
Citation: Tran, V.D.; Lam, D.K.; Tran,

T.H. Hardware-Based Architecture

for DNN Wireless Communication

Models. Sensors 2023, 23, 1302.

https://doi.org/10.3390/s23031302

Academic Editor: Oleg Varlamov

Received: 16 December 2022

Revised: 12 January 2023

Accepted: 13 January 2023

Published: 23 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Hardware-Based Architecture for DNN Wireless
Communication Models
Van Duy Tran 1,2, Duc Khai Lam 1,2,* and Thi Hong Tran 3

1 Computer Engineering Department, University of Information Technology,
Ho Chi Minh City 700000, Vietnam

2 Vietnam National University, Ho Chi Minh City 700000, Vietnam
3 Graduate School of Enginering, Osaka City University, Osaka 558-8585, Japan
* Correspondence: khaild@uit.edu.vn

Abstract: Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO
OFDM) is a key technology for wireless communication systems. However, because of the problem
of a high peak-to-average power ratio (PAPR), OFDM symbols can be distorted at the MIMO OFDM
transmitter. It degrades the signal detection and channel estimation performance at the MIMO
OFDM receiver. In this paper, three deep neural network (DNN) models are proposed to solve the
problem of non-linear distortions introduced by the power amplifier (PA) of the transmitters and
replace the conventional digital signal processing (DSP) modules at the receivers in 2 × 2 MIMO
OFDM and 4 × 4 MIMO OFDM systems. Proposed model type I uses the DNN model to de-map
the signals at the receiver. Proposed model type II uses the DNN model to learn and filter out
the channel noises at the receiver. Proposed model type III uses the DNN model to de-map and
detect the signals at the receiver. All three model types attempt to solve the non-linear problem.
The robust bit error rate (BER) performances of the proposed receivers are achieved through the
software and hardware implementation results. In addition, we have also implemented appropriate
hardware architectures for the proposed DNN models using special techniques, such as quantization
and pipeline to check the feasibility in practice, which recent studies have not done. Our hardware
architectures are successfully designed and implemented on the Virtex 7 vc709 FPGA board.

Keywords: artificial intelligence; deep learning; hardware design; MIMO; OFDM

1. Introduction

Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO
OFDM) is more efficient than conventional OFDM system in transmitting data between
wireless devices [1,2]. In the OFDM system, in which the subcarriers are orthogonal to
each other, the signal spectrum in the subcarriers allows overlapping while the receiver
can still recover the original signals. The overlapped signal spectrum makes the OFDM
system much more efficient in spectrum utilization than conventional systems. The OFDM
system has also attracted much attention from many researchers because of its simple
implementation, robustness against frequency-selective fading channels, and avoidance of
inter-symbol interference (ISI) by adding guard intervals (GI). The MIMO OFDM system
not only retains the same characteristics of a conventional OFDM system but also provides
higher bit error rate (BER) performance and faster data rate.

Although MIMO OFDM has many great features, there are also many drawbacks,
e.g., the significantly large power consumption of analog-to-digital converters (ADCs),
the beam squint effect in the wideband scenario, the sensitivity to the carrier frequency
offset (CFO) and the high peak-to-average power ratio (PAPR) issue. Therefore, many
works [3–6] have been motivated to solve these problems. With the high PAPR problem [7],
OFDM symbols at the transmitter make the power amplifier (PA) operate in the nonlinear
amplification region, which causes clipping distortions to the outputs of the PA. Then

Sensors 2023, 23, 1302. https://doi.org/10.3390/s23031302 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031302
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2711-1408
https://doi.org/10.3390/s23031302
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031302?type=check_update&version=2

Sensors 2023, 23, 1302 2 of 27

nonlinear distortions reduce the performance of the channel estimation and signal detection
at the MIMO ODFM receiver devices. The nonlinear distortions generated by the PA need
to be minimized to improve the performance of the MIMO OFDM receiver. One method
to reduce the high PAPR problem in front of the PA is that OFDM signals need to be cut
before passing through PA. It helps PA operate in the linear amplification region. However,
the clipped OFDM signals are affected.

Through artificial intelligence (AI) developments, many works have applied deep
learning to optimize wireless communication systems, such as [8–13]. Concretely, the au-
thors in [8] proposed a deep learning-based signal detection system to replace conventional
MIMO transmitters, which achieves the same accuracy as the conventional MIMO trans-
mitter. However, the deployed deep learning system only applies to the MIMO system
and does not include the OFDM technique. In addition, the deep learning (DL) systems
in [9–11] are proposed to support correlated noise cancellation, thus improving signal
recovery capacity at the receiver. Although the architectures in [9–11] show the possibility
of improving receiver performance in MIMO systems, the authors do not consider the
MIMO OFDM model and the case of the high PAPR problem, so the signal coming from
the receiver is ideal with noise from the channel. Authors in [12,13] resolved the high
PAPR issue and achieved the expected results. But in [12], the MIMO OFDM system
implemented has 2 and 8 antennas (2 × 8) at the transmitter and receiver, respectively.
Therefore, the models in [12] are easier to achieve efficiency than the conventional 2 × 2 or
4 × 4 MIMO OFDM models (a point-to-point MIMO-OFDM system). In addition, the size
of its deep learning models is quite large, with tens of millions of parameters leading to
significant resource consumption. The architecture in [13] shows that when applied to
MIMO OFDM systems, the deep neural network (DNN) model no longer achieves the
same efficiency as the single input, single output (SISO) OFDM systems. In general, none
of the above architectures is proposed to apply deep learning in the point-to-point MIMO
OFDM system concerned with the high PAPR problem. In addition, the above studies also
do not implement AI hardware design to prove that it is feasible for practice and only focus
on the results performed on software simulations.

