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Abstract: Fault diagnosis and prognosis (FDP) tries to recognize and locate the faults from the
captured sensory data, and also predict their failures in advance, which can greatly help to take
appropriate actions for maintenance and avoid serious consequences in industrial systems. In recent
years, deep learning methods are being widely introduced into FDP due to the powerful feature
representation ability, and its rapid development is bringing new opportunities to the promotion
of FDP. In order to facilitate the related research, we give a summary of recent advances in deep
learning techniques for industrial FDP in this paper. Related concepts and formulations of FDP are
firstly given. Seven commonly used deep learning architectures, especially the emerging generative
adversarial network, transformer, and graph neural network, are reviewed. Finally, we give insights
into the challenges in current applications of deep learning-based methods from four different aspects
of imbalanced data, compound fault types, multimodal data fusion, and edge device implementation,
and provide possible solutions, respectively. This paper tries to give a comprehensive guideline for
further research into the problem of intelligent industrial FDP for the community.

Keywords: fault diagnosis; fault prognosis; machine learning; deep learning; industrial systems

1. Introduction
1.1. Background

Industrial systems are typical complex systems with various subsystems and device
types of mechanical system, power system, information system, electronic system, or their
combinations. They are playing an increasingly important role in the economy, such as
manufacturing industry, energy industry and chemical industry, which are now developed
with more functions, more sophisticated structures, and larger scales [1]. Reliability issues
have gradually become the key of whether many modern industrial systems can be truly
practical. Once a failure occurs, it may affect the safe and stable operation of the entire sys-
tem, i.e., reducing the efficiency of the system, and causing system breakdown or damage
in severe cases [2]. It may also endanger personnel safety, and cause other catastrophic
consequences. Therefore, the early identification of faults in advance can greatly help to
take appropriate actions of maintenance to avoid the undesired consequences.

Driven by demand, prognostics and health management (PHM) [3] technology, firstly
originated from engine health monitoring systems [4], has gained increasingly more at-
tention. PHM is an expansion of the traditional reliability or predictive maintenance
concept oriented for complex industrial systems. It realizes the development from the
initial condition monitoring and fault diagnosis that aims to estimate health status, to
health management that aims at formulating the countermeasures based on the results of
monitoring, diagnosis, and prognosis.

In practical scenes, it is often difficult or even impossible to establish mathematical
models of complex components or systems [5], in order to trace and analyze faults. There-
fore, a large amount of historical data that were collected in the process of system operation
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and maintenance have become the major method by which to evaluate the system’s health
status. As the core part of PHM technology, the fault diagnosis and prognosis (FDP) tech-
nique based on data-driven machine learning (ML) methods recognizes or learns the health
features of the system from historical data, and tries to discover and mine the information
hidden in the data, so that it can accurately analyze and predict future system behavior
without precisely knowing the forward physical model. ML methods generally have a more
powerful capacity for FDP without the assumption of data distribution, smoother and more
intelligent FDP processes with fewer processing stages and less human intervention, and,
moreover, less prior-knowledge requirements for more complex components or systems to
be modeled [6].

Consequently, data-driven ML methods have long been applied in various industrial
FDP applications. A typical ML pipeline generally consists of three steps [7], i.e., data prepro-
cessing, feature extraction and classification or regression. The performance of ML heavily
depends on the manually predefined feature extraction rules. In the past decade, with the
great development of mega-scale open datasets [8], evolutional computing capacity of
new GPU architectures [9] and innovative neural network training methods [10], deep
learning [11] can hierarchically extract highly-abstract features in an end-to-end way from
the labeled training dataset. Due to its superior performance over ML methods, deep learn-
ing (DL) has gained remarkable success in the tasks of computer vision, natural-language
processing, etc. In the community of industrial FDP, researchers have also made great
efforts to introduce DL techniques into different and unique industrial FDP scenarios, and
tremendous progress has been witnessed.

At present in the era of Industry 4.0 [12], the emerging of Big Data [1,13], Internet of
Things (IoT) [14,15], and artificial intelligence (AI) technology [16,17] are now promoting
the transformation of PHM (specifically FDP in this paper) from traditional single-sensor-
oriented diagnosis to system-wise intelligent diagnosis and prognosis. When the traditional
physical model-based PHM technology is progressing slowly in the face of unprecedented
complex systems, the scientific “The Fourth Paradigm” [18] based on Big Data collected
from IoT and supported by modern AI technology is also making industrial systems
truly intelligent.

1.2. A Survey of Relevant Reviews

To summarize the current research of intelligent FDP, there are a number of outstanding
surveys on the topic of intelligent FDP [1,7,19–28]. They conduct extensive review on existing
literature quantitatively and qualitatively from their unique viewpoints, and identify the
trends and ideas of FDP methods for different scenarios.

Xu et al. [1] analyzed existing issues and challenges in the Big Data era from differ-
ent driving factors, such as data quality and cost balance, method selection, application
problems, and deep utilization. Li et al. [19] summarized the common fault types of sen-
sors in monitoring and control systems and presented the latest fault diagnosis methods
that combined different advanced technologies. Furthermore, Tang et al. [27] reviewed
the DL applications toward fault diagnosis methods for rotating machinery according
to its major components, including bearing, gear, and pumps. A comprehensive review
of Big Data-driven intelligent FDP for mechanical systems was given by Lei et al. [28],
wherein the latest cutting-edge research results are focused, e.g., deep transfer learning-
based FD, Big Data-driven RUL prediction, data-model fusion prognosis, etc. In addition,
Fernandes et al. [20] provided a systematic literature review of ML methods for mechanical
FDP in manufacturing. They examined and characterized the research in more details
based on five basic research questions.

1.3. Motivation

The aforementioned review work provides a very good foundation for the work in this
paper. Some surveys concentrate on FDP for specific type of device, e.g., machinery [20–24,27,28],
wind power converter [25], lithium-ion battery system [26], while some focus on specific FDP
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method, e.g., deep domain adaptation [21], attention mechanism [22], recurrent neural network
(RNN) [23], etc. Most of these reviews cover the data-driven ML techniques, but few of them
give a comprehensive overview of the generic DL techniques used for industrial FDP. Moreover,
due to the rapid development and iteration of DL techniques in recent years, a large number
of excellent DL architectures and algorithms have emerged, bringing new opportunities to the
promotion of FDP. The most up-to-date trends of recent a couple of years in industrial FDP,
especially about emerging DL architectures, as well as the future trends in the next few years,
are rarely covered by relevant reviews. To the best of our knowledge, there is currently no
review paper of the Transformer technique’s application in intelligent FDP.

Therefore, a review to comprehensively cover the latest development of DL techniques
for intelligent industrial FDP is still left blank but desired. In order to track the latest
achievement of DL techniques for intelligent industrial FDP, we conduct a comprehensive
survey on relevant literature of the past 5 years in this paper. The main contributions of
this paper are as follows:

1. From a different viewpoint of data analysis, we provide a generalized definition and
mathematical formulations for FDP problems compared to previous work.

2. We collect and summarize recent advances of recent 5 years for intelligent industrial
FDP, review and analyze them from the perspective of DL techniques.

