed
from an angled view, being aligned to a reference image after capture (see Figure 3). It is a
procedure similar to that employed by applications that involve face images, where the
faces are aligned to reduce variability and improve the model performance. We employed
a widely used and mature algorithm for image registration based on SIFT features and
the RANSAC algorithm [25], but note that any algorithm with good performance could
be used. More relevant for our discussion are the implications of relying on an image
registration step: in the resulting image, the components on the PCB may have some degree
of perspective distortion and variations in position, since image registration can be slightly
imprecise and the algorithm only treats planar distortions, without taking into account
the 3D aspect of the components, as shown in Figure 4. Moreover, our approach does not
require controlled lighting, so there can be reflections, shadows, and other variations, which
can be hard to distinguish from actual modifications or anomalies. These assumptions
make our approach suitable for real-world applications where the inspection may occur in
an open and uncontrolled environment.

(a) (b)

Figure 3. Comparison before and after the image registration process using SIFT and RANSAC:
(a) Original image; (b) The image after registration using SIFT and RANSAC.

Anomaly detection methods frequently work on fixed-size inputs, reducing the cap-
tured image to a smaller size and reducing the computation and memory requirements.
However, for PCB inspection in the proposed dataset, resizing the entire image to a manage-
able size can result in certain components and modifications becoming too small. To avoid
this, we partition the input image into 1024 × 1024-pixel patches (to avoid having an overly
large number of patches per image), which are then resized to 256 × 256 pixels (to reduce
the computational costs) and processed independently. Figure 5 illustrates this procedure.
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Figure 4. Taller components can have considerable aspect variation even after the image registra-
tion procedure.

1
2

3

1 2 3 4

Figure 5. A 4096 × 2816 image split into 1024 × 1024 patches. Some regions are present in more than
one patch—the regions overlap because 2816 is not divisible by 1024.
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3.2. Convolutional Autoencoder Architecture

After the original image is partitioned, each 256 × 256 patch is given as an input
to a convolutional autoencoder (CAE) [26]. Using a series of convolutional layers, CAEs
encode the high-dimensional input image to a compressed low-dimensional vector called
“latent space” and expand (decode) this vector to the original dimensionality. The encoder
function z = g(y) receives the input y and maps it to the latent space z. The decoder
function ŷ = f (z) computes the reconstruction ŷ from the latent space z. Thus, the entire
network is expressed as f (g(y)) = ŷ, and in a perfect CAE y = ŷ.

In our approach, one CAE is trained for each patch region (i.e., for the board shown in
Figure 5, we have 12 CAEs). These networks are trained using only anomaly-free samples,
ideally becoming able to reconstruct only this type of image—when receiving images
showing anomalies, the CAE will produce visible artifacts or reconstruct them without the
anomalies, as illustrated in Figure 2.

The CAE architecture we use in our approach is shown in Table 1. The network was
built using convolutional layers in the encoder and transposed convolutional layers in the
decoder, with 5 × 5 kernels in both cases. Each convolutional layer is followed by batch
normalization (BN) and a leaky ReLU activation, with a slope of 0.2. The encoder’s last
layer and the decoder’s first layer are fully connected layers of 1024 nodes, followed by BN
and Leaky ReLU. The latent space is the output of a fully connected layer with 500 values.

Table 1. The architecture of our convolutional autoencoder. All convolutional and transposed
convolutional layers use 5 × 5 kernels and stride 2.

Input: x256×256×3 Feature Maps

Conv(filters = 32); BN; LeakyReLU; 128× 128× 32
Conv(filters = 64); BN; LeakyReLU; 64× 64× 64
Conv(filters = 128); BN; LeakyReLU; 32× 32× 128
Conv(filters = 128); BN; LeakyReLU; 16× 16× 128
Conv(filters = 256); BN; LeakyReLU; 8× 8× 256
Conv(filters = 256); BN; LeakyReLU; 4× 4× 256
Conv(filters = 256); BN; LeakyReLU; 2× 2× 256

Fully connected (1024); BN; Leaky ReLU; 1024
Fully connected (500); Leaky ReLU; 500