In this paper, from all of the shortcomings of the above studies, we propose three DL-
based MIMO OFDM receivers capable of improving receiver performance. There are two
proposed models to help improve the receiver performance of the MIMO OFDM system,
while the other is proposed to completely replace the transmitter using DL. In particular,
our systems use the point-to-point MIMO OFDM model, which has not been considered
by any previous work, with the high PAPR problem at the transmitter during simulation.
In addition, the size of our DL models is also relatively small compared to the DL models
in [12]. With model type I, the received symbols are first pre-processed by the Least Square
(LS) estimator to estimate channel information and the Zero Forcing/Maximum-Likelihood
Detection (ZF/MLD) to detect the signal, and then fed to a DNN model to improve the BER
performances. With model type II, we use a DNN model to improve the noise cancellation,
and then the signals are clearer to pass through the channel estimator and signal detector.
The LS estimator and the ZF/MLD signal detector are still used in this model. Finally,
the most special is model type III, which completely replaces the conventional DSP signal
demapping and detection modules at the receiver of the MIMO OFDM system. In this
model, the GI is removed from the received signals and then these received signals are
fed to the DNN model for signal detection. Therefore, the received signals do not need
to go through the channel estimator and signal detector to get the original signals at the
transmitter. Then the architecture is optimized and less complex than a conventional MIMO
OFDM system. Furthermore, we also design the appropriate hardware architectures for the
three DNN models proposed above. In addition, our hardware architecture is built using
several techniques, such as pipeline and quantization, that increase computational speed
and reduce storage resources compared to conventional designs.

The remainder of this paper is organized as follows. Section 2 shows the system model.
Section 3 presents a background knowledge of conventional detectors in the MIMO OFDM

Sensors 2023, 23, 1302 3 of 27

system and non-linear noise in the MIMO OFDM system. Section 4 describes our proposed
models. Section 5 shows the hardware architectures in detail. Section 6 presents the results
after running the simulation. Finally, Section 7 concludes the paper.

2. System Model

In this paper, we consider an M × M MIMO OFDM system in Figure 1, where
there are M antennas at the transmitter and receiver. The MIMO OFDM channel follows
the multipath (15 taps) fading channel using the time-varying Rayleigh fading channel.
The modulation scheme used is QPSK, the number of OFDM subcarriers is N(N = 64),
and the number of pilots is also N for total estimation of the channel information. We
assume M is equal to 2 and 4 in this paper. For the nth symbol (1≤ n≤N), the received
signal at the mrth receive antenna yth

mr(n) can be described as follows

yth
mr(n) =

M

∑
mt=1

(hmt,mr(n)
⊕smt(n)) + wmr(n) (1)

where smt(n) is the transmitted signal at the mtth transmit antenna, ⊕ denotes the circular
convolution, wmr(n∼CN (0, σ2) is the additive white Gaussian noise (AWGN) at the mrth

receive antenna. Notation hmt,mr(n))∼CN (0, 1) represents the channel coefficient between
the mtth transmit antenna and mrth receive antenna. By using vector and matrix forms, (1)
can be written as

Y(n) = H⊕S(n) + W(n) (2)

Furthermore, we also include LS as a channel estimator and ZF/MLD as a signal
detector in some cases. In this paper, we divide the operation of our designs into two
phases. Firstly, the training phase is done online with many simulation data samples. In the
offline phase, our hardware design in this paper can run inference to output the data.

Transmitter

S/P Mapping IFFT P/SAddCP

S/P Mapping IFFT

M antennas

P/SAddCP

RF

RF

Receiver

P/S FFT S/P
Remove

CP

P/S FFT

M antennas

S/P
Remove

CP

RF

RF

PA

PA

Signal

detection

Channel

estimation

Demapping

Figure 1. MIMO OFDM system.

