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Abstract: The use of mobile phones has become one of the major threats to road safety, especially
in young novice drivers. To avoid crashes induced by distraction, adaptive distraction mitigation
systems have been developed that can determine how to detect a driver’s distraction state. A driving
simulator experiment was conducted in this paper to better explore the relationship between drivers’
cognitive distractions and traffic safety, and to better analyze the mechanism of distracting effects
on young drivers during the driving process. A total of 36 participants were recruited and asked to
complete an n-back memory task while following the lead vehicle. Drivers’ vehicle control behavior
was collected, and an ANOVA was conducted on both lateral driving performance and longitudinal
driving performance. Indicators from three aspects, i.e., lateral indicators only, longitudinal indicators
only, and combined lateral and longitudinal indicators, were inputted into both SVM and random
forest models, respectively. Results demonstrated that the SVM model with parameter optimization
outperformed the random forest model in all aspects, among which the genetic algorithm had the
best parameter optimization effect. For both lateral and longitudinal indicators, the identification
effect of lateral indicators was better than that of longitudinal indicators, probably because drivers
are more inclined to control the vehicle in lateral operation when they were cognitively distracted.
Overall, the comprehensive model built in this paper can effectively identify the distracted state of
drivers and provide theoretical support for control strategies of driving distraction.

Keywords: young novice driver; distraction driving; vehicle control behavior; support vector ma-
chines; random forest model

1. Introduction

According to the statistics of the World Health Organization, traffic accidents have
become the ninth leading cause of death, and approximately 1.25 million people die
from traffic accidents globally every year [1]. Among the numerous factors leading to
road accidents, driver attention and distraction has been identified as one of the major
contributors [2,3]. According to the statistics of the National Safety Administration [4],
3477 people were killed and more than 391,000 were injured in vehicle accidents caused by
distracted drivers in the United States in 2015. The Texas Department of Transportation
(TxDOT) reported that 46.8% of crashes in San Antonio, Texas, were classified as “distracted
driving crashes” in 2018 [5]. Due to the increasing use of mobile phones and other intelligent
in-vehicle devices, driving distraction has become more and more popular, especially in
young drivers, and it was found that drivers in the 19–26 age group in China have the
highest traffic accident rate [6].

Driving distraction can be defined as a “diversion of attention away from activities
critical for safe driving toward a competing activity” [7,8]. Previous studies have cate-
gorized distraction into four types, i.e., visual distraction, cognitive distraction, auditory
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distraction, and action distraction [9,10], of which the main forms are visual distraction
and cognitive distraction. Visual distraction means that the driver’s vision deviates from
the road ahead for a period of time or frequently deviates from the road ahead during a
certain period of time, which is called “eyes off road” [11]. Cognitive distraction means
that the human brain is thinking about things that have nothing to do with driving, but
the sight does not leave the road ahead, which is called “mind off road” [12]. Compared
visual distraction, cognitive distraction is more difficult to recognize because the signs of
cognitive distraction are usually not readily apparent, which is called “see but not see”.

To avoid crashes induced by distraction, adaptive distraction mitigation systems
which can provide assistance to reduce distraction state have been developed [13]. For this
system, the key is how to detect a driver’s distraction state. Indicators including driving
performance [14], eye-movement characteristics [15], and even psychological signals [16]
haven been adopted to detect a driver’s cognitive distraction. The effect of cognitive
distraction on driving performance has been mainly conducted from two aspects: the lateral
control behavior and longitudinal control behavior of drivers. Generally, drivers prefer to
increase their steering wheel reversal rates and steering wheel angular velocities [17,18], and
reduce lane offset distances [19] for cognitive distraction conditions. Most studies believe
that during cognitive distraction, the driver’s vision is mainly focused on the center of the
road ahead [20,21], resulting in the driver’s enhanced perception of lane offset and thus
correcting the amount of lane offset by frequently operating the steering wheel [22], which
is assumed as kind of compensation behavior. However, it seems that researchers have
not met an agreement regarding the effect of cognitive distraction on drivers’ longitudinal
control behavior. Horrey et al. [23] found that drivers were more inclined to increase the
headway distance from the lead vehicle when performing a cognitively secondary driving
task. However, the increased distance induced by cognitive distraction has not been found
in other studies [19]. Another divergence is speed changes. Drivers were found to drive
faster when they were cognitively distracted as they concentrated on road center [24], while
a reduced driving speed was found for cognitive distraction in other studies [25,26].