3. The emerging DL architectures, including generative adversarial network, and trans-
former and graph neural network, are investigated in the survey to provide an
up-to-date view of the latest research trends of intelligent FDP.

4. Challenges encountered in current research are discussed from the aspects of data
imbalance, compound faults, multimodal fusion and edge implementation, which are
seldom analyzed by other literature. Possible solutions are also provided.

The rest of this paper is organized as follows. Section 2 gives the problem formu-
lations. In Section 3, we elaborates the FDP methods of emerging DL techniques. Its
detailed analyses are given in the followed Section 4 and Section 5. In Section 6, the major
problems encountered in the current research are summarized and the trend is prospected.
The conclusions are finally drawn in Section 7.

2. Problem Formulation

Different from previous work that deals with specific industrial faults and analyzes
them from the aspect of physical model or fault mechanism, we analyze the problem of FDP
from a novel viewpoint of data analysis. In this section, we give the generalized definitions
of faults and the mathematical formulations of FDP problems.

2.1. Definitions of Faults

In general, the condition monitoring results of certain object in industrial systems
experiences changes all the time, and not all changes in sensory data are failures or faults.
Here are some common senses:

• Changes caused by random noise are not necessarily faults, but when the variance of
the noise changes, it is generally considered to be a fault.

• Fluctuation within a stable range in a certain operation condition is not a malfunction.
In different operating conditions, this fluctuation may be different.

• A change that breaks the current pattern is a fault.

Figure 1 gives a comparison of the normal three-phase current waveform and the
current waveform of interturn short-circuit fault under the same working condition. At no
point does the current amplitude exceeds the working condition mode range, but the (blue)
curve pattern of t > 125 ms changes and it is a fault. Therefore, we consider that the core
part of FDP is to discriminate the faulty patterns from normal working patterns which are
represented in sensory data, and to build a health index that indicates the changing trend
in working patterns.
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Figure 1. An example of three-phase current waveform.

2.2. Mathematical Formulations of Fault Diagnosis

Given N physical variables (such as pressure, current, temperature) within a specific
time range T = [t1, t2] measured by a number of sensors (such as strain gauges, Hall
sensors, temperature sensors, etc.) at a specific position of a specific device, we set M(T) =
{mi(T)|i = 1, 2, · · · , N}. When the current operating condition is p, the fault indicator
function fθ(M(T), p) is to judge whether the current state s as in Equation (1) is normal or
not, its value range of fθ is {0, 1}, and θ is the parameter of f .

s = fθ(M(T), p) (1)

when the monitoring variable M(T) and the working mode p are known, the corresponding
fault state is also determined theoretically, i.e., for a certain type of device, its fault indicator
function f is determined.

In this way, the problem of fault diagnosis becomes the process of solving the parame-
ter θ of the fault indicator function f . The determination of function parameters θ can be
explicitly solved by forward modeling of physical models, but it is often too complicated
or even unsolvable. The data-driven fault diagnosis methods make use of the existing
data, and tries to mine the parameter θ of f backward from the data [7]. It then becomes
the following problem as in Equation (2), that is, searching for a certain point θ′ in the
parameter space Θ, so that its output pattern on a large number of data samples is the least
different from the real situation, thereby turning it into an optimization problem:

arg min
θ′∈Θ

∥∥s′ − fθ′(M
′(T), p′)

∥∥. (2)

Among them, s′ and (M′(T), p′) are the labels and data vectors in the known
sample set.

If the current device status is judged as fault, the fault can then be classified. The cur-
rent pattern is compared with the fault patterns in the fault database, the smallest deviation
degree between the current fault and each fault pattern can be searched. It is worth not-
ing that since the original data M(T) used for diagnosis is usually high dimensional and
redundant in feature spaces, it is usually necessary to perform feature selection, feature
extraction or feature fusion on the original data to reduce the data dimension.

2.3. Mathematical Formulations of Fault Prognosis

One major challenging problem in fault prognosis is the remaining useful life (RUL)
estimation of the device whose specific meaning is shown in Figure 2. It is necessary to select
an appropriate health indicator for RUL estimation, which can well reflect the change in the
degradation degree of device health, and there is a corresponding threshold to indicate
when will the device reach a functional failure.
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Figure 2. Schematic diagram of life cycle.

Given k known historical data and their corresponding health feature sequence
{ fi(n)|i = 1, 2, · · · , k, n = 1, 2, · · · , N}, where N is the length of the known health fea-
ture sequence, the dataset {Ti(l), fi(l)} can be formed according to all the historical data
and the corresponding sequence of health indices. According to the determined device-life
degradation model g, we can perform fitting via regression on {Ti(l), fi(l)} to determine
the model parameters of the degradation model g. Given the current observation data
health indicator sequence f (n), the degradation model g is used to extrapolation predict
and estimate the evolution trend f̂ of the predicted features. The estimated evolution
curve f̂ obtained is then compared with the failure threshold. When f̂ exceeds the failure
threshold for the first time at time Tf , the device fails. Assuming that TN is the time length
of known observation data, RUL of the device is

RUL = Tf − TN . (3)

The key point of fault prognosis is the choice of degradation model. The factors
considered include the global degradation mode, short-term degradation characteristics,
the amount of data available for modeling and the data noise level, etc.

3. Modern Deep Learning Techniques for Intelligent Industrial FDP
3.1. Modern Deep Learning Techniques

As a young and developing field of AI, ML techniques try to discover knowledge
from a large amount of historical data for prediction or classification on new data. More
specifically, it is designed to find a projection to fit the input data for desired results,
which is often too complex to be explicitly formulated. In terms of application purposes,
supervised machine learning is mainly divided into two categories [29]: classification and
regression. The former learns the boundaries between categories to achieve classification
of new data [30]. The latter fits regularities to the data to predict the properties of new
data points. Correspondingly, fault diagnosis is actually a classification problem, and fault
prognosis is a regression problem.

As a subset of ML, the emerging DL is currently the hottest topic in AI. It is originated
from the paper [10] published in 2006 by Hinton et al. This paper reveals two characteristics
of deep learning. The first is that the neural network with multiple hidden layers has
excellent potential for learning more representative features from raw data which are
generally designed manually in traditional ML methods. The second is that the difficulty
of training deep neural networks can be overcome by layer-by-layer pre-training using the
method of unsupervised learning in the Restricted Boltzmann Machine (RBM).

The concept “deep” in deep learning is compared to traditional machine learning
algorithms, such as SVM, ANN, and other shallow learning methods, in which there
are more layers of non-linear functions in deep learning methods. In traditional shallow
neural learning methods, data sample features need to be manually extracted. Conversely,
DL automatically learns to obtain feature representations by performing layer-by-layer
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feature transformation on original data via back-propagation, and these hierarchical feature
representations are highly abstract and task-oriented. One of its major merits is that it can
complete the learning in an end-to-end way directly from raw data to results of classification
and regression tasks.

