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Abstract: This paper proposes a graph-based deep framework for detecting anomalous image regions
in human monitoring. The most relevant previous methods, which adopt deep models to obtain
salient regions with captions, focus on discovering anomalous single regions and anomalous region
pairs. However, they cannot detect an anomaly involving more than two regions and have deficiencies
in capturing interactions among humans and objects scattered in multiple regions. For instance,
the region of a man making a phone call is normal when it is located close to a kitchen sink and a
soap bottle, as they are in a resting area, but abnormal when close to a bookshelf and a notebook
PC, as they are in a working area. To overcome this limitation, we propose a spatial and semantic
attributed graph and develop a Spatial and Semantic Graph Auto-Encoder (SSGAE). Specifically,
the proposed graph models the “context” of a region in an image by considering other regions with
spatial relations, e.g., a man sitting on a chair is adjacent to a white desk, as well as other region
captions with high semantic similarities, e.g., “a man in a kitchen” is semantically similar to “a
white chair in the kitchen”. In this way, a region and its context are represented by a node and its
neighbors, respectively, in the spatial and semantic attributed graph. Subsequently, SSGAE is devised
to reconstruct the proposed graph to detect abnormal nodes. Extensive experimental results indicate
that the AUC scores of SSGAE improve from 0.79 to 0.83, 0.83 to 0.87, and 0.91 to 0.93 compared with
the best baselines on three real-world datasets.

Keywords: image region anomaly detection; human monitoring; graph modeling; graph neural
networks; deep learning for multimodal data

1. Introduction

Anomalies in human activities, e.g., irregular human behaviors and inappropriate
interactions between humans and objects, pose a problem in many security-related and
healthcare scenarios. They include abnormal events in video surveillance [1,2] and unusual
signals in medical monitoring [3]. Therefore, anomaly detection in human monitoring,
which concentrates on discovering unexpected human activities that deviate from those
seen in normal instances, has attracted substantial interest from researchers. It has a wide
range of real-world applications, such as violence detection [4], fall risk discovery [5], and
trajectory outlier detection [6].

Among such works, image region anomaly detection [7–11] is a vital task of spotting
abnormal areas from images in human monitoring. Traditional methods focus on discov-
ering region-level anomalies that deviate from the patterns learned from normal image
regions [7,10–13]. Such a region is defined as a single anomaly in human monitoring. For
instance, a man holding a baseball bat in the laboratory [7] is a single anomaly, as such
behavior is never observed in normal regions. However, in addition to the single anomalies,
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there also exist contextual anomalies [8,9,14], which violate regular interactions among
human and objects, as the context of a region is characterized by other regions in the same
image. For instance, the region of a man making a phone call is normal when it is located
close to a kitchen sink and a soap bottle, as they are in a resting area, while abnormal
when close to a bookshelf and a notebook PC, as they are in a working area if the latter is
not allowed. Therefore, capturing contextual information is crucial in a region anomaly
detection task.

Existing methods consider region contexts by exploring the relations among regions.
They can be classified into an object-label-based method [15], a spatial-relation-based
method [16], and deep-captioning-based methods [7,8]. Choi et al. [15] represent all the
objects in an image with a tree-structured model to detect objects that do not conform to the
scene. However, utilizing all object labels beforehand is impractical for anomaly detection.
The spatial-relation-based method [16] considers the positions, such as above, below, and
inside, of two objects to detect abnormal semantic relationships between a pair of image
segmentations, while such spatial positions are limited in characterizing diverse region
contexts that are essential for detecting the contextual anomalies. In addition to exploiting
visual features of image regions, our previous methods [7,8] adopt deep-captioning models,
such as DenseCap [17], to obtain region captions as the semantic information for the task.
Since these methods also consider both the visual and semantic information of image
regions on the same task, they are the most relevant works to our proposed method. They
focus on detecting anomalous single regions and anomalous region pairs by considering the
spatial relations between two regions and their captions. Nevertheless, they do not consider
interactions among more than two regions and are thus limited in detecting contextual
anomalies in human monitoring.

In this paper, we propose a spatial and semantic attributed graph and a tailored
framework, Spatial and Semantic Graph Auto-Encoder (SSGAE), to tackle the image region
anomaly detection task. Specifically, by exploring the interactions among regions in the
visual perspective and the similarities among their captions in the semantic perspective, our
proposed graph models the contextual information of a region by other spatially adjacent
regions and semantically similar regions in the same image. Thus, the region and its context
in an image can be represented as a node and its neighbors in the graph, respectively,
which naturally casts the region anomaly detection task into detecting abnormal nodes
in the proposed graph. Figure 1 illustrates examples of constructing the spatial and
semantic attributed graphs to model the normal and abnormal regions with their contexts
in the images.

0. yellow shirt on man. 1. man in
a kitchen. 2. white chair in the
kitchen. 3. man is holding a
kitchen. 4. man with a beard. 5.
man wearing a black shirt. 6.
white metal railing. 7. blue and
white shelf. 8. a kitchen with
white cabinets. 9. a basket on
the back of a chair.

(a) Normal example.

0. man in a yellow shirt. 1. a
white wooden cart. 2. man
wearing a yellow shirt. 3. a
white cabinet with a wooden
door. 4. a white refrigerator. 5. a
yellow and black pants. 6. white
kitchen cabinets. 7. the floor is
made of wood. 8. a laptop on
the table. 9. a sign on the wall.

(b) Abnormal example.
Figure 1. Examples of image regions with captions generated by DenseCap [17] and their spatial and
semantic attributed graphs. The no. 1 region in (a) showing a man making a phone call is normal in
the resting area, while the no. 0 region in (b) with the same behavior is abnormal in the working area.
By considering the spatial and semantic relations among regions, the no. 1 region in (a) and the no. 0
region in (b) with their contexts are represented as nodes 0 and 1 with their neighbors connected by
green and red edges in (a) and (b), respectively.
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Accordingly, SSGAE is devised for detecting abnormal nodes in the proposed graph.
In particular, since the regions depicting similar objects, such as a desk, and similar human
behaviors, such as a man sitting on a chair, frequently appear in human monitoring, the
neighbors of a node usually contain similar features in the graph. The mean-pooling or
max-pooling strategy focuses on capturing the proportions of the node attributes (node
attributes and node features are utilized interchangeably in this paper) or the most rep-
resentative node attribute to represent the node neighbors. Therefore, existing graph
auto-encoders [18,19] equipped with these strategies are difficult to discriminate such
node neighbors representing the regional contexts. Consequently, SSGAE adopts the sum
aggregation strategy used in Graph Isomorphism Network (GIN) [20], which is superior in
discriminating such node neighbors by capturing all their attributes, as we will give the
details in Section 4.2.1.