Bio-psychological signals and eye movement data have been adopted to detect drivers’
cognitive distraction. Commonly used bio-psychological indicators include an electroen-
cephalogram [27], electrocardiography [28], and skin conductivity [29]. The eye movement
feature mainly refers to the obvious changes in the driver’s eye saccade, gaze, blinking, and
other behaviors under the distracted driving state [30]. However, to compare different indi-
cators of driving distraction based on cardiac physiological indicators and eye movement
indicators, invasive detection methods must be used including the use of eye movement
instruments, electrocardiographs, electrode caps and other equipment. These testing instru-
ments are bulky and the driver needs to wear them on the body where they can become
invasive for the driver. Wearing them for a long time is likely to cause physical discomfort,
which will cause some interference for the driver. The detection process is easily affected
by the external environment resulting in abnormal data, and wearing the equipment for a
long time is likely to cause physical discomfort which will cause some interference for the
driver. The detection process is easily affected by the external environment and this may
lead to abnormal data.

Driving performance data are the vehicle motion state data output by the driving
simulator itself, which can characterize the driver’s control ability to manipulate the
vehicle during the distraction process. As a non-invasive detection index, it has gradually
become a research hotspot in detecting driving distraction in recent years. Establishing
a real-time accurate driver distraction discrimination model is the premise and core of a
driver distraction warning system. In the field of driver distraction discrimination, the
more commonly used and mature discrimination models include various combinations of
algorithms, such as support vector machines [28], random forests [31], neural networks [32],
and hybrid network models [33]. The SVM model was based on supervised learning, and it
has been widely adopted in the field of pattern recognition [34], financial engineering [35,36]
and automotive engineering [37], with the advantages in solving problems with small
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samples and high-dimensional and non-linear datasets [38]. The random forest model
incorporates the idea of random subspaces and the bagging method, which is robust to
noise and outliers in the data [39] by building multiple decision trees and then merging
them together to obtain more accurate and stable prediction results.

Most of the available distracted driving literature has been conducted in the form
of comprehensive distractions, with fewer studies on the discrimination of cognitive dis-
tractions alone and fewer studies specifically on distractions in young drivers. Therefore,
this paper aims to (1) take the laboratory driving simulator of North China University of
Technology as the research platform and young drivers as the research object to design
a cognitive distracted driving experiment; (2) carry out one-way analysis of variance on
the index data of normal driving and distracted driving, and extract feature data with
significant differences; and (3) establish an SVM discriminant model and random forest
discriminant model for the extracted index data, and compare the performance differences
of different models.

2. Methods
2.1. Apparatus

The North China University of Technology driving simulator (NCUT Sim) was used
for this experiment (as shown in Figure 1). The hardware system is composed of a cockpit
and the annular display screen. The cockpit includes the dashboard, steering wheel,
seat, automatic gearbox and other components, which are in full accordance with a real
vehicle. Three 46-inch-wide LCD screens are adopted to present the driving environment
for the participants. The road scene modeling is built by the 3D virtual reality simulation
software UC-win/RoadVer.14.1.0, and simulated driving scenarios are projected on the
display screen (with a resolution of 1920 × 1080 pixels) through the control center directly.
During the experiment, more than 60 vehicles and related road parameters such as speed,
acceleration, accelerator, and brake pedal opening can be collected simultaneously, with
the sampling frequency at 50 Hz.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 16 
 

 

driver distraction warning system. In the field of driver distraction discrimination, the 
more commonly used and mature discrimination models include various combinations of 
algorithms, such as support vector machines [28], random forests [31], neural networks 
[32], and hybrid network models [33]. The SVM model was based on supervised learning, 
and it has been widely adopted in the field of pattern recognition [34], financial engineer-
ing [35,36] and automotive engineering [37], with the advantages in solving problems 
with small samples and high-dimensional and non-linear datasets [38]. The random forest 
model incorporates the idea of random subspaces and the bagging method, which is ro-
bust to noise and outliers in the data [39] by building multiple decision trees and then 
merging them together to obtain more accurate and stable prediction results. 