Typical DL architectures include deep belief network (DBN) [31], autoencoder (AE) [32],
convolutional neural network (CNN) [33], and RNN [34]. With the rapid development of
DL techniques in these years, many new architectures have been proposed and introduced
into the tasks of intelligent industrial FDP. Examples are generative adversarial network
(GAN) [35], transformer [36], and graph neural network (GNN) [37]. Similarly, CNN is
prospering again, due to the progress made in the fields of computer vision in recent years.

3.2. Categorization and Literature Trends of DL Techniques for Industrial FDP

Figure 3 shows the categorization of major DL-based approaches used in intelligent
FDP. According to the supervision type, they can be divided into unsupervised methods
and supervised methods. The former tries to find the inherent common pattern within
data which are unlabeled, while the latter refers to methods that learn highly non-linear
relationship between the input data and its paired labeled output. More specifically,
the supervised methods can be further divided into processing of specific data types or
extraction of distinctive features, depending on their objectives. Their detailed introductions
will be expanded in the following sections.

Figure 3. The categorization of deep learning techniques in intelligent FDP.

Figure 4 illustrates the number of journal publications of deep learning methods in
intelligent FDP from January 2013 to September 2022 on Web of Knowledge. As can be seen,
the number of papers published is increasing year by year, and CNN-based FDP methods
account for the majority of all methods. The publication number of typical DL architectures,
such as DBN and AE, are stable or growing with relatively slower speed. Note that
emerging network architectures are also gradually attracting the attention of researchers.
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Figure 4. Publication trends of deep learning methods in intelligent industrial FDP.

4. Part I: Unsupervised DL Methods for Intelligent Industrial FDP

Unsupervised DL methods are not fed with labeled information, so it is necessary for
them to mine the inherent structure and pattern within data. Unsupervised DL methods
generally does not solve the tasks of FDP in a direct way, but also serve for peripheral tasks
that are also crucial, such as feature reduction and data generation.

4.1. Autoencoder (AE) for High-Dimensional Feature Reduction

Autoencoder (AE) is an unsupervised architecture which assumes that the output
being encoded and decoded is the same with the input. In this sense, the encoder part
can be used for feature reduction where high-dimensional input data can be converted
into low-dimensional encoded vectors. The idea of an encoder–decoder is also widely
adopted by other DL architectures such as CNNs. A simple architecture of AE is illustrated
in Figure 5. AE can also be divided into standard AE [38–40], denoising AE [41], sparse
AE [42], variational AE [43] and contractive AE [44], etc.

Figure 5. Basic structure of AE.
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AEs have been widely used for feature extraction and fault classification, and have
demonstrated powerful feature extraction and non-linear dimensionality-reduction capa-
bilities and robustness in practical FDP applications. In [45], a sparse AE is designed to au-
tomatically extract degradation indicators for followed fault detection in multi-component
system. Ref. [46] use multi-layer sparse AE as a multi-sensor feature fusion and extraction
method combined with DBN for bearing fault diagnosis. A list of recent publications
of AE-based intelligent FDP are given in Table 1. As seen, in order to obtain better per-
formance, stacked AEs are preferred to be used in different scenarios, while the borders
between different types of AEs are breaking down and leading to fused architectures, e.g.,
sparse denoising AE. Despite the above advantages, it still suffer from the situation that
meaningful features sometimes cannot be easily extracted due to the inherent properties of
AEs. Moreover, its capability is generally highly correlated to its training samples.

Table 1. Recent publications of intelligent FDP methods based on AEs.

Type Reference Year Method Object

Standard AE

[39] 2019 A stacked AE for compressing the feature depth high-voltage circuit
breakers

[47] 2020 1-D residual convolutional AE for learning features from
vibration signals directly in an unsupervised-learning way machinery

[40] 2022 AE with adaptive Morlet wavelet to establish accurate mapping
hidden in the fused health index aeroengine

[38] 2022 Stacked AE to establish an accurate non-linear mapping
between the raw data and different fault states rotating machinery

Denoising AE [41] 2018 Stacked denoising AE to extract useful feature and reduce the
dimension of vibration signal to 2 or 3 dimensions bearing

Sparse AE [42] 2022 Sparse representation convolutional AE to extract impulsive
components of vibration signals rotating machinery

Sparse denoising
AE [48] 2019 A sparse stacked denoising AE is proposed for feature

extraction bearing

Variational AE [43] 2022 A convolutional variational AE with attention mechanism
providing better spatial distributions of features aeroengine

Contractive AE [44] 2018 Stacked contractive AE for automatic robust features extraction rotating machinery

4.2. Generative Adversarial Network (GAN) for Data Generation

An important requisition for supervised deep learning methods is the massive amount
of training samples. However, in many practical scenarios, training data collected at hand
are scarce and imbalanced, which is reflected on the ratio of numbers of positive and
negative samples, as well as the known fault patterns. It is a well-known problem of small
sample or small data. Traditional over-sampling techniques can hardly capture the data
distribution and will easily lead to over-fitting [49]. Firstly, succeed in computer vision from
2014 by Goodfellow, generative adversarial network (GAN) [35] is an unsupervised method
that is able to generate realistic samples via a minimax game between two networks. It
consists of a generator network to generate samples and a discriminator network to judge
the likeness of the generated samples. The generated realistic fake data fit within the
distribution of the training data, which outperforms the traditional over-sampling methods,
such as synthetic minority oversampling technique (SMOTE) [50], by a large margin. As a
result, GAN has shown outstanding performance in many areas beyond computer vision.
In the field of FDP, GANs have gradually been adopted, and it has show promising results
compared with other architectures. The basic idea of data augmentation using GAN is
illustrated in Figure 6.
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Figure 6. A basic example of data augmentation using GAN.

Initially, GAN is mainly adopted for normal or faulty sample generation, either for
images or for signals. Figure 6 is an example GAN for data augmentation for the training
of deep fault diagnosis models. Usually, the capacity of modeling data distribution in GAN
can be further extended for fault diagnosis. For example, the trained generator can be
used to fix a faulty sample, and the fault can then be located by sample comparison [51].
Moreover, this adversarial learning strategy of GAN has also been widely implemented to
tackle the problem of domain shift of data distribution for fault diagnosis under different
working conditions or environments, i.e., the distribution of available training data in the
source domain is different from that of data to be tested in the target domain, making the
trained model hard to be generalized [52]. It is a very challenging issue usually faced by
industrial applications.

Due to its special and excellent property, GAN has, consequentially, received signifi-
cant attention when dealing with intelligent FDP of real industrial systems. A list of recent
methods based on GANs are given in Table 2 for more comprehensive and detailed informa-
tion. The current work mainly focuses on the gaming strategy of GAN to achieve the goal of
more realistic sample generation and cross domain adaption for intelligent FDP. Ref. [49] set
up an infoGAN-based failure-prediction algorithm, and it uses an auxiliary GAN to enforce
consistency of the generated samples and their corresponding labels. Ref. [53] propose
to use deep feature enhanced GAN to ensure the accuracy and diversity of synthesize
samples, thereby improving the performance of rolling bearing imbalanced fault diagnosis.
Aiming at the problem that in real industries only data in machine healthy condition can be
collected in advance, literature [54] propose a multilabel 1-D GAN to generate damage data
of industry equipment, and the fault diagnosis accuracy was improved with these gener-
ated data. Ref. [55] jointly use labeled samples in auxiliary domain and unlabeled samples
in target domain via domain-adversarial training in order to enhance the adaptability of
samples in auxiliary domain to target domain and improve the transfer performance.