The main contributions of this paper are summarized as follows.

(1) We propose a spatial and semantic attributed graph to characterize the regions with
their contexts by exploring their spatial and semantic relationships among regions
co-occurring in an image.

(2) We devise a novel graph auto-encoder-based framework, SSGAE, which adopts the
sum aggregation strategy to discriminate the node neighbors containing similar node
attributes, to tackle the region anomaly detection task by jointly reconstructing the
node features and structures in the graph.

(3) We construct three real-world datasets, including two human monitoring datasets
collected by an autonomous mobile robot and one region anomaly dataset AnoVisu-
alGenome from a large-scale visual dataset VisualGenome [21] to evaluate the perfor-
mance of SSGAE. Extensive experimental results demonstrate that SSGAE outperforms
other advanced anomaly detection methods on the region anomaly detection task.

A part of the results in this paper was originally published in its conference ver-
sion [14], which tackles the same task via the spatial attributed graph. However, this paper
extends our preliminary work with several important modifications. (1) We consider the
interactions of regions in the semantic level in addition to their spatial relations and thus
propose a spatial and semantic attributed graph to model regions with their contexts in one
image in Section 4.1. (2) We further construct a region anomaly dataset, AnoVisualGenome,
and present more results to evaluate SSGAE in Sections 5.1 and 5.3. (3) Additional ana-
lytical results, including the sensitivity to the number of embedding dimensions and the
effectiveness of the components in our method, are presented in Sections 5.4 and 5.5.

2. Related Work

In this section, we briefly introduce related works on two topics: (1) image and region
anomaly detection and (2) graph anomaly detection.

2.1. Image and Region Anomaly Detection

Image-level and region-level anomaly detection has been active research areas for
decades, which can be classified into two categories: those which implicitly consider and
those which explicitly consider the relationships among images or regions. The former
methods mainly focus on discovering pixel-wise or patch-level deviations by learning
the regularities of normal instances, such as defect detection [11,22] and medical image
analysis [23,24]. These works have shown their advantages in detecting anomalous regions
via self-supervised learning [10,11,25,26], where the contextual information characterized
by other regions is implicit in their tasks. Since these methods consider images or regions
separately, they are unable to detect contextual anomalies in human monitoring.

On the other hand, the latter methods explicitly combine the images or regions with
their relationships as the contexts to understand and discover diverse image-level or region-
level anomalies, such as video surveillance [1,2] and human monitoring [7–9]. Among such
works, several approaches [9,15,16,27,28] consider the regions and their relations in the
visual perspective for region anomaly detection, while our previous methods [7,8] addi-
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tionally adopt deep-captioning models, such as DenseCap [17], to obtain region captions as
the semantic information for the task. Sun et al. [27] proposed a Spatio-Temporal Graph
(STG) to represent spatio-temporal relations among objects to bridge the gap between an
anomaly and its context. Similarly, Ano-Graph [28] detects video anomalies by model-
ing spatio-temporal interactions among objects via self-supervised learning. Moreover,
Spatial-Temporal Graph-based Convolutional Neural Networks (STGCNs) [13] construct a
spatial similarity graph and a temporal consistency graph with a self-attention mechanism
to model the correlations of video clips for video anomaly detection. Choi et al. [15] discov-
ered out-of-context objects, i.e., objects which do not conform to the scene, by modeling all
the objects in the same image via a tree-based graphical model. These works have shown
the effectiveness of utilizing graphical models to represent the relationships among video
clips or objects for video or region anomaly detection. To detect anomalous images in
human monitoring, Dong et al. [9] employed inpainting techniques to coarsen image re-
gions and then generate the regions by utilizing the remaining part of the image. Moreover,
Semantic Anomaly Detection (SAD) [16] models the relative positions and sizes of all object
pairs to detect abnormal semantic relationships between a pair of image segmentations.
These methods have proven their superiority in exploring the visual information of videos
and images to detect abnormal instances. However, in addition to the visual features and
relations of image regions considered by these methods, region captions provide semantic
information regardless of intra-object variations, which can contribute to more accurate
region anomaly detection [7,8]. Our previous methods [7,8] exploit both the visual features
of regions and the semantic information of region captions for the target task. Nevertheless,
they consider each region separately for the anomalous single regions [7] as well as the
relations of two overlapped regions for anomalous region pairs [8]. Therefore, they cannot
capture the relations among more than two regions that indicate the region context, leading
to failures in detecting some of the contextual anomalies in our task.

2.2. Graph Anomaly Detection

Graph Neural Networks (GNNs), which are a family of deep learning models for
graph or node embedding [29], have been widely explored for graph anomaly detection.
Graph contrastive learning [30–32] designs node pairs from local subgraphs for graph
anomaly detection. However, to achieve a satisfactory performance, elaborate handcrafted
contrastive pretext tasks are mandatory for such kind of methods. On the other hand,
several reconstruction-based graph auto-encoder frameworks with different neighborhood
aggregation strategies are devised for the task. Deep Anomaly Detection on Attributed
Networks (DOMINANT) [19] constructs a graph auto-encoder model equipped with Graph
Convolutional Network (GCN) [33] layers to reconstruct the node attributes and structures
for detecting abnormal nodes on large-scale graphs. Furthermore, Anomaly Dual Auto-
Encoders (AnomalyDAE) tackle the same problem via reconstruction by designing a dual
auto-encoder with graph attention layers [34]. By adopting graph attention layers in both
the encoder and the decoder, Graph Attention Auto-Encoder (GATE) [35] exhibits superior
performance in learning node representations for node classification.

The existing graph auto-encoders are effective for learning typical node representations
for downstream tasks, such as graph anomaly detection [19,34] and node classification [35].
However, the learned representations do not explicitly consider all the features in node
neighbors since they focus on capturing the proportions of the features or the most represen-
tative feature in node neighbors [20]. This limitation would cause failures in discriminating
the representations of different node neighbors, which indicate the contextual information
of regions, for detecting the anomalies in human monitoring.

3. Problem Formulation

In this paper, we utilize bold lowercase Roman letters (e.g., x), bold uppercase Roman
letters (e.g., X), and uppercase calligraphic fonts (e.g., D) to denote vectors, matrices, and
sets, respectively. All important notations are summarized in Table 1 for convenience.
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Table 1. Summary of notations and descriptions. The two blocks show the notations of variables for
the graph and variables and parameters for SSGAE.