Most of the available distracted driving literature has been conducted in the form of 
comprehensive distractions, with fewer studies on the discrimination of cognitive distrac-
tions alone and fewer studies specifically on distractions in young drivers. Therefore, this 
paper aims to (1) take the laboratory driving simulator of North China University of Tech-
nology as the research platform and young drivers as the research object to design a cog-
nitive distracted driving experiment; (2) carry out one-way analysis of variance on the 
index data of normal driving and distracted driving, and extract feature data with signif-
icant differences; and (3) establish an SVM discriminant model and random forest discri-
minant model for the extracted index data, and compare the performance differences of 
different models. 

2. Methods 
2.1. Apparatus 

The North China University of Technology driving simulator (NCUT Sim) was used 
for this experiment (as shown in Figure 1). The hardware system is composed of a cockpit 
and the annular display screen. The cockpit includes the dashboard, steering wheel, seat, 
automatic gearbox and other components, which are in full accordance with a real vehicle. 
Three 46-inch-wide LCD screens are adopted to present the driving environment for the 
participants. The road scene modeling is built by the 3D virtual reality simulation software 
UC-win/RoadVer.14.1.0, and simulated driving scenarios are projected on the display 
screen (with a resolution of 1920 × 1080 pixels) through the control center directly. During 
the experiment, more than 60 vehicles and related road parameters such as speed, accel-
eration, accelerator, and brake pedal opening can be collected simultaneously, with the 
sampling frequency at 50 Hz. 

 
Figure 1. Driving simulation platform of North China University of Technology. 

2.2. Scenario Design 
This experiment simulates the road environment of a 2-way, 4-lane urban express-

way, with a central barrier, lane width of 3.5 m. There is no pedestrian lane and a non-
motorized lane on both sides of the road according to the “Urban Road Engineering De-
sign Specification”. The speed limit of the road is 80 km/h, where the speed set by the lead 
vehicle can reach up to 72 km/h. As shown in Figure 2, the road section is divided into 2 

Figure 1. Driving simulation platform of North China University of Technology.

2.2. Scenario Design

This experiment simulates the road environment of a 2-way, 4-lane urban expressway,
with a central barrier, lane width of 3.5 m. There is no pedestrian lane and a non-motorized
lane on both sides of the road according to the “Urban Road Engineering Design Specifi-
cation”. The speed limit of the road is 80 km/h, where the speed set by the lead vehicle
can reach up to 72 km/h. As shown in Figure 2, the road section is divided into 2 parts,
the normal driving section and the cognitive distraction section. The length of the normal
driving section is 4 km. At the beginning of the experiment, the lead vehicle was stationary
ahead of the driver, and when the participant was 50 m behind the lead vehicle, the lead
vehicle began to accelerate at 2 m/s2 until it reached 72 km/h. In each drive, the lead
vehicle would drive at a constant speed of 72 km/h and the main vehicle stopped at the
center of the outermost lane of the road at a distance of 50 m. The lead vehicle began to
accelerate at an acceleration of 2 m/s2, and when the speed reached 72 km/h, it began
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to drive at a constant speed of 72 km/h. The lead vehicle would brake 4 times with the
deceleration rate of 4 m/s2 once it passed the predesigned deceleration points. For the
normal driving section, participants were asked to drive as they normally would.
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2.3. Secondary Tasks

To investigate young novice drivers’ driving performance induced by cognitive distrac-
tion, numerous methods have been adopted in previous studies, e.g., math problems [40],
digital reading of roadside signs [41], and n-back memory tasks [42,43]. The n-back task
requires participants to respond verbally to a delayed digit recall task, and it allows for
setting different difficulty levels of cognitive load [12]. This method was adopted. In this
experiment, 2 levels of difficulty were designed, i.e., 1-back and 2-back. The 1-back task
requires participants to memorize the digits and recall the number 1 back in the sequence;
the 2-back task requires participants to memorize the current digits and recall the number
two back in the sequence. For one cognitive task, a total of 10 digits would play ran-
domly with an interval of 1.5 s. Figure 3 shows an example of the n-back task adopted in
this experiment.
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2.4. Participants and Procedure