Fully connected (1024); BN; Leaky ReLU; 1024
TranspConv(filters = 256); BN; LeakyReLU; 4× 4× 256
TranspConv(filters = 256); BN; LeakyReLU; 8× 8× 256
TranspConv(filters = 128); BN; LeakyReLU; 16× 16× 128
TranspConv(filters = 128); BN; LeakyReLU; 32× 32× 128
TranspConv(filters = 64); BN; LeakyReLU; 64× 64× 64
TranspConv(filters = 32); BN; LeakyReLU 128× 128× 32

TranspConv(filters = 3); Sigmoid; 256× 256× 3

During training, each input image is corrupted by randomly masking out rectangular
regions; denoising autoencoders use this data corruption strategy to prevent the network
from simply memorizing the training data. The effect is similar to dropout, but in input
space; generating images with simulated occlusions forces the model to consider more
of the image context when extracting features, improving network generalization [27].
Note that the loss is still computed by comparing the produced output with the original,
non-corrupted input.

3.3. Content Loss Function for Training

The loss functions most commonly used for training autoencoders are pixel-wise
functions, such as the mean square error (MSE). However, these functions assume the
pixels are not correlated, which is often not true—in general, images have structures
formed by the relations between pixel neighborhoods. Pixel-wise functions also frequently
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result in blurred outputs when used for reconstruction. For these reasons, we used the
content loss function when training the autoencoder.

Content loss, introduced by [28], identifies the differences between two images (in our
case, the input and the reconstruction) based on high-level features. It was used for appli-
cations such as style transfer [28,29], super-resolution [29,30] and image restoration [31].
Features are extracted from an image classification network (VGG19 [32], in our work) pre-
trained on general-purpose datasets (Imagenet [33], in our work). This function encourages
the network to reconstruct images with feature representations similar to those of the input,
rather than considering just differences between pixels.

Let φj(x) be the activation of the jth layer of a pre-trained network φ when image
x is processed. Since j is a convolutional layer, φj(x) will present an output of shape
Cj × Hj ×Wj, where Cj is the number of filter outputs, and Hj ×Wj is the size of each filter
output at layer j. The content loss is the squared and normalized distance of the feature
representations of reconstruction x̂ and reference x, as expressed in Equation (1).

lφ,j
f eat(x̂, x) =

1
Cj HjWj

∥∥φj(x̂)− φj(x)
∥∥2

2 (1)

The training procedure based on the content loss function tries to minimize the recon-
struction loss between images x and x̂ using the initial layers of the pre-trained network
φ. A CAE trained with this function tends to produce images similar to target x in image
content, and an overall spatial structure [29]. In this work, we sum the differences in the
5th, 8th, 13th, and 15th layers from VGG19, based on empirical experiments.

The content loss function controls the reconstruction of larger structures in the image
but fails to reconstruct details and textures. For this reason, we combine the content
loss with the MSE, as expressed by Equation (2), where λ1 and λ2 are the weights of
each loss function. This approach has been applied in several works and methods in the
literature [28–30,34]. We empirically defined the parameters λ1 = 0.01 and λ2 = 1. Figure 6
illustrates the entire loss calculation.

Lrec = λ1LMSE + λ2L f eat (2)

Figure 6. Loss calculation flow during training. The proposed loss function combines the pixel-wise
MSE between the autoencoder input and its reconstructed output, and the content loss between the
reference (ground truth) image and the reconstruction.

3.4. Anomaly Segmentation

After training, the network can segment anomalies by comparing the reconstructed
image to the input. If the CAE were “perfect”, a simple pixel-wise absolute difference
would be enough to segment the anomalies. However, images in a real situation have
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perspective distortion, noise, and lighting variations that may make the reconstruction
hard. These variations may cause small differences along edges or in regions containing
shadows or reflections. In these cases, pixel-wise metrics may result in many false positives.
Figure 7c shows an example of the absolute difference between the original images of a
PCB (with and without modifications) and their reconstructions. The pixel-wise absolute
difference has high values at several positions, even in places where the differences are
very difficult to notice.