Notation Description

Ik The kth image
rk

i The ith region in the kth image Ik

ck
i The caption of the ith region rk

i
rk

i ∈ Rdr The visual feature vector of the ith region rk
i

ck
i ∈ Rdc The semantic feature vector of caption ck

i of the ith region
Gk = {Ak, Xk} The attributed graph for image Ik

vk
i The ith node in the graph Gk

N (vk
i ) The set of the neighbors adjacent to node vk

i
Ak ∈ Rn×n The adjacency matrix of graph Gk

ak
i ∈ Rd The edge, i.e., structure, information of node vk

i in Ak

Xk ∈ Rn×d The node attribute matrix of graph Gk

xk
i ∈ Rd The ith node feature vector of node vk

i
n The number of regions in image Ik and nodes in graph Gk

d The dimension of node feature
dr, dc The dimensions of the visual feature and the semantic feature

H(l) ∈ Rn×dl The hidden representation matrix of graph Gk in the lth layer of
the attributed graph encoder in SSGAE

h(l)
i ∈ Rdl The hidden representation vector of node vk

i in H(l)

Zk ∈ Rn×de The final hidden embedding matrix of nodes in graph Gk

zk
i ∈ Rde The final hidden embedding vector of node vk

i
Ĥ(l) ∈ Rn×dl The hidden representation matrix of graph Gk in the lth layer of

the graph attribute decoder in SSGAE
ĥ(l)

i ∈ Rdl The hidden representation vector of node vk
i in Ĥ(l)

Θ(l) ∈ Rn The learnable parameter vector in the lth layer
Θ(l)

i The ith learnable parameter in Θ(l)

MLP(l)
Enc, MLP(l)

Att−Dec The multi-layer perception modules in the lth layer of the at-
tributed graph encoder and the graph attribute decoder

MLPStr−Dec The multi-layer perception module in the graph structure
decoder

L The number of the hidden layers
β The hyper-parameter to balance the attribute and the structure

reconstruction errors in the objective function
dl , de The dimensions of hidden representation h(l)

i and final hidden
embedding zk

i
X̂k, Âk The reconstructions of Xk and Ak

x̂k
i , âk

i The reconstructions of xk
i and ak

i for node vk
i

sk′
i The anomaly score of node vk′

i in the test phase

In the target problem, the input dataset D is composed of a training set Dtrain =

{Ik|k = 1, . . . , K} and a test setDtest = {Ik′ |k′ = 1, . . . , K′}. In the training phase, each input
image Ik contains n salient regions rk

i with captions ck
i and region labels yk

i as {(rk
i , ck

i , yk
i )|i =

1, . . . , n}. Due to the rareness and diversity of the anomalies in our task, the target problem
is solved under a one-class anomaly detection scenario [7–9]. This indicates that Dtrain only
contains normal regions during training, in which yk

i = 0 denotes the class label of the
normal region. In the test phase, each image Ik′ contains n salient regions with captions
and region labels yk′

i ∈ {0, 1} as {(rk′
i , ck′

i , yk′
i )|i = 1, . . . , n}, where yk′

i = 1 denotes the class
label of the abnormal region. Our target is to output the degree of abnormality for each
region in Ik′ from Dtest.
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Following previous methods of anomaly detection [8,9,22,36], we adopt ROC-AUC as
the evaluation metric to quantify the performance of our method. The ROC curve is plotted
by the true positive rate (TPR) and the false positive rate (FPR) with a range of thresholds.
AUC score stands for the value of the area under the ROC curve, which corresponds to the
probability that a positive test sample is ranked higher than a negative test sample in terms
of the estimated degree of abnormality.

4. Methodology

We present the proposed method in two steps. In Section 4.1, the spatial and semantic
attributed graph is constructed to model the relations among regions in an image. In
Section 4.2, a customized graph auto-encoder framework SSGAE is devised for the target
task. To the best of our knowledge, this is the first work that constructs a graph model
that bridges the gap between the interactions of visual and semantic information of image
regions and devises a graph auto-encoder-based method to tackle the region anomaly
detection task. The whole architecture of our method is illustrated in Figure 2.

……

…

Hidden Layer 1

Hidden Layer L

Z𝑘𝐀𝑘

Graph Attribute Decoder

Attributed Graph Encoder
Preprocessing

……… …

𝐼𝑘

𝒢𝑘 𝐗𝑘

Graph Structure Decoder

𝝈( ∗ )
(Z𝑘)𝑇

Z𝑘
𝐀𝑘

𝐗𝑘

…

...
Hidden Layer 1

Hidden Layer L

Reconstruction

Anomaly Score

Figure 2. Whole architecture of the proposed method.

4.1. Spatial and Semantic Attributed Graph

In both training and test phases, we obtain the regions with captions from images and
extract their visual and semantic features through pre-trained deep models. Based on the
acquired regions with their extracted features, we introduce the criteria for constructing
the graph for each image to represent regions with their spatial and semantic relations, as
shown in Figure 3.

Image Regions with Captions Spatial and Semantic Attributed Graph

1

[man in a kitchen.]
Concat 𝐫𝟏, 𝐜𝟏 𝐱𝟏

0. yellow shirt on man. 1. man in a
kitchen. 2. white chair in the kitchen.
3. man is holding a kitchen. 4. man
with a beard. 5. man wearing a
black shirt. 6. white metal railing. 7.
blue and white shelf. 8. a kitchen
with white cabinets. 9. a basket on
the back of a chair.

Sim 𝐜1, 𝐜2 > θ𝑠𝑖𝑚

1

2

1

0

Figure 3. Example of constructing a spatial and semantic attributed graph to model regions in an
image. The numbers and colors of the regions in the image and the nodes in the graph correspond to
each other.
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4.1.1. Localizing and Describing Regions in an Image

Following our previous works [7,8], we apply a dense captioning model DenseCap [17],
to simultaneously localize and describe regions in image Ik and select the top-n salient re-
gions {rk

i |i = 1, . . . , n}with captions {ck
i |i = 1, . . . , n} from the generated region candidates.

An example of an image containing the generated regions with captions is shown in the left
part of Figure 3. Then, we utilize an image classification model, ResNet [37], and a sentence
embedding model, SBERT [38], to extract visual features of regions {rk

i |i = 1, . . . , n} and
semantic features of captions {ck

i |i = 1, . . . , n}.