A total of 36 participants were recruited for this experiment. The average age of
participants was 24, ranging from 22 to 26 years old (mean = 24, S.D. = 0.92). Each
participant held a valid driver license and had at least 1 year of driving experience. After
arrival, each participant was briefed on the requirements of the experiment. They were
asked to drive as they normally would and sign an informed consent form. A 15-min
pre-test, including both normal driving and n-back test, would be conducted before the
formal experiment. For the formal experiment, each participant had to drive 3 times,
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each test scenario was conducted separately, and the order of driving scenarios were
counterbalanced. They could request to stop the experiment anytime if he/she felt any
discomfort during the formal experiment. All participants received 50 RMB (around
7.75 USD) for their participation in the study.

2.5. Model Construction
2.5.1. Support Vector Machines

The SVM model has significant advantages in solving nonlinearly separable classifica-
tion problems. It can maximize the splitting edge between 2 types of data by constructing a
multidimensional decision surface to accurately separate 2 types of sample data. Figure 4
illustrates the flow chart of cognitive distraction detection based on the SVM model. For
this study, human cognition can seldom be represented by a linear model, and the SVM
method maps the sample data into a high-dimensional space by introducing penalty pa-
rameters and penalty functions. The kernel function is adopted to achieve linearly divisible
or approximately linearly divisible purposes. The radial basis function (RBF) was chosen
as the kernel function for the SVM models with the advantages of reducing numerical
difficulties and obtaining more robust results than other kernels [44]. Equation (1) shows
the kernel function.

K(xi, xj) = e−r||xi−xj ||2 (1)

in which, xi and xj represent 2 data points, and γ is a predefined positive parameter. By
using the RBF kernel function, a nonlinear mapping of the sample data can be achieved.
Driving performance metrics obtained from a driving simulator experiment were divided
into training dataset and testing dataset with a proportion of 8:2. In training, 3 parameter-
searching algorithms, i.e., Genetic Algorithm (GA), Particle Swarm Optimization algorithm
(PSO), and Cuckoo Search algorithm (CS) were adopted to find the best parameterization.
Detailed parameter search ranges for each algorithm are shown in Table 1.
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Table 1. Parameters search range.

Range of
Parameter c

Range of
Parameter g

Number of
Cross-

Validation

Maximum
Number of
Iterations

Number of
Populations

Probability
of Crossover

Probability
of Being

Discovered by
the Host

Probability
of Variation

GA [0, 100] [0, 100] 5 100 20 0.4 ## 0.01
PSO [0, 100] [0, 100] 5 100 20 ## ## ##
CS [0, 100] [0, 100] 5 100 20 ## 0.25 ##

Note: C is the penalty coefficient, which is the tolerance for errors. g is the kernel function of the model, which
determines the distribution of the data after mapping to the new feature space.

2.5.2. Random Forest Model

Random forest is an integrated learning method based on statistical learning theory
and can be used as a classifier [45]. It is an extension of the decision tree. However,
only 1 tree may reduce the accuracy of the classification model. Thus, random forest
compensates the insufficiency by establishing a forest [46]. The bootstrap sampling method
is employed by random forest to extract different training datasets with data putback from
the original dataset. Each training dataset is used to generate a decision tree. The method
of counting votes is adopted to record the output category of each decision tree [47], as
shown in Figure 5.
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In this study, data were firstly labelled with −1 as the distracted driving and 1 as
the normal driving. Data were divided into training dataset and testing dataset with the
same proportion of SVM. For the random forest method, the number of decision trees has
a direct effect on the computational efficiency and classification results. The efficiency of
the algorithm may decrease if there are too many decision trees, while the classification
accuracy may decrease with the decrease in decision trees [39]. Thus, a grid search was
used in this paper to find the best parameterization. The random forest construction of this
study is illustrated in Figure 6.
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2.6. Indicators for Cognitive Distraction Detection