We further explain the choice of system parameters. We have chosen the LS algorithm
for the channel estimation process due to its simplicity. In addition, the authors in [12] use
the LS algorithm, so we also use the LS algorithm to have similarities when comparing
the results. For the signal detection process, we have chosen the ZF algorithm due to its
simplicity and the MLD algorithm due to its high performance. In addition, the authors

Sensors 2023, 23, 1302 4 of 27

in [9–11] use the ZF, and MLD algorithms, so we also use these algorithms to have sim-
ilarities when comparing the results. As we know, the LS and Zero-forcing algorithms
have low BER performance due to their complexity. So if we use the QPSK modulation
scheme with lower complexity, we get better results than models using 64-QAM or 128-
QAM. Besides, 64-QAM or 128-QAM is quite challenging to apply to DL models, and the
computational speed of a DL-based system would be very slow with today’s computer
technology. In addition, our work also focuses on testing the use of DL in particular and
machine learning in general in wireless communication systems. Then, it can serve as a
premise for the research and application of machine learning in future practical wireless
communication systems. Our system uses 64 subcarriers because this number is commonly
used in systems relevant to OFDM such as [13]. During simulation, the CP (Cyclic prefix)
length must be greater than the number of taps for the simulation to function properly for
a MIMO OFDM system. Therefore for the use of 64 subcarriers, we used a CP of length 16.
Thus, 15 taps are the maximum number that can be selected. The multipath fading channel
is considered in our system, then 15 taps are selected. Lastly, the reason why we use the
point-to-point model (the number of antennas at the transmitter and receiver are equal) is
that in our referred papers [9–11] the authors also use the point-to-point model. So we do
that to have similarities when comparing to [9–11].

3. Background
3.1. Channel Estimator

Channel estimators in wireless communication systems generate information about
the channel. Channel information is derived from the pilot signals that pass from the
transmitter to the receiver. From this channel information, the received signals are re-
covered. The Least Square algorithm is popularly used for channel estimators due to its
simplicity [14].

The LS channel estimation method seeks to estimate the channel Ĥ in such a way that
the following cost function is minimized:

J(Ĥ) = ||Y− XĤ||2

= (Y− XĤ)H(Y− XĤ)

= YHY−YHXĤ − ĤHXHY + ĤHXHXĤ

(3)

By setting the derivative of the function with respect to Ĥ to zero, we have:

∂J(Ĥ)

∂Ĥ
= −2(XHY) + 2(XHXĤ) = 0

=> XHXĤ = XHY
(4)

From that, we can derive the formula of the LS algorithm as follows:

ĤLS = (XHX)
−1

XHY (5)

3.2. Conventional Detector

In this section, three conventional digital signal processing (DSP) techniques to detect
the MIMO OFDM signals at the receiver are introduced. These techniques are ZF, MMSE,
and MLD [14].

3.2.1. ZF Detector

Zero-forcing is a method used to recover the received signal. In this case, we assume
that no noise occurs during the data transmission phase. In the ZF algorithm, the transmit-

Sensors 2023, 23, 1302 5 of 27

ted signal S(n) is recovered by multiplying the received signal Y(n) by the pseudo-inverse
of the channel matrix WZF = (HH H)−1HH , which can be described as follows

Y(n) = HS(n) + W(n)

WZFY(n) = WZF HS(n) + WZFW(n)

WZFY(n) = S(n) + WZFW(n)

=> YZF(n) = WZFY(n)

(6)

where, the superscript H denotes the conjugate transpose operation. Then, the component-
wise detection is performed on received signals Y(n) to recover the transmitted signals.
The advantage of the ZF method is that the implementation is quite simple, and the
computational complexity is very low (The noise is assumed to be non-existent). Hence,
the limitation of the ZF method is that the signal detection efficiency is not high. Then,
MMSE and MLD methods are used to remove the existence of noise to improve the
performance of the ZF method further.

3.2.2. MMSE Detector

For the MMSE algorithm, the transmitted signals S(n) is recovered by multiplying
the received signals Y(n) by the pseudo inverse of channel matrix WMMSE = (HH H +
ρ−1 I)−1HH where ρ denotes SNR value, I represents identity matrix. Furthermore, the
MMSE algorithm also recognizes the existence of practical noises and tries to eliminate
them. The formula of the MMSE algorithm is given by the following equations

Y(n) = HS(n) + W(n)

WMMSEY(n) = WMMSEHS(n) + WMMSEW(n)

WMMSEY(n) = S(n) + WMMSEW(n)

=> YMMSE(n) = WMMSEY(n)

(7)

From each element in YMMSE(n), the component-wise detection is used for calculation.
Then, the MMSE detection is completed. By comparing the ZF algorithm with the MMSE
algorithm in terms of low complexity and performance detection algorithm, we can see
that the MMSE algorithm can reduce the noise effect, which helps to improve the signal
detection performance. However, the performance is still not close to the ideal value since
some noise effects still exist. These noise effects can be removed by the MLD algorithm.