4.1.2. Construction of Spatial and Semantic Attributed Graph

In human monitoring, humans and objects often appear with specific spatial relations
to one another in an image. For example, a human, a computer screen, and a desk typically
appear in a regular arrangement [15]. In addition, the region captions indicate their relations
at the semantic level. For example, the two region captions: “man in a kitchen” and “white
chair in the kitchen”, are highly related to each other. Consequently, modeling such spatial
and semantic relations among regions is promising to represent their contexts.

We propose the spatial and semantic attributed graph Gk to model regions {rk
i |i =

1, . . . , n} with their relationships in image Ik. Following works on graph anomaly detec-
tion [19,30,32], we define an attributed graph as G = (V , E , X), where V = {v1, . . . , vn}
represents the set of nodes (|V| = n) and E represents the set of edges (|E | = m). X ∈ Rn×d

represents the attribute matrix, where the vector xi ∈ Rd in X in the ith row denotes the
attribute of the ith node with the dimension d. The topology of G can be denoted by adja-
cency matrix A, where Aij = 1 represents that there exists an edge between nodes vi and vj;
otherwise Aij = 0. The vector ai ∈ Rn in A denotes the edge information, i.e., the structure,
of the ith node. Therefore, the attributed graph can also be denoted as G = (A, X).

In graph Gk, region rk
i , the concatenation Concat(rk

i , ck
i ) of its visual and semantic

features rk
i and ck

i , and its interactions with other regions in Ik are represented as node
vk

i , node attribute xk
i , and node structure information ak

i , respectively. Here Concat(·, ·)
denotes the concatenation operator. Consequently, training set Dtrain and test set Dtest can
be represented as Gk

train = {Ak, Xk}K
k=1 and Gk′

test = {Ak′ , Xk′}K′
k′=1.

We assume that the spatially adjacent regions and the regions whose captions have
high semantic similarities are informative to characterize the contextual information. Ac-
cordingly, we build spatial edges between nodes when their corresponding regions are
spatially overlapped and semantic edges when their region captions have high semantic
similarities. Following the works on semantic textual tasks [38–40], we utilize cosine-
similarity to compute the semantic similarity of captions.

Sim(ck
i , ck

j ) =
ck

i · ck
j

‖ck
i ‖‖ck

j ‖
(1)

If Sim(ck
i , ck

j ) > θsim, where θsim is a similarity threshold, two captions ck
i and ck

j are
judged to have high semantic similarity, and thus, a semantic edge is built between nodes
vk

i and vk
j . Figure 3 shows an example of constructing a spatial and semantic attributed

graph to model an image. The no. 1 region with its features is represented as node 1
with its attribute. The edges between nodes 1 and 0, as well as nodes 1 and 2, are built
according to their spatially adjacent regions and the high semantic similarities of their
captions, respectively.

4.2. Spatial and Semantic Graph Auto-Encoder

We first give an overview of the framework of SSGAE in our method. With a graph
auto-encoder [18] as a backbone, SSGAE consists of three components: an attributed graph
encoder, a graph structure decoder, and a graph attribute decoder. The whole architecture
of SSGAE is illustrated in the right part of Figure 2. We present the overall procedure
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of SSGAE, including the training and test phases in Algorithm 1. Given the constructed
graphs as input, SSGAE is devised to estimate the abnormality of each node in each graph
by leveraging the node structure and the attribute reconstruction errors. In particular, we
adopt the sum aggregation strategy from GIN [20] in SSGAE to discriminate the diverse
node neighbors containing similar node features in the constructed graphs; we will explain
the details in Section 4.2.1.

Algorithm 1 Overall procedure of SSGAE.

Input: Graph Gk
train = {Ak, Xk}K

k=1, Gk′
test = {Ak′ , Xk′}K′

k′=1; Learnable parameter Θ;
Hyper-parameter β; Number L of the hidden layers in SSGAE; Number T of the
training epochs.

Output: Anomaly score sk′
i for each node vk′

i via function f (·).
1: . Training Stage.
2: Randomly initialize Θ and the trainable parameters in MLPEnc, MLPStr−Dec and

MLPAtt−Dec;
3: for t = 1, 2, · · · , T do;
4: for k = 1, 2, · · · , K do
5: for l = 1, 2, · · · , L do
6: Calculate H(l) via Equation (3);
7: end for
8: Zk = H(L);
9: for l = 1, 2, · · · , L do

10: Calculate Ĥ(l) via Equation (6);
11: end for
12: X̂k = Ĥ(L);
13: Calculate Âk via Equation (4);
14: Update Θ and the trainable parameters in MLPEnc, MLPStr−Dec, and

MLPAtt−Dec via Equation (8) with the backpropagation algorithm.
15: end for
16: end for
17: . Test Stage.
18: for k′ = 1, 2, · · · , K′ do
19: for l = 1, 2, · · · , L do
20: Calculate H(l) via Equation (3);
21: end for
22: Zk′ = H(L);
23: for l = 1, 2, · · · , L do
24: Calculate Ĥ(l) via Equation (6);
25: end for
26: X̂k′ = Ĥ(L);
27: Calculate Âk′ via Equation (4);
28: Calculate anomaly score sk′

i of each node vk′
i in Gk′

test via Equation (9).
29: end for

4.2.1. Sum Neighborhood Aggregation Strategy

Different from prevalent graph auto-encoder variants [18,19,34,35], SSGAE adopts the
sum neighborhood aggregation strategy from GIN [20]. The mean-pooling or max-pooling
aggregation strategies in graph auto-encoders [18,19,34,35] are capable of capturing the
proportions of features or the representative feature in node neighbors, respectively. They
have shown their advantages in graph anomaly detection on citation networks and social
networks, in which the node features are diverse and rarely identical, as the proportions
of features or the representative feature in node neighbors already provide strong signals
for the task. However, in human monitoring, regions depicting similar objects, such as a
desk, and similar human behaviors, such as a man sitting on a chair, frequently appear
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in images, which means that similar node features often exist in the node neighbors in
the constructed graphs. In such a case, the sum neighborhood aggregation strategy [20]
is capable of explicitly capturing all the features in node neighbors compared with mean-
pooling, max-pooling, and weighted average via attention (the weighted average via
attention strategy may implicitly capture all the node features by learning different weights
for node neighbors) [35] strategies.