A variety of driving performance metrics have been proposed for drivers’ cognitive
distraction detection, among which, driving speed, acceleration, lane deviation, and steer-
ing wheel angle were the most adopted ones [48]. In this paper, relevant indicators were
extracted from both lateral lane-keeping performance and longitudinal acceleration per-
formance (as shown in Table 2). ANOVA was first adopted to test the difference induced
by a secondary task, and we set the significance level of the one-way ANOVA at 0.05.
Only indicators which were found to be significantly affected by the secondary task were
inputted into the 2 detection models. A suitable time window can help to improve the
detection accuracy and the accuracy of the detection model will be reduced by a time
window that is too short [49]. Thus, a time window of 2 s was set from 2 s ahead of the lead
vehicle’s brake onset, with an overlap of 1.5 s.

Table 2. Extracted data parameters.

Indicators Definition

Steering wheel angle (ratio) The proportion of steering wheel angle that exceeds the set angle within a certain time window, where
the set angle here is in the 75th percentile of steering wheel angle within the time window.

Steering wheel speed (ratio) The percentage of steering wheel speed that exceeds the set speed within a certain time window, where
the set speed here is in the 75th percentile of steering wheel speed within the time window.

Lateral offset distance (m) The displacement of the main vehicle from the lane centerline within a time window.

Lateral speed (m/s) The speed of the main vehicle traveling in a time window is decomposed into the magnitude of the
speed in the normal direction of the road.

Lateral acceleration (m/s2)
The acceleration of the main vehicle traveling within a time window is decomposed into the magnitude

of the acceleration in the normal direction of the road.

Longitudinal speed (m/s) The speed of the main vehicle traveling in a time window is decomposed into the magnitude of the
speed in the tangential direction of the road.

Headway distance (m) The length of the distance between main vehicle and lead vehicle within a time window.

Throttle angle (ratio) Percentage of the main vehicle’s throttle angle during a time window. When the brakes are not applied,
the ratio is 0, when the brakes are applied, the ratio is 100%.

Longitudinal acceleration (m/s2)
The acceleration of the main vehicle traveling within a time window is decomposed into the magnitude

of the acceleration in the tangential direction of the road.

3. Analysis of Significant Differences in Distraction Indicators

For the extracted dataset, this paper adopts the method of single-factor analysis
of variance to carry out statistical analysis of the significance of the extracted driving
performance data. The statistical results showed that there are six indicators which show
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significant differences between normal driving and cognitive distracted driving, and the
results of the analysis are shown in Table 3.

Table 3. Results of ANOVA.

Indicator Variable State of Driving Mean S.D. F-Value p-Value

Steering wheel angle
Baseline 0.186 0.334

73.486 0.0001-back 0.345 0.294
2-back 0.387 0.265

Steering wheel speed
Baseline 0.118 0.153

16.816 0.0001-back 0.258 0.172
2-back 0.276 0.157

Mean longitudinal speed
Baseline 20.04 1.26

5.457 0.0041-back 19.79 1.54
2-back 19.54 1.34

Mean headway distance
Baseline 32.51 10.69

39.618 0.0001-back 37.49 13.41
2-back 38.09 13.01

Standard deviation of headway distance
Baseline 0.94 0.98

10.592 0.0001-back 1.07 0.88
2-back 1.17 1.11

Standard deviation of throttle angle
Baseline 0.084 0.096

26.232 0.0001-back 0.108 0.109
2-back 0.129 0.105

One-way ANOVA significance level: 0.05.