(a) (b) (c) (d)

Figure 7. (a) Input image showing a PCB with (top) and without (bottom) modifications, (b) recon-
struction produced by the autoencoder network, (c) the pixel-wise absolute difference between the
input and its reconstruction, and (d) the proposed anomaly segmentation method using perceptual
difference. The absolute difference shows high values spread around many areas, even in regions
without modifications. With the proposed method, the region containing the anomaly has markedly
higher values than regions without anomalies.

To address these challenges, we propose a comparison function based on the content
loss concept, i.e., instead of isolated pixels, we focus on structures and higher-level features.
Tiny modifications that manifest in isolated pixels may pass undetected, but the overall
robustness is increased, since actual modifications to PCBs appear as clusters of pixels,
as long as the board is photographed with a good enough resolution. Once again, we used
the VGG19 network trained on the ImageNet dataset to extract high-level features from
the input y and the reconstruction ŷ. The features are compared by summing the absolute
differences between the activations of layer φj, as expressed in Equation (3).

A(ŷ, y) =
Cj

∑
i=0

∣∣φj,i(ŷ)− φj,i(y)
∣∣ (3)

where Cj is the number of filter outputs in layer j. A is a matrix that represents the anomaly
map, and has the same size (Hj ×Wj) as the outputs from layer φj. In the initial tests
performed on a small dataset, the 12th layer from VGG19 showed the best results, with 512
outputs of size 28 × 28.

We obtained the final segmentation, resizing the anomaly map using bilinear inter-
polation to the same size as the input, normalized, and binarized with a threshold T.
Normalization is based on the min–max range from the entire test set, which must contain
images showing modifications, so it is possible to measure the magnitudes of the values
produced by these anomalies. The T parameter measures how rigorous the detection is
and will be varied during the experiments, to show how it affects the detection perfor-
mance (and for computing ROC curves). Figure 7d shows an example of the proposed
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segmentation method. Note how differences in regions without anomalies are much less no-
ticeable than when using the pixel-wise absolute difference. On the other hand, the region
containing the anomaly has much higher values in the anomaly map than other regions.

4. Experiments and Results

In this section, we present the experiments performed to test the proposed approach
for anomaly detection and compare it with other state-of-the-art one-class methods, on our
MPI-PCB dataset and the MVTec-AD dataset. The code was implemented in the Python
language, using the TensorFlow (www.tensorflow.org, accessed on 15 December 2022)
and OpenCV (opencv.org, accessed on 15 December 2022) libraries. Experiments were
performed on the Google Colab (colab.research.google.com, accessed on 15 December 2022)
platform. The GPUs available in Google Colab may vary due their avalability, but during
the experiments we used the P100 GPUs with 16 GB of memory. The source code is publicly
available at https://github.com/Diulhio/pcb_anomaly/ (accessed on 15 December 2022).

4.1. MPI-PCB Dataset

The main dataset used in this work is the Multi-Perspective and Illumination PCB
(MPI-PCB) dataset, which we built based on many of the same images originally collected
for the work in [3]. The dataset contains 1742 4096 × 2816-pixel images showing an un-
modified PCB from a gas pump. The images were captured using a Canon EOS 1100D
camera with 18–55 mm lenses. The set also contains 55 images showing the board with
modifications manually added by the authors, which are meant to be representative of situ-
ations encountered in actual frauds. Since our aim is performing one-class learning, these
samples must not be used in the training step, only for testing. One of the contributions of
our paper is making this dataset available, including labeled semantic segmentation masks.

Images were captured from a generally overhead view, but without strict demands
on position or illumination, as expected in a real-world situation. To reduce variations
that may occur in the image registration step and focus on the anomaly detection problem,
the dataset contains the images after the registration procedure described in Section 3.1.

4.2. Baseline Methods

To the best of the authors’ knowledge, no previous work addresses specifically image-
based anomaly segmentation in assembled PCBs—as previously discussed in Section 2,
existing approaches focus on unassembled PCBs or use supervised training to determine
whether anomalies are present in a given region, without per-pixel segmentation. This
makes it hard to directly compare this approach with the proposed method. Therefore, our
comparisons are focused on other general anomaly segmentation methods, which achieved
promising results on the popular MVTec-AD dataset. Our work can be more directly
compared with these methods, since they have similar one-class training procedures and
produce segmentation masks as outputs. We chose baseline methods that provide the
source code and can run in the infrastructure used for our work. We also selected at least
one reconstruction-based method and one embedding similarity method.