Figure 4 illustrates toy examples to show the advantage of the sum aggregation
strategy in discriminating such node neighbors. The no. 0 regions in Ii and I j and their
corresponding nodes are abnormal and normal in red and green colors, respectively. We
assume the features of the regions in orange showing laboratory furniture are similar, and
the features of the regions in blue showing the black pants are similar. We observe that
the mean-pooling or max-pooling strategies aggregate the two kinds of node neighbors
into approximately equivalent representations and thus cannot discriminate them well. In
contrast, the sum strategy compresses the two kinds of node neighbors into discriminative
representations. Consequently, we adopt the sum aggregation strategy in SSGAE since
discriminating the representations of such node neighbors, which represent the context
of regions, plays a critical role in the region anomaly detection task, as we will verify its
effectiveness in Section 5.5.
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Figure 4. Toy examples for different aggregation strategies to discriminate the neighbors of the no.
0 regions in Ii and I j. The numbers and colors of regions in the image and the nodes in the graph
correspond to each other.

4.2.2. Attributed Graph Encoder

To learn discriminative embeddings from the node attributes and structures, the
hidden layers in the attributed graph encoder are equipped with the sum aggregation
strategy [20] to compress node representations in aggregation and transformation scheme.
Formally, given the graph Gk = {Ak, Xk}K

k=1, the node representation h(l)
i in the lth layer is

iteratively updated as

h(l)
i = MLP(l)

Enc

((
1 + Θ(l)

i

)
h(l−1)

i + ∑vk
j∈N (vk

i )
h(l−1)

j

)
, (2)

where the multi-layer perceptron module MLP(l)
Enc adopts the ReLU(·) activation function.

We initialize h(0)
i = xk

i as the feature of node vk
i . In the view of the whole matrix, the hidden

representation matrix H(l) is formulated as

H(l) = MLP(l)
Enc

((
Ak +

(
1 + Θ(l)

)
· I
)
·H(l−1)

)
. (3)

here H(0) = Xk is the input node attribute matrix. After applying this procedure to L
hidden layers, the final hidden embedding matrix is generated as H(L) = Zk, where Zk

consists of embedding zk
i of each node vk

i in Gk.
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4.2.3. Graph Structure Decoder

The node structure information, which is represented as the node and its connections to
other nodes, indicates the consistency between a region and its context. Thus, reconstructing
the node structure is essential to identify abnormal nodes in our task. We utilize the inner
product operation, which has been widely employed by [18,19,34], with an additional MLP
module MLPStr−Dec to estimate the probability of edge Âk

ij between nodes vk
i and vk

j as

P
(

Âk
ij|zk

i , zk
j

)
= σ

(
MLPStr−Dec

(
zk

i · zk
j

T))
, (4)

where σ(·) denotes the sigmoid activation function and MLPStr−Dec adopts the ReLU(·)
activation function.

4.2.4. Graph Attribute Decoder

To compare the mismatch of the nodes and their reconstructions in the attribute
perspective, the graph attribute decoder is devised to decompress Zk for reconstructing
the original node attributes. Similarly, we utilize the same hidden layers using the sum
aggregation strategy from the attributed graph encoder. The node representation ĥ(l)

i in the
lth layer is computed as

ĥ(l)
i = MLP(l)

Att−Dec

((
1 + Θ(l)

i

)
ĥ(l−1)

i + ∑vk
j∈N (vk

i )
ĥ(l−1)

j

)
. (5)

The multi-layer perceptron module MLP(l)
Att−Dec also adopts the ReLU(·) activation

function, where the fully-connected layers are symmetric to the layers in MLP(l)
Enc in terms

of the number of their hidden units for reconstruction. Accordingly, total hidden represen-
tation matrix Ĥ(l) is computed as

Ĥ(l) = MLP(l)
Att−Dec

((
Ak +

(
1 + Θ(l)

)
· I
)
· Ĥ(l−1)

)
. (6)

The input for the graph attribute decoder is Ĥ(0) = Zk, and the output in the Lth layer
is the reconstructed node attribute matrix H(L) = X̂k.

4.2.5. Optimization and Anomaly Score

As suggested in common graph auto-encoders [19,34], the disparity between the
attribute and the structure information of a node and its reconstruction is a strong signal to
estimate the abnormality of the node. Following this assumption, we optimize our model
by jointly minimizing the structure reconstruction error Lstr and the attribute reconstruction
error Latt, which is formulated as

L = (1− β)Lstr + βLatt (7)

=
1
K ∑K

k=1

(
(1− β)‖Âk −Ak‖2

F + β‖X̂k − Xk‖2
F

)
, (8)

where β is a hyper-parameter to balance Lstr and Latt.
Trained on graphs that contain only normal nodes, SSGAE is capable of reconstructing

the high-quality attributes and structures of the normal nodes [19] by optimizing the
objective function. Therefore, in the test stage, SSGAE is supposed to output a high
attribute reconstruction error and a high structure reconstruction error for an abnormal
node in the test set. We define the anomaly score function f (·) for node vk′

i to estimate its
degree of abnormality as

sk′
i = f (vk′

i ) = (1− β)‖âk′
i − ak′

i ‖
2
2 + β‖x̂k′

i − xk′
i ‖

2
2. (9)



Sensors 2023, 23, 1307 11 of 20

Since node vk′
i in graph Gk′

test corresponds to region rk′
i in image Ik′ , we can rank the

anomalous image regions through their computed anomaly scores.

5. Experiments

We first introduce three real-world datasets and conduct experiments to evaluate
the performance of SSGAE and the baseline methods. Then the experimental results are
illustrated, including a comparison of performance, a parameter study, and an investigation
into the effectiveness of its components.

5.1. Datasets

We evaluate SSGAE on three real-world datasets: LabPatrolling, BehaviorMonitoring,
and AnoVisualGenome. The first two datasets are constructed from the human monitoring
video clips collected by our autonomous robot in a real laboratory environment, which
have been adopted in our previous work [7–9,14]. We additionally construct a new dataset
named AnoVisualGenome by randomly selecting a subset of human-related images, which
includes human activities in various environments, from a large-scale region caption dataset
Visual Genome (https://visualgenome.org/, accessed on 17 January 2022) [21]. These three
datasets consist of diverse region anomalies, i.e., single and contextual anomalies, and
thus pose a challenge to detection algorithms. The instructions for these datasets are given
as follows.

• LabPatrolling [14] is constructed from the video clips when the mobile robot patrols
around the laboratory. It includes various single anomalies, such as a man holding a
baseball bat and a man holding an umbrella in the room, as well as a small number of
contextual anomalies, such as a man making a phone call in the working area. It con-
tains 5146 normal images for training, as well as 373 normal images and 21 abnormal
images for testing.

• BehaviorMonitoring [14] is constructed from another large-scale human monitoring
dataset of video clips (almost 100 h) when the mobile robot is navigated to designated
locations by a program to monitor diverse human behaviors in the laboratory. It
includes a wide range of contextual anomalies of many human behaviors, such as
eating and sleeping in the working and resting areas, which are defined as normal
and abnormal activities. It contains 5548 normal images for training, as well as 585
normal images and 106 abnormal images for testing.