3.1. Lateral Driving Performance
3.1.1. Steering Wheel Angle

The steering wheel angle refers to the angle at which the steering wheel deviates from
left to right during driving, and the magnitude of its rotation angle reflects the stability of
the participants’ lateral vehicle control. As shown in Table 3, where a significant difference
caused by task demand was found in the percentage of steering wheel turns above the 75%
quantile (F = 73.486, p < 0.05). Figure 7 shows that the cognitive task produced a larger
steering wheel angle than the baseline and that the steering wheel angle followed as the
difficulty of the cognitive task increased.
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3.1.2. Steering Wheel Speed

Steering wheel speed is the speed at which the steering wheel turns per second, and
the driver’s operation of the steering wheel is directly reflected in the lateral fluctuations of
the vehicle, reflecting the effectiveness of the driver’s lateral control of the vehicle.

As shown in Table 3, a significant difference caused by task demand was found in the
percentage of steering wheel speed above the 75% quantile (F = 16.816, p < 0.05). Figure 8
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shows that the cognitive task produced greater steering wheel speed than the baseline and
that steering wheel speed increased with increasing difficulty in the cognitive task.
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3.2. Longitudinal Driving Performance
3.2.1. Longitudinal Speed

The average value of longitudinal speed represents the magnitude of the longitudinal
speed of the vehicle during the subjects’ driving, as shown in Table 3. The cognitive
distraction produced a significant difference in the average value of longitudinal speed of
the vehicle (F = 5.457, p = 0.004 < 0.05). Figure 9 shows that the average value of longitudinal
speed was higher when driving normally than when driving cognitively distracted.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 16 
 

 

steering wheel angle than the baseline and that the steering wheel angle followed as the 
difficulty of the cognitive task increased. 

 
Figure 7. Steering wheel angle. 

3.1.2. Steering Wheel Speed 
Steering wheel speed is the speed at which the steering wheel turns per second, and 

the driver’s operation of the steering wheel is directly reflected in the lateral fluctuations 
of the vehicle, reflecting the effectiveness of the driver’s lateral control of the vehicle. 

As shown in Table 3, a significant difference caused by task demand was found in 
the percentage of steering wheel speed above the 75% quantile (F = 16.816, p < 0.05). Figure 
8 shows that the cognitive task produced greater steering wheel speed than the baseline 
and that steering wheel speed increased with increasing difficulty in the cognitive task. 

 
Figure 8. Steering wheel speed. 

3.2. Longitudinal Driving Performance 
3.2.1. Longitudinal Speed 

The average value of longitudinal speed represents the magnitude of the longitudinal 
speed of the vehicle during the subjects’ driving, as shown in Table 3. The cognitive dis-
traction produced a significant difference in the average value of longitudinal speed of 
the vehicle (F = 5.457, p = 0.004 < 0.05). Figure 9 shows that the average value of longitudi-
nal speed was higher when driving normally than when driving cognitively distracted. 

 
Figure 9. Mean value of longitudinal speed. Figure 9. Mean value of longitudinal speed.

3.2.2. Headway Distance

The mean value of the headway distance refers to the safe distance between the main
vehicle and the preceding vehicle during the following process, the standard deviation
reflects the participants’ ability to control the safety distance when following a car.

As shown in Table 3, significant differences caused by task demand were found for
both mean (F = 39.618, p < 0.05) and standard deviation (F = 10.592, p < 0.05) of headway
distance. Figure 10 shows that the average headway distance during cognitively distracted
driving is lower than normal driving.
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3.2.3. Throttle Angle

The standard deviation of throttle angle is the standard deviation of throttle pedal po-
sition during driving, which reflects the participants’ handling of longitudinal acceleration
and deceleration of the vehicle.

As shown in Table 3, significant differences caused by task demand were found for
standard deviation (F = 13.836, p < 0.05) of throttle angle, but no significant difference
between two levels of task difficulty was found. As can be seen from Figure 11, the standard
deviation of throttle angle is positively correlated with the difficulty of the cognitive
distraction task.
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4. Drivers’ Cognitive Distraction Detection
4.1. SVM Model Classification Results

Figure 12 shows the parameter search results from the three optimization algorithms.
Among the three optimization algorithms, GA provides the best accuracy is 93.96% when
c = 32.19, g = 4.38 compared with the other two methods. The cross-validation accuracy
of the PSO-SVM model is 93.16% when c = 2.11, g = 3.74 and the optimal classification
accuracy of the CS-SVM model is 92.45% when c = 6.21, g = 2.44.
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The parameters c and g obtained by optimizing were re-entered into the model for
training and prediction, the final classification accuracy of the final model was obtained as
shown in Table 4.