Despite the fact that GANs can generate samples with the same distribution, it is still
difficult to judge or evaluate the quality of generated 1-D signals, as opposed to the image
generation. Moreover, how to ensure that the adversarial training process converges to the
desired destination is also a challenge. Lastly, as faulty sample generation is always on the
top of the objective list, the way of combining prior knowledge from experts to improve
the generation is also an important issue to be explored for real industrial applications.
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Table 2. Some of recent intelligent FDP methods based on GANs.

Type Reference Year Method Object

Data generation

[56] 2019 GAN is used to refine the rough fault data more similar with
real data. wind turbine

[57] 2019
An auxiliary classifier GAN-based framework to learn from
mechanical sensor signals and generate realistic
one-dimensional raw data.

induction motor

[58] 2020 GAN to generate new samples similar to the simulation and
measurement fault samples in order to enlarge datasets. bearing

[59] 2021
GANs is used to acquire abundant synthetic samples generated
from the simulation and measurement samples, which aims to
expand fault samples.

rotor-bearing systems

[60] 2021 DCGAN is employed to produce new face-portraits of the
nominal and failure behaviors. ball-bearing joints

[53] 2022 GAN to enhance the deep features of real signals. rolling bearings

[61] 2022 GAN uses available time series degradation data to generate
synthetic degradation data. bearing

[62] 2022 A Wasserstein conditional GAN constrain the data generation
characteristics to improve the validity of data. rolling bearings

Local domain FD

[63] 2020 A semi-supervised multi-scale convolutional GAN to learn
discriminativity from unlabeled data. rolling bearings

[64] 2022
Stepwise GAN trains multistage with unlabeled normal data
and fuses multi-source information at feature level and
aggregating neighboring information at decision level

liquid rocket engine

Cross domain FD

[58] 2020

Domain adversarial transfer network exploits task-specific
feature learning networks and domain adversarial training
techniques for handling large distribution discrepancy across
domains.

rotating machinery

[55] 2021
A deep transfer learning model based on an adversarial
learning strategy to effectively separate multiple unlabeled new
fault types.

mechanical equipment

[65] 2022
A one-class GAN based on semi-supervised learning to learn
one-class latent knowledge for dealing with multiple
semi-supervised fault diagnosis tasks.

industrial robot

5. Part II: Supervised DL Methods for Intelligent Industrial FDP

Different from the unsupervised learning way that does not utilize labeled input data,
supervised learning methods use a training set with inputs and correct outputs to teach
models to yield the desired output. For intelligent FDP, supervised learning methods can be
used to extract distinctive features for the specific task from specific types of sensory data.

5.1. Deep Belief Network (DBN) for Fault Features Mining

The traditional neural network is more computationally efficient when it has only
few hidden layers, so it is mostly used to solve some relatively simple mapping modeling
problems. DBN is a network constructed by stacking RBM which is a special type of
generative stochastic neural network, including visible units and hidden units, and a basic
example of DBN with two hidden layers is shown in Figure 7. It can be trained through
pre-training the stacked RBMs. Based on DBN with multiple hidden layers, it can remove
the dependence on prior-knowledge and adaptively extract fault features for diagnosis.
It is also able to process non-linear high-dimensional data, thereby effectively avoiding
problems, such as dimensional disaster. Therefore, DBNs are well suited for dealing with
fault diagnosis of industrial Big Data.
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Figure 7. Basic structure of DBN.

Until now, plenty DBN-based researches have been carried out in this area, and
widely used in fault diagnosis of aircraft engines [66], reciprocating compressors [67,68],
gearboxes [69–72], rolling bearings [73–76], power transformers [77,78], etc. Current studies
generally either use DBN as a classifier in a supervised way, or replace traditional signal
processing methods to mine fault features in an unsupervised way. A compilation of recent
work on DBNs for intelligent FDP are given in Table 3 from the classification of five aspects,
along with their objects.

As a very classical technique in DL, DBN maintains a great deal of parameters to be
set, and once inappropriately handled, it will affect its generalization and limit the accuracy,
especially compared with other modern DL techniques. As a result, DBN is now being
widely combined with other architectures, e.g., CNN, to achieve better performance, which
can also been observed in Table 3.

Table 3. A compilation of recent intelligent FDP methods based on DBNs.

Purpose Reference Year Method Object

Classification

[74] 2019 Convolutional DBN based on Fisher parameter optimization rolling bearings
[79] 2020 DBN optimized by quantum-inspired differential evolution rolling bearings
[80] 2022 DBN classifies features from wavelet energy entropy robot joint bearing
[81] 2022 Gaussian convolutional DBN for classification rotor bearing system

Feature Extraction
[82] 2020 Multi-scale cascading DBN for feature extraction rotating machinery
[68] 2020 Convolutional DBN for feature extraction reciprocating compressors
[83] 2022 Dilated convolution DBN to extract transferable characteristics roller bearing

Feature Fusion
[71] 2019 DBN for feature fusion and classification wind turbine gearbox

[84] 2022 DBN fuses multivariables for parameter estimation deep-sea human occupied
vehicle

Index Regression
[66] 2019 DBN to construct health indicator for RUL prediction aircraft engine
[85] 2020 Median filtering DBN to extract health indicator bearings
[86] 2021 DBN to eliminate health indicator curve oscillation bearings

Pretraining [72] 2015 DBN to pretrain multilayer neural network gearbox

5.2. Recurrent Neural Network (RNN) for Time-Series Data Processing

Compared with other architectures, recurrent neural network (RNN) [34] assumes
that the input and output are not independent of each other, i.e., it tries to learn long-term
dependencies from sequential or time-series input data. RNN contains non-linear recurrent
units with directed cycles, combined with unit hidden states, so that time-series information
can be preserved. Due to this structure, the state of the hidden layer is not only affected
by the input data, but also by the previous calculation results, showing better dynamic
characteristics. RNN is theoretically an ideal non-linear time-series forecasting tool and
a universal approximator for dynamic systems. Common RNNs include gated recurrent
unit (GRU) [87,88] and long short-term memory networks (LSTM) [89–91], which have
become one of the most effective FDP methods for time-series data at present. Their basic
unit comparison of them are given in Figure 8.
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Figure 8. Unit comparison of (a) basic RNN, (b) LSTM, and (c) GRU.

Since long-term condition monitoring data are collected, RNN-based methods are in
great demand in intelligent FDP. Ref. [91] proposes a convolutional LSTM that simultane-
ously extracts time-frequency domain features and models their long-term dependencies of
vibration signals from bearing. The work in [92] utilized LSTM for fault diagnosis and RUL
estimation on time-series aeroengine data. Ref. [93] use a RNN to implement early warning
in the fault creep period for nuclear power machinery, together with principal component
analysis, wavelet analysis, and Bayesian inference model. Ref. [34] design a fault prognosis
approach with the degradation sequence of equipment based on LSTM, which uses the
concatenated feature and operation state indicator for RUL estimation. Some of recent
methods based on RNNs are listed in Table 4 according to their RNN types and purposes,
e.g., fault diagnosis and RUL estimation.