• AnoVisualGenome is constructed from Visual Genome [21], which provides dense
annotations for regions on over 108K images. It includes several kinds of human
activities in inappropriate environments as contextual anomalies, such as watching
TV on the street and sitting on a couch on the beach. It contains 1427 normal images
for training, as well as 218 normal images and 31 abnormal images for testing.

For our target task, after obtaining salient regions from images, we annotate region-
level anomalies in the images, including anomalous human behaviors or irregular human-
object interactions. Several examples of images containing normal and abnormal regions
are shown in Figure 5.

https://visualgenome.org/
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Normal Abnormal

Figure 5. Examples of normal regions with green boxes and abnormal regions with red boxes. The
abnormal regions in the upper row are examples of single anomalies in LabPatrolling. In contrast
to the normal regions in the middle and bottom rows, the abnormal regions in the same rows are
examples of contextual anomalies in BehaviorMonitoring and AnoVisualGenome, respectively.

5.2. Experimental Setup
5.2.1. Preprocessing

In the preprocessing stage, by utilizing advanced pre-trained deep models, we obtain
regions with their captions in images and generate the visual and semantic features of
regions to construct graphs.

Specifically, we utilize a dense captioning model Densecap (https://github.com/
jcjohnson/densecap, accessed on 19 March 2020) [17] pre-trained on Visual Genome [21]
in a standard implementation to generate region candidates for the first two datasets
and select the top-n region candidates per image based on their confidence scores. By
investigating the qualities of the generated regions with captions, n is set to 10 [7–9]. For
AnoVisualGenome, as the number of regions with captions per image ranges from 10 to 60,
we randomly select 10 regions for each image.

Subsequently, ResNet101 (https://pytorch.org/vision/stable/models/resnet.html,
accessed on 10 April 2021) is adopted to extract the visual feature of each region from the
output in the penultimate layer with dimension 2048. An SBERT model named “all-mpnet-
base-v2” (https://huggingface.co/sentence-transformers/all-mpnet-base-v2, accessed on
15 January 2022) is adopted for transforming each region caption into an embedded vector
with dimension 768. ResNet101 and SBERT are applied under their default settings and
pre-trained on ImageNet [41] and 14 sentence datasets [38], respectively.

5.2.2. Baseline Algorithms

We compare our method with several traditional and popular anomaly detection
algorithms, including Auto-Encoders (AE) [42] and GANomaly (https://github.com/
samet-akcay/ganomaly, accessed on 16 January 2020) [36], our previous region anomaly
detection methods, Anomalous Image Region Detection (AIRD) [7] and Fast-and-Slow-
Thinking Anomaly Detection (FSTAD) [8], as well as three variants of graph auto-encoders,
Variational Graph Auto-Encoders (https://github.com/DaehanKim/vgae_pytorch, ac-
cessed on 20 April 2021) (VGAE) [18], Deep Anomaly Detection on Attributed Networks
(https://github.com/kaize0409/GCN_AnomalyDetection_pytorch, accessed on 18 March
2022) (DOMINANT) [19], and Graph Attention Auto-Encoders (GATE) [35].

• AE [42] is a classical reconstruction-based method for anomaly detection. Both the
encoder and the decoder are designed with fully-connected layers.

https://github.com/jcjohnson/densecap
https://github.com/jcjohnson/densecap
https://pytorch.org/vision/stable/models/resnet.html
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://github.com/samet-akcay/ganomaly
https://github.com/samet-akcay/ganomaly
https://github.com/DaehanKim/vgae_pytorch
https://github.com/kaize0409/GCN_AnomalyDetection_pytorch
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• GANomaly [36] is a popular generative anomaly detection method. It adopts an
encoder-decoder-encoder module as a generator and three loss functions to jointly
reconstruct images and features in a latent space.

• AIRD [7] is a one-class region anomaly detection method. It combines the visual,
caption, and coordinate features of each region as its representation and employs an
incremental clustering method to model normal regions.

• FSTAD [8] employs AIRD as its fast module for detecting single anomalies and devises
a slow module recording neighboring regions with their visual features for detecting
anomalous region pairs.

• VGAE [18] is the first model to extend the auto-encoder framework on graph data. It
encodes node representations by GCN layers and utilizes an inner product decoder
for reconstructing the adjacency matrix of graph data.

• DOMINANT [19] is the state-of-the-art graph auto-encoder for detecting anoma-
lous nodes in attributed graphs by devising GCN-based components and adopting
reconstruction errors as the anomaly scores.

• GATE [35] is a graph auto-encoder variant that stacks graph attention layers in its
encoder and decoder for graph classification tasks.

5.2.3. Implementation Details

In the spatial and semantic graph, the semantic similarity threshold θsim for building
semantic edges is set to 0.5 in our experiments. The proposed method SSGAE is imple-
mented in Pytorch (version 1.6.0) and optimized by Adam with a learning rate 0.004 and
a weight decay 8× 10−5. The attributed graph encoder is equipped with L = 2 hidden
layers along with their MLP modules, both of which contain two fully-connected layers
with the hidden units (2816− 256− 256) and (256− 256− 128), respectively, with ReLU
activation function. Accordingly, the graph attribute decoder also contains two hidden
layers with their MLP modules, in which the fully-connected layers are symmetric to the
layers in the encoder in terms of the number of their hidden units for reconstruction. In
the graph structure decoder, the dimensions of the fully-connected layers in MLPstr−dec
are set to (128− 256− 256). The hidden layers of other graph auto-encoder models in the
baselines are set to the same dimensions as SSGAE for a fair comparison. SSGAE and the
other graph auto-encoder variants are trained for T = 400 epochs on the first two datasets
and T = 200 epochs on AnoVisuaGenome. Hyper-parameter β in SSGAE is set to 0.8,
0.8, and 0.9 for LabPatrolling, BehaviorMonitoring, and AnoVisuaGenome, respectively.
When implementing other baseline methods, we retain the suggested settings in their
original papers.

5.3. Experimental Results and Analysis

Figure 6 and Table 2 show the ROC curve and AUC score of SSGAE compared with
the baselines on the three datasets, respectively. Moreover, Figure 7 illustrates the anomaly
score distributions of all methods by boxplot, which displays the lower quartile, the median,
and the upper quartile of the scores in a box and extends the box from the lowest to the
highest scores by a line segment. We have the following findings based on the results.