3.2.3. MLD Detector

Maximum likelihood detection is also a more efficient signal detection algorithm
than the ZF and MMSE methods presented above. The MLD algorithm calculates the
Euclidean distance between the received signal vector and the product of all possible
transmitted signal vectors with the given channel H to get an approximate value of the
symbol. Therefore, the transmitted signals S(n) can be recovered from received signals
Y(n) with very low BER. The detail of the MLD algorithm is given as follows

YMLD(n) = arg min
x∈CM

||Y(n)− HS(n)||2 (8)

where, ||...||2 corresponds to the Frobenius norm. Let C and M denote a set of signal con-
stellation symbol points and the number of transmit antennas, respectively. Although the
MLD algorithm eliminates almost noise to achieve good BER performance, it still has some
disadvantages, such as computational complexity and time consumption, which is because
the MLD algorithm has to check all possible candidates.

Sensors 2023, 23, 1302 6 of 27

3.3. Non-Linear Noise in MIMO OFDM Systems

Although the MIMO OFDM systems provide high data rates and bandwidth efficiency,
their drawback is the high PAPR problem, especially when a PA with a low dynamic range
is deployed at the RF front end of the transmitter of these systems. Therefore, a method
is used to clip the signal before passing through the PA to ensure that the PA operates in
the linear region. However, the original signals are affected, then the transmitted signals
are distorted.

A simple solution to this problem is to limit the operation of the PA into the linear
region with a large power backoff, but this adversely reduces the power efficiency. In this
paper, we apply DNN models to improve the receiver performance and recover the original
signals from the clipped signals. The clipped signal is explained in the following formulas
and presented in [15].

S(n) =


CL, for S(n) ≥ CL
S(n), for − CL ≤ S(n) ≤ CL
−CL, for S(n) ≤ −CL

(9)

CR =
CL
σ

(10)

where CL denotes clipping level, CR corresponds to clipping ratio, and σ is the root mean
square (RMS) power of the OFDM signal. For example, if CR = 1, it means a signal is cut
off at the RMS power level. Alternatively, if CR = 2.24, it means the CL is about 7 dB higher
than the RMS power level.

4. Proposed DNN-Based MIMO OFDM Models

Inspired by recent advances in deep learning technology, we propose three DNN
receiver models for the MIMO OFDM systems to improve their performance. The proposed
system structures and DNN models are presented in the next subsections. The general
DNN model structure with one input layer, three hidden layers, and one output layer is
presented in Figure 2.

1

Input

layer Hidden layers
Output

layer

1 1 1

Figure 2. General DNN structure.

4.1. Model Type I

With model type I, we are mostly still the receiver’s DSPs. The DNN model is added
after the signal detection phase to replace the demapping (demodulation) block. The goal
is that the DNN model not only does the work of demapping block but can also improve
the performance of the signal detection phase.

Sensors 2023, 23, 1302 7 of 27

As shown in Figure 3, we explain everything in detail. In the channel estimation
block, we use the LS algorithm to get the channel information and pass them to the signal
detection block. At the signal detection block, as we have shown in the introduction,
the ZF/MLD algorithm is used to recover the original signals. The DNN model has five
layers, three of which are hidden layers. The numbers of neurons in each layer are 32, 256,
128, 64, and 16 for both 2 × 2 and 4 × 4 MIMO OFDM models, respectively. The input
number corresponds to the number of real parts and imaginary parts of a part of the signal
detector output and a part of the pilot values at the output of the FFT block. However,
we do not need to feed all the signal detector output and the pilot values at the output of
the FFT block into the DNN model. We only feed symbols corresponding to 16 bits in the
output layer. Then, we need 8 QAM-4 symbols of the signal detector output and 8 QAM-4
symbols of the pilot values at the output of the FFT block. Every 16 bits of the transmitted
data are grouped and predicted based on a single independently trained model, which is
then concatenated for the final output. The ReLU function is used as the activation function
in hidden layers except in the output layer, where the Sigmoid function is applied to map
the output to the interval [0, 1].

Receiver

P/S FFT S/P
Remove

CP

P/S FFT

M antennas

S/P
Remove

CP

RF

RF

Signal

detection

Channel

estimation

DNN

Figure 3. Proposed Model Type I.

FReLU(x) = Max(0, x) (11)

FSigmoid(x) =
1

1 + e−x (12)

Furthermore, the loss function of the DNN model is the mean square error (MSE)
shown below

MSE =
1
n

n

∑
i=1

(Xi − X̂i)
2 (13)

where X̂i is the predicted value, Xi is the actual value and n is the number of neural
network labels.

4.2. Model Type II

The similarity between model type I and model type II is that both models use the
LS algorithm for the channel estimator and the ZF/MLD algorithm for the signal detector.
However, the difference between model type I and model type II is that the DNN model is
applied to help filter out noise. Noise occurs at the data transmission phase between the
transmitters and receivers of the MIMO OFDM system as well as due to the clipped signal
which reduces the performance of the MIMO OFDM system. With this flow, the DNN model
is expected to learn about noise and then help to remove noise from the received signals.