When our experiments were performed, the PaDiM approach [13] had state-of-the-art
results for anomaly segmentation on the MVTec-AD dataset. It is an embedding similarity
method that obtained the best results when using the Wide ResNet-50-2 network to extract
features. However, due to the very high memory requirements, we used the smaller
ResNet18 as a feature extractor in our comparison. Other embedding similarity methods
we used as baselines were SPTM [16] and SPADE [2]. For the latter, we reduced the
input resolution from the default 224 × 224 to 192 × 192, also due to the high memory
requirements. As a reconstruction-based baseline, we took the DFR method [15], which
uses regional features extracted from a pre-trained VGG19 as inputs for CAEs.

www.tensorflow.org
opencv.org
colab.research.google.com
https://github.com/Diulhio/pcb_anomaly/
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4.3. Evaluation Metrics

We considered per-pixel metrics to evaluate the segmentation performance of the
techniques: the intersection over the union (IoU) and the area under the receiver operating
characteristic curve (ROC-AUC), as well as the usual precision, recall, and F-score in
the best case. We also evaluated ROC-AUC for anomaly detection: while segmentation
considers per-pixel classification, detection expresses whether an anomaly exists in the
image. To avoid detecting noise, we consider that an anomaly exists in an image if it
contains at least 10 anomalous pixels. The metrics are computed over the (per pixel or per
image) count of true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) classifications.

Precision indicates the proportion of detected pixels that were correct, i.e., values
close to 1 indicate that there were few false detections. In contrast, recall indicates the
proportion of expected pixels that were detected, i.e., values close to 1 indicate that most
of the anomalies were detected. More formally, precision (Equation (4)) expresses the
ratio of correctly predicted positive samples to the total predicted positive samples; and
recall (Equation (5)), also known as true positive rate (TPR), expresses the ratio of correctly
predicted positive samples to all the samples in the positive class. The F-score (Equation (6))
is the harmonic mean of precision and recall.

Precision =
TP

TP + FP
(4)

Recall or TPR =
TP

TP + FN
(5)

F-score =
2× (Recall × Precision)
(Recall + Precision)

(6)

ROC-AUC is a widely used metric for evaluating anomaly segmentation methods,
and is usually reported for approaches tested on the MVTec-AD dataset [1,2,13–16]. It
shows how well a technique balances true and false positive rates (i.e., its ability to cover
the expected detections while avoiding false detections) as a certain threshold parameter
varies. ROC-AUC is the normalized area under the ROC curve, which is obtained by
plotting the true versus the false positive rates (TPR and FPR, respectively) at different
classification thresholds. TPR and FPR are computed by Equations (5) and (7).

FPR =
FP

FP + TN
(7)

IoU, also referred to as the Jaccard index, is also reported for several semantic
segmentation tasks and challenges such as COCO (Common Objects in Context—http:
//cocodataset.org (accessed on 15 December 2022)). For anomaly segmentation, the IoU
expresses how similar two shapes are, quantifying the overlap between the ground truth
mask and the binarized anomaly map, as given by Equation (8).

IoU =
TP

(TP + FN + FP)
(8)

We report the best IoU score obtained by each method when varying the classification
threshold. Compared to the ROC-AUC, the IoU is more sensitive to variations in the shape
of the segmented regions.

We defined the optimal threshold T in our experiments by varying this parameter and
selecting the value which resulted in the maximum geometric mean (G-mean) of recall

http://cocodataset.org
http://cocodataset.org
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and specificity, as given by Equation (9). This method is widely used in machine learning
applications, especially in imbalanced classification problems.

G-mean =
√

TPR ∗ (1− FPR) (9)

4.4. Training Details

We took the 1742 images from the MPI-PCB dataset showing the unmodified board.
We randomly split them: 1518 images for training, 169 for validation, and 55 for testing
(the same amount we have with the modified board, to a total of 110 test images). As for
the MVTec-AD dataset, the split is: 3266 for training, 363 for validation, and 1725 for the
testing [1].