Table 4. Recent publications of intelligent FDP methods based on RNNs.

Type Reference Year Purpose Method Object

basic RNN

[93] 2020 Fault prediction A fully connected RNN to predict faults from signal data
dimensionally reduced.

nuclear power
machinery

[94] 2022 Fault diagnosis RNN to identify different relevant types of faults, based on the
past 24h of satellite measurements without on-site sensors.

photovoltaic
systems

GRU

[95] 2020 RUL estimation GRU to construct health indicator from sensitive fetures. rolling element
bearings

[96] 2021 Fault diagnosis GRU to exploit temporal information of time-series data and
learn representative features from constructed signal images.

rotating
machinery

[87] 2021 Fault diagnosis RNN with GRU and LSTM to capture the hidden patterns of
vibration time series.

power
transformer

[88] 2022 Fault diagnosis GRUs to understand whether data in a time series is crucial
enough to preserve or forget.

bearings of wind
turbines

LSTM

[97] 2019 Fault diagnosis LSTM to capture long-term dependencies through recurrent
behaviour. wind turbines

[98] 2020 RUL estimation
A LSTM model fuses multi-sensor monitoring signals to
discover the hidden long-term dependencies among sensor
time series signals.

turbofan engine

[34] 2020 Fault diagnosis LSTM learns long-term dependencies from the concatenated
feature and operation state indicator of the equipment.

aircraft turbofan
engines

[91] 2021 RUL estimation
Convolution-based LSTM to capture long-term dependencies
and extract features from the time-frequency domain at the
same time.

rotating
machinery

[90] 2021 RUL estimation Dual LSTM to characterize both long and short-term
dependenciesfrom historical information. turbofan engine

[99] 2022 Fault diagnosis
CNN to determine spatial correlations between two
measurements within one time step, and LSTM to identify
temporal dependencies between two adjacent time steps.

planetary gearbox

On one hand, the special structure of recurrent units with directed cycles enable RNN
to better modeling time-series information and on the other hand, it makes that the training
of RNN is generally much slower than that of other architectures such as CNNs, which
poses a great computational requirement for industrial computing centers. Meanwhile,
similar to CNN, RNN is also sensitive to training data, and when the fault feature is weak
or distorted by noise, it is also hard to maintain good performance.
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5.3. Convolutional Neural Network (CNN) for Image Fault Diagnosis

The convolutional neural network (CNN) is inspired by biological visual perception
mechanism. It has unique structural characteristics, such as local connection, weight
sharing, and pooling, which enables CNN with strong feature learning and representation
ability. At present, CNN are mainly used in fault diagnosis, and it can hardly realize the
status trends analysis of equipment or fault prognosis. In the field of intelligent FDP, there
are generally three situations. A list of recent publications on intelligent FDP based on
CNN architectures are given in Table 5. Details are described in the following subsections.

Table 5. A list of recent intelligent FDP methods based on CNNs.

Type Reference Year Method Object

Camera sensors
[100] 2019 CNN for feature extraction and classification cooling radiator
[101] 2020 CNN extracts fault features from infrared thermal images rotating machinery
[102] 2021 Mask rcnn for detection power transformers

Signals to images

[103] 2019 Wavelet transform is adopted to extract 2-D time-frequency
features from raw 1-D vibration signals gearboxes

[104] 2020 Continuous wavelet transform (CWT) converts signals into
images aeroengine control system

[105] 2020 Sensor signals are converted to time-frequency distribution by
wavelet transform induction motor

[106] 2021 1-D vibration signals are converted to 2-D grayscale vibration
images rolling element bearing

[107] 2021

Vibration signals are first transformed into angular domain and
then converted to corresponding envelope and squared
envelope spectrum features, which are fused into RGB color
image form

mechanical rotating
components

[108] 2022 CWT converts the vibratory time-series signals to the scalogram
feature images induction motors

[109] 2022 A conversion method based on principal component analysis is
applied to fuse multisignal data into three-channel RGB images

mechanical manufacturing
systems

1-D CNN

[110] 2018 1-D CNN learns features adaptively from raw mechanical data
without prior knowledge motor bearing

[111] 2019 Adaptive 1-D CNN for real-time and highly accurate circuit
monitoring system

modular multilevel
converter

[112] 2020 Multi-attention 1-D CNN to diagnose faults rolling bearing
[113] 2021 1-D CNN to learn feature from the high-frequency components high-speed train bogie
[114] 2022 1-D CNN to establish model for fault diagnosis UAV rotor

[115] 2022 Multi-level features fusion 1-D CNN for good performance of
feature extraction on vibration signals bearing

5.3.1. The Monitoring Sensors Are Cameras

When the device fault can be captured by camera, i.e., there are evidences reflected at
pixel level, the CNN-based methods can obtain better diagnosis results, such as in the fields of
machinery and circuits. Ref. [101] proposes a fault diagnosis strategy for rotating machinery
based on CNN using infrared thermal images. Ref. [116] integrates an attention mechanism
into CNN to efficiently extract the fault features of analog circuit. Similarly, Ref. [117] use a
encoder–decoder-like CNN to find cracks on device surface in complex background. The
diagnosis of such image data generally can hardly achieve precise quantitative description
of the faults, it can usually only obtain the qualitative trend of the device faults.

5.3.2. Conversion from Other Sensory Data into Images

Usually the monitoring variable observed by the sensor is a one-dimensional signal,
which is different from a two-dimensional image. In order to leverage the powerful feature
learning ability of CNN, many researchers consider converting one-dimensional signals into
two-dimensional images, and then input them into CNN for classification or recognition.
For example, Ref. [104] propose an intelligent fault diagnosis method for aeroengine sensors
combining a CNN with time-frequency analysis wherein the signal recognition problem
is transformed into an image-recognition problem. An example pipeline is illustrated in
Figure 9. Many of these work puts their main focus on how to convert to two-dimensional
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images. Common methods include wavelet transform [102,104,108], S-transform [118],
phase space reconstruction [119], etc. These two-dimensional time-frequency distribution
images generated by transformation often have simpler backgrounds than natural images.
The quality of these transformation methods directly affects the performance of CNN. If
there is little difference between the two-dimensional images of fault and non-fault signals,
the accuracy of CNN classification will also be unsatisfactory.

Figure 9. A typical fault diagnosis pipeline based on signal-to-image conversion and CNN.

5.3.3. 1-D CNN for Signal Processing

Actually, two-dimensional convolution operations can also be decomposed two one-
dimensional convolutions vertically and horizontally. Therefore, another attempt direction
is that tries to fit two-dimensional CNN to one-dimensional data, i.e., 1-D CNN [54,113],
which is specialized for temporal signals [120]. This operation is inherently suitable for
sensory data, and has been widely used for intelligent FDP in recent years. For example,
Ref. [121] presents a 1-D CNN-based approach to automatically learn features for rub-
impact fault diagnosis from the raw vibration signals of a rotor system, and [114] establish
a fault identification model based on the powerful feature extraction and complex data
analysis abilities of 1D-CNN. Due to its inherent properties, many modern techniques
for 2-D CNN can be imported into 1-D CNN for better signal feature extraction, such as
attention [112], lightweight design [122], and dilated convolution [123].