1. SSGAE outperforms all the baseline methods on the three datasets, which achieves
0.016− 0.387, 0.038− 0.315, and 0.043− 0.345 improvements in terms of their AUC
scores on LabPatrolling, BehaviorMonitoring, and AnoVisualGenome, respectively.
This validates the superiority of our method for the region anomaly detection task.
The main reason is that SSGAE is capable of discriminating node representations from
the spatial and semantic graphs and thus generates separated reconstruction errors to
measure the abnormalities of regions, as shown in the example in Figure 8.

2. The previous methods, which do not consider region contexts, i.e., AE, GANomaly,
and AIRD, achieve competitive performance on LabPatrolling, where most of the
anomalies are single anomalies. This fact proves their effectiveness in detecting single
anomalies that are dissimilar to normal regions, e.g., normal and abnormal regions
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in the upper row in Figure 8. However, these methods do not perform well on
BehaviorMonitoring and AnoVisual Genome, where there exist a large number of
contextual anomalies. For instance, GANomaly achieves an AUC score of 0.911 on
LabParolling, while it only achieves 0.794 and 0.687 on the other two datasets. The
distributions of the anomaly scores on the two datasets shown in (b) and (c) in Figure 7
demonstrate that AE, GANomaly, and AIRD are unable to separate the normal and
abnormal regions very well. We think the reason would be that without considering
the region contexts, the contextual anomalies include similar human behaviors as
normal regions, which are difficult to detecte with these methods. To confirm the
reason, we investigate the anomaly scores of the examples, including a normal region
and a contextual anomaly, i.e., the no. 0 regions in the upper and bottom images in
the left part of Figure 8. Compared with SSGAE, which outputs the anomaly score
of 0.565/0.814 on the normal/abnormal regions in Figure 8, AE, GANomaly, and
AIRD output 0.425/0.462, 0.199/0.381, and 0.542/0.639, respectively. These findings
indicate that the methods that do not consider region contexts have deficiencies in
detecting contextual anomalies compared with SSGAE.

3. Compared with other graph auto-encoder variants, SSGAE achieves significant per-
formance gains with the improvements of 0.043, 0.055, and 0.043 on the three datasets
in terms of AUC scores. Accordingly, the anomaly scores of normal and abnormal
regions generated by SSGAE are better separated compared with these baseline meth-
ods, as shown in Figure 7. The main difference between SSGAE and other graph
auto-encoders is the sum aggregation strategy, which plays a critical role in discrimi-
nating the representations of node neighbors. We verify the effectiveness of the sum
aggregation strategy in SSGAE by substituting it with the aggregation strategies in
other graph auto-encoders, as illustrated in Section 5.5.

4. We observe that VGAE performs worst on the target task, although its encoder is
similar to the encoders in other graph auto-encoders. We notice that compared with
DOMINANT, GATE, and SSGAE, the decoder in VGAE only aims at reconstructing
the graph structure without considering the reconstruction of node attributes in the
graph. This fact implies that both the structure and the attribute reconstructions are
necessary for our method of the task.
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Figure 6. ROC curves of all methods on three benchmark datasets. (a) LabPatrolling. (b) Behavior-
Monitoring. (c) AnoVisualGenome.



Sensors 2023, 23, 1307 15 of 20

Table 2. Performance of SSGAE compared with the baseline methods.

Dataset

Method LabPatrolling BehaviorMonitoring AnoVisualGenome

AE 0.813 0.631 0.709
GANomaly 0.911 0.794 0.687

AIRD 0.881 0.745 0.794

FSTAD 0.868 0.772 0.701
VGAE 0.540 0.517 0.524

DOMINANT 0.767 0.695 0.709
GATE 0.884 0.777 0.826

SSGAE 1 0.927 0.832 0.869
1 The best performance of the method with AUC scores on the three datasets is in bold.

(a) (b)

(c)
Figure 7. Distributions of anomaly scores on the three datasets. (a) LabPatrolling. (b) BehaviorMoni-
toring. (c) AnoVisualGenome.

0. man in a yellow shirt. 1. a white
wooden cart. 2. man wearing a yellow
shirt. 3. a white cabinet with a wooden
door. 4. a white refrigerator. 5. a yellow
and black pants. 6. white kitchen cabinets.
7. the floor is made of wood. 8. a laptop
on the table. 9. a sign on the wall.

0. man with a yellow shirt. 1. yellow shirt
on the man. 2. kitchen counter with
white. 3. man wearing black pants. 4.
white chair in front of the room. 5. man
with a beard. 6. a kitchen with a window.
7. blue and white shelf. 8. white metal
railing. 9. a basket on the back of a bike.

Embeddings with Context

Anomaly Score

SSGAE

Features without Context

Figure 8. Example of detecting anomalous regions by SSGAE.

We also show an example of detecting normal and anomalous regions by SSGAE in
Figure 8. In the upper image, the no. 0 region of a man making a phone call (the green
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box) in a resting area is normal, while the no. 0 region of the same behavior (the red box)
in a working area in the bottom image is abnormal due to their different contexts. We
visualize the original features of two regions and their embeddings generated by SSGAE
with Principal Component Analysis (PCA) [43]. We see that although the two regions are
closely located in the original feature space, trained on normal data, SSGAE can compress
the two regions with their contextual information into well-separated embeddings and
thus generate accurate anomaly scores in the right part of Figure 8.

Considering the feasibility of applying our method to real-time region anomaly de-
tection in human monitoring, we also evaluate the actual running time of the method in
the test phase. For each test image, the proposed method outputs the anomaly scores of all
regions with an average running time of 0.53 s. We believe this performance is sufficient as
we target human monitoring. Here we assume that the preprocessing procedure, which
includes extracting pre-trained features and constructing graphs, is conducted before the
monitoring process. The computation time of the preprocessing procedure during testing
is about 3 m 48 s, 7 m 58 s, and 2 m 16 s on LabPatrolling, BehaviorMonitoring, and
AnoVisualGenome, respectively.

5.4. Parameter Sensitivity Study

To investigate the effects of embedding dimensions de of the final hidden embedding
and hyper-parameter β in the objective function on the performance of SSGAE, we conduct
experiments by modifying their values.

We first explore the sensitivity to dimension de of the final hidden embedding by
setting the values of de from 4 to 256. We show the performance of SSGAE in Figure 9a.
On BehavoringMonitoring and LabPatrolling, the performance steadily improves when de
increases from 4 and reaches the peak value of 128, and then it drops slightly when de is
256. On AnoVisualGenome, the AUC score also steadily increases from de = 4 to de = 128.
Then the performance gain becomes smaller when de = 256. These results show that de
should be in an appropriate range, e.g., from 64 to 256, for the target task.
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Figure 9. Parameter sensitivity study of SSGAE. (a) Number de of the embedding dimensions versus
AUC. (b) Hyper-parameter β in the objective function versus AUC.