Figure 4 shows the structure of model type II in detail. Firstly, we feed the FFT
post-phase signals to the signal detection and channel estimator blocks to obtain the
preliminary recovered signals s(n). We then use the preliminary recovered signals s(n),

Sensors 2023, 23, 1302 8 of 27

channel information H from the channel estimation block, and the FFT post-phase signals
y(n) to estimate the noise. Details are shown in the following equations

ŵ(n) = y(n)− Hs(n) (14)

Receiver

P/S FFT S/P
Remove

CP

P/S FFT

M antennas

S/P
Remove

CP

RF

RF

Signal

detection

Channel

estimation

Demapping

DNN

s(n)

w(n)

H

y(n)

w(n)

^

Figure 4. Proposed Model Type II.

From here, we have the estimated noise values ŵ(n), but it is not the exact values
we need. Hence, we continue to feed ŵ(n) into the DNN model. Then, the correct noise
values are found at the output of the DNN model w(n). From there, signal values y(n) are
recalculated and then fed back the new values ŷ(n) to the signal detection block to output
the final recovered signals.

ŷ(n) = y(n)− w(n) (15)

Similar to model type I, we use the LS algorithm for the channel estimator and
ZF/MLD algorithm for the signal detector. The DNN models also have five layers, three
of which are hidden layers. However, there are some differences between the 2 × 2 and
4 × 4 MIMO OFDM models. The numbers of neurons for the 2 × 2 model in each layer
are 256, 512, 512, 512, and 256, respectively. The numbers of neurons for the 4 × 4 model
in each layer are 512, 1024, 1024, 1024, and 512, respectively. The number of input nodes
corresponds to the number of the real and imaginary parts of the estimated noise values
before the DNN model. The DNN model is expected to learn the correct noise values so
that the number of input nodes equals the number of output nodes. The ReLU function
is used as the activation function in hidden layers except in the output layer, where no
activation function is applied to predict the correct noise values. The loss function of the
DNN model is the same as that of model type I. Thanks to the architecture of the DNN
model, all received signals are produced at once. Therefore, only one DNN model is used
for one receiver instead of using multiple DNN models like model type I.

4.3. Model Type III

The main task of the previous DNN models is to improve the receiver performance.
However, in these designs, our DNN models are added as add-ons and still almost look
like a conventional MIMO OFDM receiver. In model type III, the conventional DSP signal
demapping and detection modules at the receiver are replaced by the DNN model. It
makes the MIMO OFDM receiver simpler. In addition, model type III can help improve
performance compared to conventional receivers. The architecture is shown in detail in
Figure 5.

Sensors 2023, 23, 1302 9 of 27

Receiver

S/P
Remove

CP

M antennas

S/P
Remove

CP

RF

RF

DNN

Figure 5. Proposed Model Type III.

In this model, we have two DNN models for the 2 × 2 and 4 × 4 MIMO OFDM
systems. The numbers of neurons for the 2 × 2 model in each layer are 512, 512, 256,
128, and 16, respectively. The numbers of neurons for the 4 × 4 model in each layer are
1024, 512, 256, 128, and 8, respectively. The input number corresponds to the entire pilot’s
real and imaginary part numbers and the received signal. Note that the pilot symbols
are necessary for model type III to avoid detection ambiguity since there is no explicit
channel equalization. Every 4-bit (2 × 2 model) or 8-bit (4 × 4 model) of the transmitted
data is grouped and predicted based on a single model trained independently, which is
then concatenated for the final output, like model type I. The ReLU function is used as
the activation function in hidden layers for both 2 × 2 and 4 × 4 MIMO OFDM systems.
In the output layer, the Sigmoid function is applied the same as model type I for the 4 × 4
MIMO OFDM model, and the Softmax function is applied to predict the output for the
2 × 2 MIMO OFDM model.

FSo f tmax(xi) =
exi

∑ exi
(16)

In particular, we use Softmax for the output layer of the 2 × 2 model, so we need to
build a one-hot encoder table for the 2 × 2 MIMO OFDM model with QPSK modulation.
Because the output layer of the 2 × 2 model has 16 nodes at the output, it generates 4 bits
of output in one execution. Table 1 shows an example of one-hot encoding for the 2 × 2
MIMO OFDM model with QPSK modulation, which is used in this model type III.

Sensors 2023, 23, 1302 10 of 27

Table 1. One-hot encoding for 2 × 2 MIMO OFDM model with QPSK modulation.

Bits One-Hot Vectors

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5. Hardware Architectures

With the models presented above, we have implemented its hardware architecture.
From there, we can verify the practicality and feasibility of building hardware architectures
in practice rather than just testing the results when simulating software. The general
neural network hardware architecture is detailed in Figure 6. With the general hardware
architecture, we mainly divided it into four main parts (called layer data calculation block)
because there are three hidden layers in the neural network. In each of the main parts, we
compute the matrix multiplication and activation function. Besides the four main parts,
we have some RAM blocks to store data, such as weights, biases, and layer values during
processing. In particular, we need twice as much RAM to store layer data as usual. One
set to store the data of the previous main part results, another to provide data for the next
main parts for calculation. We need to do that because our architectures use the pipeline
technique not only within sub-blocks but also between the layer calculation blocks. These
architectures help to increase our design’s throughput, frequency, and performance. In the
following sections, we present two sections. One for the usual hardware architecture we
mentioned above and one for the hardware architecture that applies quantization technique
to optimize more than the usual hardware architecture.