Table 4. Classification accuracy of different optimization models.

Optimization
Model Parameter c Parameter g Accuracy of

Cross-Validation
Accuracy of

Classification

GA-SVM 32.19 4.38 93.96 94.01
PSO-SVM 2.11 3.74 93.16 92.28
CS-SVM 6.21 2.44 92.45 92.08

4.2. Random Forest Classification Results

As shown in Figure 13, the model is trained by exhausting multiple super-parameter
combinations, finding the optimal super-parametric combination according to the result of
cross-validation for K = 5. It can be seen from Figure 9 that when the number of decision
trees is 550 and the maximum number of features is five, the discrimination accuracy of
the model can reach 91.91%, and the model can effectively discriminate the distracted state
during driving.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 13. Line graph of optimal parameter combination search. 

4.3. Comparison of SVM and RF Classification Results 
To measure the performance and the detection accuracy of the two methods, four 

indicators which have been widely adopted in previous studies [50,51] were then adopted 
in this paper, i.e., accuracy, precision, recall, and F1 score. The four indicators were defined 
as: 

= TP TNAccuracy
TP TN FN FP

+
+ + +  

(2) 

TPPrecision
TP FP

=
+  

(3) 

TPRecall
TP FN

=
+  

(4) 

1
2 Precision RecallF Score

Precision Recall
× ×

=
+  

(5) 

in which, TP refers to true positive, which is correctly identified as normal driving; FN 
means false negative, which is falsely detected as distracted driving; FP means false posi-
tive, which is falsely detected as normal driving; and TN means true negative, which is 
correctly identified as distracted driving. Table 5 provides the detailed comparison re-
sults. Generally, SVM provides a better classification method. It was found that GA-SVM 
achieved 93.78% in terms of the average accuracy. Precision, recall, and F1 score are higher 
(95%, 86.9%, 90.7%) than the other three methods. 

Table 5. Discriminant results of each model of cognitive distraction. 

Indicators Model Accuracy (%) Precision Recall F1 Score 

Longitudinal and Lateral  

GA-SVM 94.01 0.974 0.852 0.909 
PSO-SVM 92.28 0.937 0.841 0.886 
CS-SVM 92.08 0.958 0.804 0.894 

RF 91.19 0.926 0.801 0.858 

Longitudinal 

GA-SVM 76.62 0.767 0.698 0.731 
PSO-SVM 75.9 0.755 0.698 0.725 
CS-SVM 75.53 0.758 0.671 0.712 

RF 73.41 0.785 0.647 0.709 

Lateral GA-SVM 81.14 0.875 0.786 0.828 
PSO-SVM 80.78 0.821 0.792 0.806 

Figure 13. Line graph of optimal parameter combination search.

4.3. Comparison of SVM and RF Classification Results

To measure the performance and the detection accuracy of the two methods, four
indicators which have been widely adopted in previous studies [50,51] were then adopted in
this paper, i.e., accuracy, precision, recall, and F1 score. The four indicators were defined as:

Accuracy =
TP + TN

TP + TN + FN + FP
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1Score =
2× Precision× Recall

Precision + Recall
(5)

in which, TP refers to true positive, which is correctly identified as normal driving;
FN means false negative, which is falsely detected as distracted driving; FP means false
positive, which is falsely detected as normal driving; and TN means true negative, which
is correctly identified as distracted driving. Table 5 provides the detailed comparison
results. Generally, SVM provides a better classification method. It was found that GA-SVM
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achieved 93.78% in terms of the average accuracy. Precision, recall, and F1 score are higher
(95%, 86.9%, 90.7%) than the other three methods.

Table 5. Discriminant results of each model of cognitive distraction.