Although CNN has provided an alternative way to process different types of condition
monitoring data, there are still limitations. Firstly, the conversion from signal data to
image is equivalent to the quantization process of imaging, which means that important
details of signal intensity can be naturally omitted when projecting to pixel bins. In this
way, subtle abnormality in the early stages can easily be ignored by convolution and pooling
operations. Lastly, the methods for conversion should also been carefully designed to
prevent overfitting. Furthermore, it is also a challenge for CNN-based FDP methods to
achieve real-time diagnosis since they are with relatively high computational overheads for
image data.

5.4. Transformer for Self-Attention Feature Extraction

Initially designed in natural-language processing, attention mechanism is a tech-
nique that can model sequence dependencies, which allow a model to focus only on a set
of elements and to decompose a problem into a sequence of attention-based reasoning
tasks [124,125]. The attention mechanism now has been adopted in various deep learning
architectures, such as CNNs and RNNs. Transformer architecture [126] abandons all the
recurrent and convolutional structures, and only contains multi-head self-attention (MSA),
multi-layer perceptron (MLP), and a basic fully connected layer [127] to capture the long-
term dependencies between elements in a sequence without considering their distance,
which can consider the global information comprehensively.
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In Figure 10, we illustrate an example of fault diagnosis pipeline using transformer.
The captured signals are firstly cropped into signal subsequences according to their original
positions, which is then mapped into a high-dimensional vector through linear embedding
and followed by trainable position encoding to retain the position information of the signal.
Vectors are then fed into multiple stacked transformer blocks for long-distance modeling
through layer-normalized MSAs and MLPs. Finally, the extracted features are input into the
MLP head, i.e., fully-connected layer, for the classification results. Common loss functions
for other classification tasks are also used.

Figure 10. An example pipeline of transformer-based fault diagnosis.

Due to the outstanding global information modeling ability, transformer has outper-
formed other architectures in feature extraction for many tasks, and is a hot research topic
of FDP in these two years. Ref. [127] proposes a time-series transformer which utilizes
raw vibration signals for the rotating machinery fault diagnosis, and it tries to capture
translation invariance and long-term dependencies with a new time-series tokenizer. Differ-
ent from [127], Ref. [128] designs a time-frequency transformer with a fresh tokenizer and
encoder module to extract effective abstractions from the time–frequency representation
of vibration signals. Ref. [36] use an integrated vision transformer (ViT) based on the soft
voting fusion method to diagnose the bearing fault with high accuracy and generalization.
For RUL prediction, Ref. [129] propose a transformer-based encoder–decoder structure
with a dual-aspect encoders design to extract features from the sensor and time step si-
multaneously, while adaptively learning to focus on more important part of input and
processing long data sequences.

Some recent work of these two years for intelligent FDP based on a transformer are given
in Table 6. As can be observed, transformer-based FDP methods are gradually being used
as excellent feature extractors and for time-series data processing, due to their outstanding
performance in modeling long-distance information in input data, compared with CNNs
and RNNs.
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Table 6. Some of recent intelligent FDP methods based on a transformer.

Type Reference Year Method Object

Fault diagnosis

[130] 2021 Linear embedding sequence of signal patches is used as an input to a
Transformer encoder, CNN is used as decoder and classifier.

bearing and gearbox
datasets

[128] 2022
A time-frequency Transformer model with a new tokenizer and
encoder module to extract effective abstractions from the
time-frequency representation of vibration signals.

bearing

[131] 2022

The weight parameters of self-extracted features of SPBO-SDAE
network are optimized through the self-attention mechanism of
transformer to retain the target features and filter the redundant
features.

rotating machinery

[132] 2022
A lightweight transformer based on convolutional embedding and
linear self-attention to deal with the challenges of limited samples,
noise interference, and lightweight.

rotating machinery

[133] 2022 Convformer-NSE to extract robust features that integrate both global
and local information under heavy noise. gearbox systems

[127] 2022 Time series transformer with a tokens sequences generation method
handling data in 1D format. rotating machinery

[134] 2022 Transformer is built to extract temporal features. electromagnetic
systems

[135] 2022 Transformer architecture is employed to diagnose the simultaneous
faults with time-series data.

on-site air handling
unit

Fault prediction

[136] 2021 As a variant of transformer, Informer is used for Long sequence
time-series prediction.

nuclear power
valves

[137] 2022
Informer is introduced to solve the problem of error accumulation
caused by the conventional methods of time series forecasting of
motor bearing vibration.

bearing

RUL prediction

[138] 2022
A self-attention module is designed by adopting the attention
mechanism into ConvLSTM cell to focus on the degraded data that is
beneficial to the prediction result, and suppressing less useful ones.

bearing

[139] 2022
Convolutional transformer combines the global context capturing of
attention mechanism with the local dependencies modeling of
convolutional operation

bearing

Owing to the ability of long-range modeling of data, it side-effect is that its local
information modeling ability is relatively lower than CNNs and RNNs, and there are also
attempts to make up the shortcoming through combining transformer with CNN or RNN.
The second limitation is its computational efficiency because of its special structure, and it
is undoubtedly the current hot spot for DL community. However, then again, there is still
much to be further explored on this topic.

5.5. Graph Neural Network (GNN) for Relationship Modeling

Although the above deep learning techniques can effectively capture the hidden
features or model the inherent knowledge from input data in an end-to-end way, most of
them ignore the inter-dependencies between data or various physical measurements of
multiple sensors [140]. Since [141] first applied neural networks to directed acyclic graphs,
graph neural networks (GNN) have successfully handled data characterized by complex
spatiotemporal relationships [142]. Although deep learning effectively captures the hidden
patterns in Euclidean domains, more data are generated from non-Euclidean domains and
represented as graphs with complex spatiotemporal relationships among objects. GNN
tries to model the relationships with graph representations, i.e., feature node and adjacency
edge, and concentrate on the tasks of node classification (node level), edge classification
and link prediction (edge level), and graph classification (graph level) [140,143]. GNN
can be integrated with other architectures and extended to graph convolutional networks
(GCNs) [144], graph attention networks (GATs) [145], graph autoencoders (GAEs) [146], etc.

A graph structure in GNN can be generally represented by a node feature matrix,
an adjacency matrix and a set of weighted edges. It can propagate the node information
through the edges of a graph via graph operations, such as graph convolutions, and learn a
promising node or graph representations. The most commonly used GNN is GCN, and
many operations in GCN can find their similar counterparts in CNN, such as convolutions
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on nodes to aggregate the information of connected neighbor nodes along the weighted
edges, Relu function for non-linear activation and pooling layer to reduce dimensions,
though there are very small differences in operations in practice.