Sensors 2023, 23, 1302 11 of 27

Layer calculation block:

W0 × Input + B0

Weight

and

Bias

between

Input layer and

Hidden layer 0

(RAM)

Matrix

computation

block

Activation

function

calculation

block

Input layer

(RAM)

Layer calculation block:

W1 × Hidden0 + B1

Weight

and

Bias

between

Hidden layer 0

and

Hidden layer 1

(RAM)

Matrix

computation

block

Activation

function

calculation

block

Layer calculation block:

W2 × Hidden1 + B2

Weight

and

Bias

between

Hidden layer 1

and

Hidden layer 2

(RAM)

Matrix

computation

block

Activation

function

calculation

block

Layer calculation block:

W3 × Hidden2 + B3

Weight

and

Bias

between

Hidden layer 2

and

Output layer

(RAM)

Matrix

computation

block

Activation

function

calculation

block

Input layer

(RAM)

Hidden layer 0

(RAM)

Hidden layer 0

(RAM)

Hidden layer 1

(RAM)

Hidden layer 1

(RAM)

Hidden layer 2

(RAM)

Hidden layer 2

(RAM)

Output layer

(RAM)

Figure 6. General neural network hardware architecture.

Sensors 2023, 23, 1302 12 of 27

5.1. The Usual Neural Network Hardware Architecture

This section mainly explains how to apply the pipeline and parallel processing tech-
niques to the proposed system. These techniques increase performance and reduce the data
processing time by making the processing units work continuously without any breaks.
As shown in Figure 7, the layer data calculation block consists of two parts, one part is the
matrix computation block, and the other part is the activation function calculation block.
All the blocks in this section use floating-point numbers to calculate and store data.

Accumulation

block

Bias addition

block

Weight

and Bias

between

Previous

layer

and

Next layer

(RAM)

reg

reg

reg
reg

Weight

Pre_layer_data

reg

reg

reg

Matrix computation block

with

P parallel processing unit

Accumulation

block

Bias addition

block

Accumulation

block

Bias addition

block

Accumulation

block

Bias addition

block
ReLU / Sigmoid / Softmax

Activation function

calculation block

with

P parallel processing unit

ReLU / Sigmoid / Softmax

ReLU / Sigmoid / Softmax

ReLU / Sigmoid / Softmax

1

0

Bias

Previous

layer data

1
st

 Unit

2
nd

 Unit

3
rd

 Unit

p
th

 Unit

Next layer

data

Figure 7. Layer data calculation block.

5.1.1. Matrix Computation Block

With the matrix computation block, we use multiple parallel processing units to
reduce the inference time of the overall neural network architecture. This block is divided
into two sub-blocks, one for the accumulation and one for the bias addition. We use the
accumulation block to implement matrix multiplication, as explained in Figure 8.

Sensors 2023, 23, 1302 13 of 27

X0

X1

X2

X3

XN

Y00

Y10

Y20

Y30

Y01

Y11

Y21

Y31

Y02

Y12

Y22

Y32

Y03

Y13

Y23

Y33

Y0N

Y1N

Y2N

Y3N

Z0

Z1

Z2

Z3

ZM

Weight matrix

between l
th

layer

and (l+1)
th

layer

l
th

layer

matrix

(l+1)
th

 layer

matrix before

passing through

activation function

B0

B1

B2

B3

BM

(l+1)
th

layer

bias matrix

YMN

YM0 YM1 YM2 YM3 YMN

X0 X1 X2 X3 XN

ZMBM

p
th

 Unit

YM0 YM1 YM2 YM3

Figure 8. Illustration of matrix computation block.

The outputs of the accumulation block are fed to the bias addition block, which is used
to add bias values. In addition, we also use the registers in the accumulation block and the
bias addition block to implement the pipeline technique in the design, which help reduce
the critical paths, increase the maximum frequency, and speed up inference time.

5.1.2. Activation Function Calculation Block

Activation functions are also an essential part of neural networks. In this section, we
show how we have used the pipeline technique and some custom algorithms of activation
functions to simplify the architecture without any loss of accuracy. Three types of activation
functions, including ReLU, Sigmoid, and Softmax, are used in this block.

Because our hardware architectures are only designed to run the inference with no
back-propagation phase, the Softmax function does not need to be implemented. Therefore,
the Max function is more suitable than the Softmax function in our hardware design.
The maximum index is found for the output nodes using the Max function. Since the
ReLU function and Max function are simple algorithms, we do not present their hardware
design here.

y = Max(x0, x1, ..., xn−1) (17)

In hardware design, we always want to maximize optimization to reduce resources
and run time without reducing accuracy. Therefore, in [16], the author presented a highly
efficient approximation Sigmoid algorithm. Being easier to implement the hardware,
a simplified algorithm is proposed in Figure 9. The corresponding hardware architecture of
the approximate Sigmoid function is shown in Figure 10 in detail.