Due to the large variety of perspective distortions, and the limited number of training
samples, we used data augmentation on the training sets from both datasets. For the MPI-
PCB dataset, we apply a random position offset between 0 and 80 pixels when extracting
patches, simulating variations that may occur in the image registration step. As for the
MVTec-AD dataset, we apply random variations on rotation, shear, saturation, contrast,
brightness, and scale.

The proposed architecture was trained with a batch size of 128 for 1000 epochs. As
an optimizer, we used Adam with cosine learning rate decay and a warm-up phase. The
learning rate starts at 1× 10−5, and after three epochs ramps up to 0.0072, and decays to
1× 10−5 using a cosine function.

4.5. Results on the MPI-PCB Dataset

We evaluated the performance of our method and the baseline methods on the test
set from the MPI-PCB dataset, considering six board regions. All these regions contain
inserted modifications, such as integrated circuits and jumper wires. We selected these
regions because they contain anomalies in the test set; these are needed to compare our
approach and other works properly. The tested methods depend on at least part of the test
samples from each region containing modifications, to define the range for normalization.
A total of 110 samples were tested, namely 55 with and 55 without modifications in the
observed region.

Figures 8 and 9 as well as Table 2 show the results obtained with the tested techniques
for each region. The bold text in Table 2 indicates the best results for each metric. The
results show that the proposed method outperforms or has similar results compared to
approaches that attain state-of-the-art results in the MVTec-AD dataset.

For simple anomaly detection (measured by the detection ROC-AUC, see Figure 8),
our method, PaDiM, and SPTM present similar performances in most cases. The proposed
method shows the detection ROC-AUC 1.0 in four out of six regions, which means it
identified all modifications in these regions. SPADE and DFR presented significantly worse
results. This is explained by the difficulty of finding a threshold that attains a good trade-off
between TPR and FPR.

As for anomaly segmentation (Figure 9), all the methods achieved an ROC-AUC
higher than 0.9 for almost every region. This shows that these methods can segment most
of the anomalies correctly. The proposed method and PaDiM showed the best average
performance. The class imbalance explains the difference between the detection and
segmentation ROC-AUC results for SPADE and DFR in each problem. The test set is
balanced for detection since it contains the same number of positive and negative samples.
However, the classes are very imbalanced for per-pixel segmentation, with less than 2%
being positive pixels. This allows the model to generate small segmentation errors in
several images without impacting the segmentation ROC-AUC, but with a high impact in
detection ROC-AUC.
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Table 2. Results of the proposed method and the baseline methods for the MPI-PCB dataset. We show
the results for image regions containing at least one anomaly in the test set. The grid numbers indicate
the column/row of each region in the partitioned image (see Figure 5). Higher values indicate a better
performance, where the segmentation precision, recall, and F-score are shown at the best IoU threshold.

Metric Method grid2_2 grid2_3 grid3_1 grid3_2 grid4_1 grid4_3 Avg.

IoU

Ours 0.755 0.664 0.608 0.525 0.778 0.732 0.677
PaDiM 0.603 0.624 0.489 0.145 0.656 0.524 0.507
SPADE 0.319 0.272 0.419 0.353 0.457 0.474 0.382

DFR 0.297 0.098 0.117 0.386 0.196 0.190 0.214
SPTM 0.505 0.428 0.447 0.314 0.240 0.502 0.406

Segmen.
Precision

Ours 0.858 0.752 0.767 0.643 0.849 0.840 0.785
PaDiM 0.732 0.742 0.594 0.240 0.765 0.687 0.627
SPADE 0.364 0.301 0.621 0.417 0.526 0.533 0.460

DFR 0.246 0.078 0.117 0.419 0.141 0.221 0.204
SPTM 0.601 0.577 0.457 0.410 0.300 0.627 0.495

Segmen.
Recall

Ours 0.876 0.858 0.758 0.747 0.915 0.856 0.835
PaDiM 0.856 0.851 0.826 0.413 0.896 0.744 0.764
SPADE 0.754 0.754 0.572 0.715 0.793 0.833 0.737