We then modify the value of β in the range of {0.0, 0.1, 0.2, . . . , 1.0} and show the
results in Figure 9b. According to the results, the AUC score rises when β increases and
reaches the peak value at 0.8, 0.8, and 0.9 on LabPatrolling, BehaviorMonitoring, and AnoVi-
sualGenome, respectively. In particular, we can evaluate the performance of SSGAE only
equipped with the structure decoder when β = 0.0 and only equipped with the attribute
decoder when β = 1.0. We observe that our model achieves poor results when merely
considering the structure reconstruction error, which indicates that attribute information is
necessary for our task. On the contrary, by merely utilizing an attribute decoder in SSGAE,
we cannot achieve the best results, which indicates the significance of jointly optimizing
SSGAE by the structure reconstruction error and the attribute reconstruction error. These
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results show that it is necessary to find a trade-off to balance the two kinds of reconstruction
errors for our task.

5.5. Effectiveness of Components

We further investigate the effectiveness of components in our method, i.e., the impacts
of jointly considering the spatial and semantic relations in the proposed graph and the sum
aggregation strategy in SSGAE.

We first conduct an ablation study by building two variants of the graph, i.e., the
spatial attributed graph and the semantic attributed graph, which consider spatial relations
only and semantic relations only among regions, respectively. Table 3 shows the results of
SSGAE with these graphs. We observe that SSGAE on the spatial or semantic attributed
graph achieves suboptimal performance, which implies the superiority of considering both
the spatial and semantic relations in the graph. Figure 10 shows several normal (green
color) and abnormal (red color) examples in (a)–(e) with their anomaly scores in (f). These
examples in (a)–(e) include several human behaviors, such as a human sleeping, making a
call, eating, and sitting on a couch, in different contexts. We observe that with the spatial
attributed graph and the semantic attributed graph, the anomaly scores in (f) of the normal
and abnormal regions are not well-separated compared to SSGAE with the spatial and
semantic graphs. These results validate the effectiveness of the spatial and semantic graphs
on the target task.

Table 3. Effectiveness of different components in our method.

Dataset

LabPatrolling BehaviorMonitoring AnoVisualGenome

Spatial Attributed Graph 0.915 0.807 0.833
Semantic Attributed Graph 0.924 0.778 0.791

Mean-pooling Aggregation 0.922 0.798 0.821
Max-pooling Aggregation 0.923 0.805 0.836

SSGAE 1 0.927 0.832 0.869
1 The best performance of the method with AUC scores on the three datasets is in bold.

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)
0.0
0.2
0.4
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Spatial Semantic Spatial and Semantic
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(a) (b) (c) (d) (e)
0.0
0.2
0.4
0.6
0.8
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Mean-pooling Max-pooling Sum

(g)

Figure 10. Examples of abnormal and normal regions with anomaly scores. (a–d) Examples of
abnormal regions with red boxes and normal regions with green boxes in a laboratory environment.
(e) Examples of an abnormal region with a red box outside a room and a normal region with a green
box inside a room. (f) Anomaly scores of the abnormal regions with red color and normal regions
with green color in (a–e) by the different kinds of graphs. (g) Anomaly scores of the abnormal regions
with red color and normal regions with green color in (a–e) by the different aggregation strategies.
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We then verify the effectiveness of the sum aggregation strategy by substituting it
with the mean-pooling and the max-pooling strategies in SSGAE. Based on the results in
Table 3, SSGAE adopting the mean-pooling or max-pooling aggregation strategy achieves
competitive performance on LabPatrolling. The reason would be that most anomalous
regions in LabPatrolling are single anomalies and, thus, are easy to be detected by any of the
aggregation strategies. However, the diverse contextual anomalies in BehaviorMonitoring
and AnovisualGenome need to be judged by combining the regions with their contexts.
Figure 10 shows the anomaly scores of regions in (a)–(e) with different strategies in (g).
We observe that SSGAE adopting the sum aggregation strategy discriminates the normal
and abnormal regions better than SSGAE adopting the other two strategies in terms of
their anomaly scores. For instance, the normal and abnormal regions in Figure 10a show
a human sleeping in the working and resting areas. SSGAE with the sum aggregation
strategy generates the highest anomaly score for the abnormal region and a relatively low
score for the normal region in (a) compared to SSGAE with the other two strategies. This
implies the effectiveness of adopting the sum aggregation strategies in SSGAE for detecting
contextual anomalies in our task.

6. Conclusions

This paper tackles the region anomaly detection task in human monitoring via con-
structing the spatial and semantic attributed graph and proposing the graph auto-encoder
framework SSGAE. To characterize the anomalous region based on its content and context,
we build the graph to model regions with their spatial and semantic relations in the image.
Subsequently, SSGAE equipped with the sum aggregation strategy, which consists of one
encoder and dual decoders, is introduced for our task. Due to the lack of rare and diverse
anomalies in human monitoring, SSGAE is trained to reconstruct the node attributes and
structures in the graph in a one-class anomaly detection manner. In the test stage, the
structure and the attribute reconstruction errors are then jointly employed in the anomaly
score to estimate the abnormality of nodes as well as their corresponding regions. We
conducted extensive experiments and analyzed the results to evaluate the superiority of
SSGAE on the target problem.

In our method, generating accurate regions and captions from images is important
to build spatial and semantic relations in the proposed graph, though we notice that a
few regions and captions generated by Densecap [17] are insufficient in quality for human
monitoring. Therefore, improving the quality of the regions and captions through, for
instance, a specialized, elaborate fine-tuning of the pre-trained model would be one of
our future works. Another future work is to explore a more informative graph model,
e.g., weighted graphs, to represent the importance of relations among regions. Such a
model would promote our future method toward more real-world applications in complex
scenarios. In addition, we expect that extending the proposed method for anomaly detection
in other domains opens promising research avenues. For instance, climate monitoring [44]
and single-object anomaly detection [15] call for defining nodes dynamically, as these
domains include vague objects, e.g., clouds, and ill-defined objects, e.g., a part of a building.
The definition could be iterative, i.e., the construction of the attributed graph and the
detection of anomalies should be repeated by accumulating useful clues. This paper, which
targets anomaly detection in human monitoring, would serve as a fundamental step in
such an avenue.
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