Indicators Model Accuracy (%) Precision Recall F1 Score

Longitudinal and Lateral

GA-SVM 94.01 0.974 0.852 0.909
PSO-SVM 92.28 0.937 0.841 0.886
CS-SVM 92.08 0.958 0.804 0.894

RF 91.19 0.926 0.801 0.858

Longitudinal

GA-SVM 76.62 0.767 0.698 0.731
PSO-SVM 75.9 0.755 0.698 0.725
CS-SVM 75.53 0.758 0.671 0.712

RF 73.41 0.785 0.647 0.709

Lateral

GA-SVM 81.14 0.875 0.786 0.828
PSO-SVM 80.78 0.821 0.792 0.806
CS-SVM 80.26 0.804 0.766 0.785

RF 78.32 0.756 0.751 0.753

5. Discussion and Conclusions

In this paper, we analyzed the relationship between driving distraction and road
safety by designing a virtual distracted driving simulation scenario experiment, with the
following main findings and conclusions:

(1) To investigate the effect of cognitive distraction on the ability of young drivers to control
the vehicle in both lateral and longitudinal directions during driving, drivers were
provided with two different cognitive loads through an n-back task, and a one-way
ANOVA was used to analyze the significance of the extracted feature data, yielding
differences in driving performance data between the cognitive load and baseline con-
ditions. For lateral driving performance, consistent with previous studies [18,52], the
mean and standard deviation of steering wheel speed became gradually larger as the
cognitive load increased and the level of distraction increased. This indicates that drivers
were influenced by cognitive distraction during driving and adopted the compensatory
behavior of frequently correcting the steering wheel to reduce lateral fluctuations of the
vehicle in order to increase lateral safety of the vehicle, and this compensation behavior
is positively correlated with the degree of cognitive distraction.

(2) In terms of longitudinal driving performance, as the difficulty of cognitive dis-traction
increased, the standard deviation of the gas pedal increased, the mean value of
longitudinal speed tended to decrease, and the mean and standard deviation of
headway time distance increased. This indicates that participants’ ability to maneuver
the vehicle longitudinally was affected by cognitive distraction, and the safety of
vehicle longitudinal following was ensured by adopting frequent control of the gas
pedal and reducing the speed, which made the vehicle’s following stability becomes
less stable and the headway time distance becomes larger, which remains consistent
with previous studies [23,25,26].

(3) The data of indicators with significant differences between normal driving states and
distracted driving states were divided into two categories: horizontal only and vertical
only. A combination of horizontal and vertical indicators were selected as the input of
the model, and SVM and random forest discriminant models were used to identify
distracted states, respectively, where the SVM model used three different algorithms
to optimize the parameters of the model parameters c and g. The results showed that
the parameter-optimized SVM model outperforms the random forest model in terms
of accuracy, precision, recall, F1 value, and other model performance metrics, with
the genetic algorithm having the best parameter optimization. For both lateral and
longitudinal indicators, the recognition effect of lateral indicators is better than that of



Sensors 2023, 23, 1345 13 of 15

longitudinal indicators, which also indicates that the driver is more inclined to control
the lateral operation control of the vehicle in the process of cognitive distraction.

Overall, the comprehensive distraction discrimination model established in this paper
can effectively identify the cognitive distraction status of drivers, and the discrimination
results of the model can be used as theoretical support for later distracted driving monitor-
ing and early warning and accident prevention systems. The findings of this paper have
the following implications in practical engineering applications:

(1) It provides theoretical support for the study of the intrinsic correlation mechanism
between distracted driving and driving behavior operations.

(2) It facilitates targeted detection of driver attention and research on distracted warn-
ing systems.

(3) It provides model support for intelligent assisted driving and vehicle safety technology.

As this distracted driving simulation experiment was conducted under good traffic
conditions, clear weather, and low external interference, the model was able to achieve
the expected research objectives. Although it can achieve the expected research purpose,
there is still a certain deviation compared with actual traffic scenarios, and the applicability
in the real environment needs to be further studied. Therefore, the next step should be
to carry out research on the discrimination of driving distractions under natural driving
conditions, and to investigate the influence mechanism of cognitive distraction on drivers’
eye movements and heart physiology in terms of distraction indexes, so as to provide a
more comprehensive theoretical basis for the identification of drivers’ driving states.
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