DFR 0.687 0.491 0.310 0.691 0.347 0.407 0.489
SPTM 0.760 0.853 0.668 0.643 0.395 0.760 0.680

Segmen.
F-Score

Ours 0.863 0.805 0.769 0.688 0.889 0.851 0.811
PaDiM 0.785 0.791 0.691 0.307 0.829 0.714 0.686
SPADE 0.489 0.436 0.597 0.521 0.632 0.645 0.553

DFR 0.357 0.126 0.163 0.511 0.209 0.283 0.275
SPTM 0.676 0.687 0.533 0.492 0.347 0.680 0.569
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Figure 8. Detection ROC curves and AUC for each tested region. The grid numbers indicate the
column/row of each region in the partitioned image (see Figure 5).
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Figure 9. Segmentation ROC curves and AUC for each tested region. The grid numbers indicate the
column/row of each region in the partitioned image (see Figure 5).

Despite the similar ROC-AUC results obtained by our approach and PaDiM, we
observed that the segmentation in several samples was visibly different. We noticed this
happened because of the imbalance between the positive and negative pixels, leading to
high ROC-AUC values even when the model produces false positive classifications. IoU
can express the segmentation precision better than the ROC-AUC, since it is more sensitive
to incorrectly classified pixels and, consequently, to deviations in the shape and size of the
segmented objects. This can be seen in Figure 10, which shows some segmentation samples
produced by our technique and the baseline methods. We note that most baseline methods
had several false positives, i.e., these methods successfully localize the modifications in
a general manner. However, several additional pixels are detected, so the segmented
shape does not match the anomaly. Generally, the models identify large regions around
modifications or smaller shapes which do not cover an entire component. This might
be interpreted as a false detection by a human inspector without specialized knowledge,
because it covers not just a component but a region that includes parts of other components.
Additionally, Figure 10 shows that some baseline methods can produce more false positive
detections when there are no anomalies in the board.

Regarding the IoU, the proposed method outperformed the baseline methods for all
evaluated regions, achieving an IoU higher than 0.5 for all regions—this is a relevant mark,
since challenges such as Pascal VOC (http://host.robots.ox.ac.uk/pascal/VOC/index.html,
accessed on 15 December 2022) and COCO use IoU > 0.5 as one possible criterion for
successful detection. Note that the IoU is sensitive to the size of the modification, as the
weight of an incorrectly classified pixel is higher for smaller objects. Our method was
able to segment small modifications, such as the jumper wire in the “grid3_2” region (the
first row in Figure 10). PaDiM presented an IoU close to 0.5 for all regions, except for the
“grid3_2” region, which contains the smallest modification: there was a high number of
false negatives, which led to a partial segmentation. As for SPADE, SPTM, and DFR, the
performance was worse in several cases. As discussed above, these techniques displayed a
higher number of false positives, segmenting large regions around the modifications and

http://host.robots.ox.ac.uk/pascal/VOC/index.html
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detecting modifications where none exist. The lighting and perspective variations in this
dataset can explain that.

The difference between the segmentation quality of the techniques is reinforced if
we observe the precision, recall, and F-score metrics. Our method presented the best
segmentation precision for all regions, meaning that it could better detect pixels that
represent anomalies with fewer false positives. At the same time, regarding segmentation
recall, our method outperforms the baseline methods for almost all regions by a significant
margin, showing that the proposed method presents less false negatives. Our method’s
advantages are reflected in the average F-score, which is significantly higher than the one
achieved by the baseline methods.
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Input image Ground truth PaDiM SPADE SPTM DFR Ours

Figure 10. Segmentation comparison between our method and the baseline methods in image
regions grid3_2, grid2_3 and grid2_2 with modifications, and in regions grid2_2 and grid4_3 without
modifications. The red contours represents the anomalies detected by the evaluated algorithms.

In conclusion, the obtained results show that while all techniques can detect and
segment modifications (as indicated by the detection and segmentation ROC-AUC metrics),
the proposed method can better approximate the shape of objects (as indicated by the IoU,
precision, recall, and F-score). This advantage can help a human inspector identify the
specific components that characterize a modification in a practical scenario.