FSigmoid(x) =


0, for x < −4
1
2 (1 +

x
4)

2, for − 4 ≤ S(n) < 0
1− 1

2 (1−
x
4)

2, for 0 ≤ S(n) < 4
1, for x > 4

(18)

Sensors 2023, 23, 1302 14 of 27

Begin

X

X < − 4 || X > 4

Sum = (X >> 2) + (X < 0)?1:−1

False

Square = Sum × Sum

Sign_1 = Sign_0

Sum = 0

True

Out = Square >> 1 Out = 1 − Square >> 1

Done

Sign_1 == 0

False

True

Sign_0 = (X < 0)?1:0

Stage 2

Stage 0

Stage 1

Figure 9. The simplified approximate Sigmoid algorithm.

Sum

(reg)

In

4
A < B A

B
−A > B

or

0

(In >> 2) + (In < 0)?1:−1
Square

(reg)

Sign_0

(reg)

Sign_1

(reg)
Sign

Result

(reg)
Mux

0

1Square >> 1

1 − (Square >> 1)

- Note:

 + In: Matrix computation block output

 + Sign: Sign of matrix computation block output

Stage 0 Stage 1 Stage 2

Mux

0

1

Figure 10. The simplified Sigmoid hardware design.

Sensors 2023, 23, 1302 15 of 27

5.2. The Quantized Neural Network Hardware Architecture
5.2.1. Quantization Technique

Quantization is a technique to help map numbers from the domain of real numbers to
the domain of integer numbers (quantization numbers). This technique helps reduce the
cost of storing memory. Instead of storing the floating-point numbers, it only stores the n
bits of integer numbers. Besides, this technique also reduces computation time compared
to floating-point numbers and number sharing.

Although quantization has many advantages, its accuracy is affected. The accuracy
depends on what the quantization number is applied to and the bit-width of the quantiza-
tion number. The entire formula of the quantization number x ∈ [α, β] → xq ∈ [αq, βq] is
represented in the following equations

Scale =
β− α

βq − αq

O f f set = round(
βαq − αβq

β− α
)

xq =
x

Scale
+ O f f set

(19)

where, α and β are the smallest and largest values in the form of real numbers, respectively.
αq and βq are the smallest (−2(n−1)), largest (2(n−1) − 1) values in the form of integer
numbers, and n is the number of bits representing the quantized real number as an integer.
x and xq are the values in the float domain and the values in the integer domain, respectively.

5.2.2. Hardware Design for the Quantized Neural Network

In this section, a hardware design that combines pipeline engineering and quantiza-
tion is proposed to increase performance, reduce computation time, and reduce storage
consumption. In our design, we do not care about the offset factor, i.e., the offset factor
by default is 0 (the case of β = −α). Therefore, it makes the hardware design simpler.
Therefore, we only need to multiply the data by the scaling factors (using fixed-point
numbers), shown in Figure 11, to convert between different quantization number domains
(different layers) without loss of accuracy.

Accumulation

block

Bias addition

block

Weight

and Bias

between

Previous

layer

and

Next layer

(RAM)

reg

reg

reg
reg

Weight

Pre_layer_data

reg

reg

reg

Matrix computation block

with

P parallel processing unit

Accumulation

block

Bias addition

block

Accumulation

block

Bias addition

block

Accumulation

block

Bias addition

block
ReLU / Sigmoid / Softmax

Activation function

calculation block

with

P parallel processing unit

ReLU / Sigmoid / Softmax

ReLU / Sigmoid / Softmax

ReLU / Sigmoid / Softmax

1

0

Bias

Scale 1

Scale 0

- Note:

+ Scale 0: Scale factor of the matrix

ccccmultiplication results

+ Scale 1: Scale factor of biases

Previous

layer data

1
st

 Unit

2
nd

 Unit

3
rd

 Unit

p
th

 Unit

Next layer

data

Figure 11. Layer data calculation block with quantization technique.

Sensors 2023, 23, 1302 16 of 27

Unlike the hardware architecture presented in the previous section, the hardware
architecture applied to quantization does not use floating-point numbers for computation
and data storage. Instead, the quantization numbers are used to perform common oper-
ations such as addition, subtraction, multiplication, division, and data storage, and the
fixed-point numbers are used to represent the scaling factors to convert between different
quantization number domains in the designs as presented above. In our systems, the fixed
point number is a solution to replace the floating point number that can maintain the
accuracy of computation and has a higher computation speed. Therefore, we have chosen
the fixed point number to represent the scaling factors.