Owing to the capability to model relationships in data, GNN has been receiving atten-
tions from researchers in the FDP community recently, and the challenges faced in FDP are
the appropriate way of constructing and realizing the graph [142]. Figure 11 gives an exam-
ple diagnosis pipeline based on GCN. Similarly, [144] present a GCN-based fault diagnosis
method that uses a association graph constructed from prediagnostic results and adjust
the graph via using a hybrid of measurements and prior knowledge, which obtained good
diagnosis results. When dealing with time-series data, the work in [140] constructs three
kinds of graphs for fault diagnosis and prognosis according to the time-series subsample
types as univariate and multivariate data, respectively. Ref. [147] proposes an interaction-
aware GNN for fault diagnosis of complex industrial process, which transforms sensor
signals into a heterogeneous graph with multiple edge types and employ a GNN to extract
fault feature of one edge type, so it can learn implicit interactions between sensor signals.

Figure 11. An example pipeline of fault diagnosis using GCN.

In Table 7, more recent GNN-based intelligent FDP methods are listed for the references
of readers. It can be observed that GNNs has a high popularity in the last two years. On the
basis of knowledge graph, GNN is recognized to reason or infer knowledge, which realizes
the promotion from perception to cognition of AI. As a result, at current stage of research,
the explicit incorporation of (prior) knowledge for constructing graphs in GNN instead of
currently using a large amount of training data, and more generalized knowledge inference
are desired and beneficial for FDP. GNN is expected to show greater potential in subsequent
studies for intelligent industrial FDP.

Table 7. Some of recent intelligent FDP methods based on GNNs.

Type Reference Year Method Object

GCN

[148] 2020
A deep GCN based on graph theory transforms data into graphs of
geometric structures with weights representing the similarity between
connected vertices.

roller bearings

[149] 2021
Semi-supervised GCN constructs all samples into an undirected and
weighted k-nearest neighbor graph, which is trained using both
labeled and unlabeled samples.

rotating machinery

[150] 2021

GCN incorporates the weighted horizontal visibility graph to
transform time series to graph data, and uses graph isomorphism
network to learn the graph representation and perform fault
classification.

bearing

[151] 2021
GCN decomposes signals to present frequency feature as graph and
extract the features of points with a large span of the defined graph
samples.

wind turbine

[144] 2021
A structure analysis-based GCN integrates the measurement and the
prior knowledge of the system of interest and introduces a weight
coefficient to adjust their influence.

rectifier

[152] 2022 Multi-scale cluster-GCN is proposed to learn the representation
feature extracted by AE layer. gearbox and bearing

[153] 2022 Edge connections of the input static graph are updated according to
the relationship among high-level features extracted by GCN. rotating machinery
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Table 7. Cont.

Type Reference Year Method Object

GAT

[145] 2021
A semi-supervised conditional random field-based GAT learns the
effective node representations and models the label dependency
through assigning adaptive weights to different neighbors.

motor

[154] 2022

A triplet metric driven multi-head GNN combines deep metric
learning and improves triplet loss to convert signals into graph
structure, and introduces multi-head attention to reduce interference
of heterogeneous vertices.

rolling bearing

GAE

[146] 2022

Graph dynamic AE uses graph convolution to avoid the
dimensionality increase problem of classic dynamic methods, and a
weighted adjacency matrix to adaptively assign weights to the
temporal samples.

Tennessee Eastman
process

[155] 2022
Sparse AE and GNN are combined to effectively capture
inter-dependencies in high-dimensional sensor data with few
anomalies.

cyber-physical
systems

6. Challenges and Possible Solutions

This paper has provided a systematic literature review of deep learning based intelli-
gent industrial FDP. It can be concluded that there are a lot of interest in using CNN, DBN,
or RNN for fault diagnosis purposes, but when architectures develop, more complicated
but powerful methods have been introduced into FDP. GNN, Transformer, and GAN are
gradually receiving attention and their performance has also begun to surpass traditional
methods. Although the deep learning methods have been applied in the intelligent FDP of
industrial systems, there are still several challenges that need to be explored and solved. In
this section, we analyze the open challenges from the four aspects of data imbalance, com-
pound fault type, multimodal data fusion, and edge device implementation, and provide
possible solutions.

6.1. Imbalance Problem in Industrial Applications

In practical industrial applications, the acquisition of typical data (including historical
health data, fault data, and simulation data) of some devices is usually expensive, labor-
intensive, and sometimes impossible [156]. Even if the state data of the system can be
acquired, it often has strong uncertainty and incompleteness, these problems increase
the difficulty of FDP. At present, the total amount of existing data can only support the
implementation of traditional methods or shallow machine learning methods. It is still a
challenge to train robust intelligent FDP models with limited data and works well under
complex working conditions. The second problem [157] is the imbalance data that (1) there
are too few fault samples and too much duplicated normal data samples; and (2) there is
an open set of fault modes that many of the modes may not be encountered in operation.

One possible way is to run long-term laboratory tests or simulation for every single
device and the whole system, in order to simulate various working conditions in the
laboratory, and find all possible fault modes of devices and the system. However, obtaining
complete fault data of the entire system sometimes is expensive and infeasible [156]. In
terms of intelligent FDP techniques, it could be solved from the following aspects.

6.1.1. Task-Level Transfer Learning

Despite the imbalance in local systems, there are a large number of similar devices or
subsystems in other industrial, mechanical, power grid systems, etc. These devices and
subsystems share the similar architecture or composition, and they have accumulated a
certain amount of historical health data. The utilization of these large amounts of useful
data or knowledge from other systems for the FDP of local industrial system, i.e., task-
level transfer learning, becomes an efficient and promising approach. It emphasizes the
transformation data, feature, knowledge or model to different fields. At present, transfer
learning-based methods have been implemented in other fields such as image recognition,
and several pioneering work has been completed for intelligent FDP. Ref. [158] adopt the
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knowledge transfer scheme and use a multi-input multi-output convolutional network to
extract domain-invariant feature representations and classifiers from the labeled dataset
from scientific test rigs and the unlabeled dataset from industrial application to be tested.

6.1.2. Data-Level Augmentation

One direct way is to generate more balanced/diverse data to enhance the training
sets for FDP models. Traditional data augmentation through transformations, such as
translation, deformation, and scaling, has low computational cost and is easy to implement,
which is a simple and efficient way to generate a large amount of labeled samples to
improve FDP performance with limited data. However, the generated samples can be
considered as local distortions of existing labeled sample points in high-dimensional space,
i.e., they are still with limited diversity. GANs offer a good option to generate more realistic
or vivid data samples with the same original data distribution of minor fault patterns for
both 2-D image data and 1-D timer-series signal data, as we have analyzed in Section 4.2.

6.1.3. Model-Level Meta-Learning

Meta-learning is a flexible framework which can learn to obtain the ability of extracting
meta-knowledge from multiple relevant tasks to gain generalization on various tasks, in
order to guide the learning and improve its performance on target tasks without training
from scratch [159,160]. Currently, the studies of model-level meta-learning for intelligent
FDP with imbalanced data are still in their earlier stages. Some work [159], mostly based
on metric-based meta-learning, has explored its implementation in industrial FDP, and
shown excellent accuracy and robustness on public datasets. However, it needs further
development and verification in operational industrial systems.