4.6. Results on the MVTec-AD Dataset

To evaluate the performance of our method for other anomaly localization contexts,
apart from the PCB modifications it was designed for, we tested it along with the baseline
methods on the MVTec-AD dataset. Figure 11 shows the dataset’s detection and segmenta-
tion ROC for all objects and textures. Table 3 shows the evaluated metrics following the
categorization defined by [1], with anomalies grouped by type: “objects” and “textures”.
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The former shows certain types of objects, with most anomalies involving the addition,
removal, or modification of parts or components, while the latter shows the close-ups of
surfaces, with anomalies consisting of alterations to a common texture pattern.

Table 3. Results of the proposed method and the baseline methods for the MVTec-AD dataset. We
show the results for the two main categories defined by textures and objects.

Metric Method Texture Object

Detection
ROC-AUC

Ours 0.870 0.890
PaDiM 0.960 0.880
SPADE 0.860 0.850

DFR 0.930 0.910
SPTM 0.980 0.930

Segmentation
ROC-AUC

Ours 0.880 0.960
PaDiM 0.950 0.970
SPADE 0.970 0.960

DFR 0.910 0.940
SPTM 0.960 0.870

IoU

Ours 0.290 0.430
PaDiM 0.330 0.410
SPADE 0.380 0.420

DFR 0.310 0.310
SPTM 0.320 0.380

Segmentation
Precision

Ours 0.440 0.562
PaDiM 0.408 0.485
SPADE 0.460 0.518

DFR 0.364 0.481
SPTM 0.364 0.389

Segmentation
Recall

Ours 0.458 0.625
PaDiM 0.628 0.677
SPADE 0.682 0.640

DFR 0.614 0.515
SPTM 0.598 0.575

Segmentation
F-score

Ours 0.446 0.591
PaDiM 0.490 0.560
SPADE 0.546 0.571

DFR 0.452 0.478
SPTM 0.448 0.382

According to Table 3, our method did not perform as well as the baseline methods for
the “texture” category. This behavior can be explained by how the content loss function
with the pixel-wise mean squared error was combined. In other tasks, the content loss
is usually employed in conjunction with the “style loss” function, which tries to keep
feature distributions in each layer the same in both the image and its reconstruction.
Content loss only captures the aspect of image structures, while MSE compares individual
pixels in the image and its reconstruction. This means that our model is less capable of
representing general texture patterns, being directed towards representing structures and
pixel organizations observed during training (on the other hand, this allows our approach
to detect even small anomalies). The problem is exacerbated by the small number of
training samples in the MVTec-AD dataset, which only has approximately 50 training
images per class.
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Figure 11. Detection and segmentation ROC and AUC of our method for all textures and objects
in the MVTec-AD dataset. Solid lines are used for the “object” category and dashed for the “tex-
tures” category.

As for the “objects” category, the proposed method performed similarly to the baseline
methods, particularly SPADE and PaDiM. This indicates that our method may present
better results for problems where most anomalies or modifications are the addition or
removal of objects in the inspected area.

4.7. Loss Function Ablation Study

To investigate the contribution of each component of the loss function, we performed
an ablation study about the MSE and perceptual loss weights. As the loss function is the
core component of our method, these experiments are essential to identify their advantages
and disadvantages in different applications. We conducted these experiments on the
MPI-PCB and MVTec-AD datasets, evaluating the qualitative results of the reconstruction.
The main objective is to identify the combination of loss component weights that generate
reconstruction images that most visually similar to the input image. We used seven different
combinations of loss weights, with values of 0, 1, 0.1, or 0.01.

Figure 12 shows the reconstruction results of a few regions from the MPI-PCB dataset,
as well as objects and textures from the MVTec-AD dataset. These results show the im-
portance of perceptual loss for reconstruction quality. For the images from the MPI-PCB
dataset, perceptual loss plays an essential role in reconstructing fine details. We can observe
that when the λ2 is less than λ1, the CAE is unable to reconstruct the PCB tracks. Addi-
tionally, with lower values of λ2, known issues from relying solely on the MSE become
more evident, such as blurred images and irregular edges. On the other hand, the model
trained with only perceptual loss ( λ1 = 0 and λ2 = 1) generates images with irregular
textures, especially in regions containing smalls components, such as resistors or integrated
circuit legs.

The contribution of perceptual loss is more evident in the reconstructions of the
MVTec-AD images. As this dataset has less data available for training, with more weight
on the perceptual loss, the model can better reconstruct images with fine details and
consistent edges, since content loss relies on another model, which was pre-trained on a
large dataset. Moreover, in all combinations, the major limitation of our loss function is
the difficulty of reliably reconstructing texture patterns. We can observe this behavior on
the carpet and hazelnut reconstructions, where all evaluated models presented problems
reconstructing textures. This behavior is explained by the nature of the convolutional
filters present in the pre-trained models used by perceptual loss. Recent works [35] proved
that convolutional filters tend to behave similarly to high-pass filters used to detect edges,
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corners, and other abrupt intensity changes. This explains why perceptual loss significantly
improves the reconstruction of edges and fine details, but also fails to reconstruct texture
patterns. Our experiments demonstrate the importance of perceptual loss and reinforce
the conclusions obtained during the experiments with MPI-PCB and MVTec-AD datasets,
that our approach is more suited to detect changes in structures and objects than in texture
patterns. Furthermore, these experiments demonstrate the effectiveness of perceptual loss
on image reconstruction with less training data.

gr
id

2_
2

gr
id

2_
3

gr
id

3_
2

bo
tt

le
ca

rp
et

ha
ze

ln
ut

pi
ll

tr
an

si
st

or

Input
image

λ1 = 1,
λ2 = 1

λ1 = 0.1,
λ2 = 1

λ1 = 0.01,
λ2 = 1

λ1 = 0,
λ2 = 1

λ1 = 1,
λ2 = 0.1

λ1 = 1,
λ2 = 0.01

λ1 = 1,
λ2 = 0

Figure 12. Reconstruction results of different grids from the MPI-PCB dataset, and objects and
textures from the MVTec-AD dataset. In these experiments, we vary the weights λ1 and λ2 from
Equation (2) in ranges between 0 and 1.

4.8. Discussion

The results show that our method can successfully segment anomalies in the images of
assembled PCBs taken without tight control over perspective and illumination conditions.
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In the MPI-PCB dataset, our method outperformed the state-of-the-art baseline methods,
showing superior performance on segmentation and detection. For anomaly segmentation,
our method presented the approximated shape of the anomalies in all evaluated regions,
showing less false positive and false negative pixels. A better segmentation may be
advantageous for a human inspector identifying the specific components as modifications.
The experiments performed on the MVTec-AD dataset demonstrated that our method
could be used for anomaly detection in other contexts, when the analyzed object or surface
does not contain textures with random patterns.

One limitation of the proposed approach is that it is only capable of detecting visible
modifications in the images that form structures occupying groups of pixels—which means
it may fail if the images have very poor quality or low resolution. Although this can be
avoided simply by using good cameras and taking some care when capturing the images,
invisible modifications are still undetectable—e.g., some modifications are hidden below
a chip, which is removed and resoldered; and others involve replacing memory units or
cloning components. These modifications cannot be detected by any vision-based approach,
requiring radically different approaches, such as electrical tests or completely disassembling
the board. However, we note that our approach was mainly designed to support the work
of human inspectors, which, in the considered scenario, perform their work solely based on
visual cues, so detecting this kind of invisible modification is outside the scope of our work.

5. Conclusions

In this paper, we addressed the problem of detecting modifications in PCBs based on
photographs. For that purpose, we proposed a reconstruction-based anomaly detection
method using a CAE architecture, trained using anomaly-free samples with a combination
of the content loss and the mean squared error functions. We also introduced MPI-PCB,
a labeled PCB image dataset for training and evaluating anomaly detection and segmenta-
tion methods. Experiments on that dataset showed that our method has superior results for
modification segmentation compared to other state-of-the-art methods. We also performed
experiments in the popular MvTec-AD dataset, with our method attaining results close to
other methods when detecting anomalies, such as adding or removing objects, showing
that it can be employed in other problem domains.

In future research, we plan to create a more varied dataset, with a greater number
of modifications to evaluate the performance in other situations, such as very small mod-
ifications, or evaluate the possibility of using techniques such as transfer learning and
fine-tuning to adapt models trained for one PCB to another quickly. Another possible
improvement is designing a loss function capable of better learning texture information,
based on techniques such as adversarial learning.
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