6.2. Lifting Diagnosis from Single Faults to Compound Faults

Most of the modern deep learning-based intelligent FDP methods are only applied in
the single-fault diagnosis. However, in actual complex industrial systems, several kinds of
single faults may exist simultaneously, which means several components or devices may
break down together, resulting in compound-fault modes [103]. Usually, these faults are
related to each other and affect each other at the same time. The signals captured by sensors
may be coupled with multiple fault signals, and the generic FDP methods that work for one
single fault will inevitably fail in compound-fault modes. In addition, the compound-fault
samples are also difficult to collect and label, which further limits the application of the
existing deep learning-based methods [161]. In operational complex industrial systems,
compound faults are generally more dangerous and harmful than a single fault [162]. It
has, therefore, become a key issue to be solved for complex industrial systems.

Traditional compound-fault-diagnosis methods rely heavily on either prior knowledge
inference or signal analysis [161], which is difficult to be applied in operational industrial
systems. Identifying and decoupling the compound fault are still a great challenge for
intelligent FDP. The effective separation of fault characteristic components is the core of
compound-fault diagnosis [163]. Ref. [103] uses a multi-label CNN to achieve compound
fault diagnosis based on the 2-D time-frequency features in an end-to-end way. Ref. [164]
propose a deep ensemble capsule network that combines multiple decoupling capsule net-
work individually trained on one sensory data in a way of ensemble learning to effectively
decouple the compound fault into individual faults. In [162], a decoupling classifier is
designed to decouple the compound fault into single faults by outputting multiple labels
for samples.

Considering that the compound-fault-sample data are always scarce, it is also important
to use the single fault data to train the compound-fault decoupling model with the help of
the knowledge learned from the single fault mode data. The decoupling classifier in [162] is
trained on a dataset only containing normal and single fault samples. To address the problem
of identifying unknown compound faults, Ref. [161] present a zero-shot learning model which
classifies the compound faults according to the similarity measure between the signal features
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and the semantic features of the compound faults to identify the categories of unknown
compound faults. Actually, the scarce of compound fault samples is a key issue to improve the
practicability of the intelligent compound-fault-diagnosis methods.

6.3. Boosting Intelligent FDP with Multimodal Fusion

On one hand, an individual sensor can hardly provide the complementary and thor-
ough information of complex industrial devices, and various signal transfer paths from the
fault point to the location of sensor, so it is necessary to place several sensors at different
places to capture more comprehensive and accurate information for the faults [164]. There-
fore, in industrial systems, there are always multisensory data used for intelligent FDP. In
recent years, intelligent FDP based on the fusion of multi-source homogeneous information
has been thoroughly explored and discussed. On the other hand, a fault can be reflected
in several relevant sensors with heterogeneous platforms simultaneously, such as current,
voltage, temperature, etc. The fusion of sensory data from heterogeneous platforms, i.e.,
multimodal fusion, is for the purpose that complementary information could be extracted
from each modality, thus yielding a richer representation that could be used to achieve
higher-quality intelligent FDP, compared to using only a single modality [165]. The efficient
fusion of multimodal sensory data remains challenging for the community.

Early stage of multimodal fusion mainly are at data-level, i.e., representing the fused
data in a lower-dimensional subspace, in which principal component analysis is commonly
used. It is then extended to feature-based fusion that features extracted from each model for
each modality is fused, and decision-based fusion which makes a weighted fusion decision
for the outputs of those models [166]. For example, [167] use a coupling AE to find a joint
feature between vibration and acoustic signals for health-state classification, and [168] propose
to extract the multiscale features of vibration and torque signals through a three-stage feature
fusion method for the fault diagnosis of bearings. In [169], a multimodal decision-fusion model
is built to achieve comprehensive fault diagnosis for rotor-bearing systems.

As can be observed in the related literatures of multimodal fusion for intelligent FDP,
current modalities used mostly are derived from similar mechanisms, such as acceleration
signals and acoustic signals formed by vibration, and voltage and current signals formed
by electronics. They are generally with the same data representation and can easily be
fused through data transformations. The modalities derived from different mechanisms
are merely used, for example the fusion of vibration signals and 2-D images, temperature
signals and current signals, or even text descriptions and images. Therefore, there is still
room for the fusion of these modalities to boost the performance and applicability of
intelligent FDP in complex industrial systems.

6.4. Intelligent FDP Acceleration for Edge Implementation

Industrial IoT and AI have been playing highly significant roles in modern industrial
systems, more and more sensors are installed, generating massive amounts of sensory data.
With the increase in data scale, the response delay of data transmission and calculation
cannot be guaranteed, which brings great challenges to the computing center-based indus-
trial systems. Moreover, modern, intelligent FDP algorithms based on deep learning are
generally computationally intensive, i.e., with huge parameters and deep architectures.

To tackle this problem, an emerging computing paradigm, edge computing, has been
widely recognized as a promising solution [170]. In the edge computing paradigm, model
training is performed by the center, and models are deployed and runs on the edge nodes,
such as gateway, smart devices, and the way of bringing data and computation closer to
where data are produced can help to save the response time and bandwidth, as well as
energy consumption [171].

However, edge ends are always constrained by resources, which means their power
supply and computing capability are limited and heavy deep learning models can hardly
adapt to these platforms. Therefore, it brings great challenges to the intelligent FDP al-
gorithms in turn. Models that are computationally lightweight and of high accuracy are
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preferred for the edge implementation [172]. In the field of computer vision, the lightweight
design of deep learning models has been a hot research spot for edge implementation,
and typical methods are network pruning [173] and knowledge distillation [174]. Cur-
rently, some pioneer work [175,176] has been conducted and shown promising results for
intelligent FDP on edge ends.

7. Conclusions

The diagnosis and prognosis of faults are important for the operation of industrial
systems. This paper mainly reviews the development of deep learning techniques in
intelligent FDP for industrial systems. The tasks of fault diagnosis and fault prognosis
are firstly defined mathematically. An overview of deep learning architectures that are
commonly used for intelligent FDP are then summarized. To be specific, the architectures
of DBN, CNN, AE, RNN, GAN, Transformer, and GNN are introduced, along with their
applications. Finally, we prospect four future directions from the aspects of data imbalance,
compound fault type, multimodal data fusion, and edge implementation, and possible
solutions are also provided. This survey is expected to comprehensively present the
development of deep learning techniques used in intelligent FDP for industrial systems
and provide possible guidelines for the research in the community.

Early detection, isolation, and identification of different faults enabled with DL tech-
niques will help to greatly improve the efficiency, reliability, and repeatability of industrial
systems. With the fast development and evolution of DL and related techniques, in near
future many fundamental problems, such as the mentioned open challenges, are very likely
to be addressed. As for the research trends, the borders between different DL architectures
are being broken down and a hybrid architecture that takes both advantages is expected to
produce better flexibility and performance. In addition, physics-informed DL techniques
based on the physical characteristics and related physical models of the industrial system
will be an important future direction.
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