6. Experimental Results and Discussions

In this section, the performance of the proposed deep learning-based MIMO OFDM
models is evaluated. In the proposed models, the 2× 2 and 4 × 4 MIMO OFDM techniques
are used. The modulation scheme is QAM-4 (QPSK). The channel model is Rayleigh multi-
path with 15 taps. The number of OFDM subcarriers is 64.

In practice, as far as we know the number of layers or the number of nodes to use per
layer cannot be analytically calculated in an artificial neural network to address any model-
ing problem. In this research, our purposes are to find the low complexity configuration
models that provide good BER performance, therefore, through carefully doing several
experimentations, the best numbers of neurons in each layer for our problems are found.
The parameters defined in Table 2 are the best configurations for our models, which are
found by the experimentations.

Table 2. Parameters of the proposed deep learning architecture.

Model Type I Model Type II Model Type III Model Type I Model Type II Model Type III

Tx antennas × Rx antennas 2 × 2 2 × 2 2 × 2 4 × 4 4 × 4 4 × 4

Number of subcarriers 64 64 64 64 64 64

Number of epochs 5000 5000 5000 5000 5000 5000

Batch size 300 300 1000 300 300 300

Total batches every epoch 5 5 50 5 5 20

Number of test cases 200,000 200,000 200,000 200,000 200,000 200,000

Neural network size
32; 256; 128;

64; 16

256; 512; 512;

512; 256

512; 512; 256;

128; 16

32; 256; 128;

64; 16

512; 1024; 1024;

1024; 512

1024; 512; 256;

128; 8

Initial LR 0.001 0.001 0.001 0.001 0.001 0.001

LR decreasing step 500 500 1000 500 500 500

6.1. Software Results

In our simulation, a PYTHON-based MIMO OFDM simulator is used to generate the
received signals. The MIMO OFDM simulator consists of a bitstream generator, a baseband
modulator, a MIMO OFDM transmitter, a MIMO OFDM channel, and AWGN. After the
above process, the received MIMO OFDM signals are pre-processed and fed to the proposed
architectures. In our work, the ZF and MLD are applied to type I and II models to clearly
show their difference in efficiency when combined with the DNN model. In addition,
we consider two cases where the clipping noise level of 5 dB and 7 dB shows an effect

Sensors 2023, 23, 1302 17 of 27

compared to the ideal signal. The following subsections show the difference in BER values
between our proposed models and the conventional models.

6.1.1. 2 × 2 MIMO OFDM Model

The BER performance values of 2 × 2 MIMO OFDM models are shown in
Figures 12–14. The performance of deep learning and conventional digital signal pro-
cessing (DSP) models are compared.

Figure 12 shows the BER performance of the conventional DSP models. For the linear
and non-linear signals, the BER performances of the MLD algorithm are outstanding
compared to the BER values of the ZF algorithm. The BER performances of the linear
signals are almost equal to those of the non-linear 7B signals and higher than those of
non-linear 5 dB signals.

Figures 13 and 14 show the results of comparisons between the three proposed DNN
models and the conventional DSP model using the ZF signal detectors. For the linear
signals, non-linear 5 dB, and 7 dB signals, the BER performances of the DNN type I and
type II models are not as good as those of the conventional DSP model. Meanwhile,
the BER performances of the DNN type III are much higher than those of the conventional
DSP model.

From these results, we conclude that the DNN type III model is suitable for the 2 × 2
MIMO OFDM systems. Meanwhile, two DNN type I and type II models cannot be applied
to the 2 × 2 MIMO OFDM systems.

5 10 15 20 25 30 35 40
SNRdB

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

DSP linear ZF model
DSP linear MLD model
DSP non-linear 5dB ZF model
DSP non-linear 5dB MLD model
DSP non-linear 7dB ZF model
DSP non-linear 7dB MLD model

Figure 12. BER versus SNR for the conventional receivers with M = 2.

Sensors 2023, 23, 1302 18 of 27

5 10 15 20 25 30 35 40
SNRdB

10 4

10 3

10 2

10 1

BE
R

DSP linear ZF model
DSP non-linear 5dB ZF model
DNN type I linear ZF model
DNN type II linear ZF model
DNN type III linear model
DNN type I non-linear 5dB ZF model
DNN type II non-linear 5dB ZF model
DNN type III non-linear 5dB model

Figure 13. BER versus SNR for the proposed receivers with M = 2, ZF is used and the clipping level
of the nonlinear PAs is 5 dB.

5 10 15 20 25 30 35 40
SNRdB

10 5

10 4

10 3

10 2

10 1

BE
R

DSP linear ZF model
DSP non-linear 7dB ZF model
DNN type I linear ZF model
DNN type II linear ZF model
DNN type III linear model
DNN type I non-linear 7dB ZF model
DNN type II non-linear 7dB ZF model
DNN type III non-linear 7dB model

Figure 14. BER versus SNR for the proposed receivers with M = 2, ZF is used and the clipping level
of the nonlinear PAs is 7 dB.

Sensors 2023, 23, 1302 19 of 27

6.1.2. 4 × 4 MIMO OFDM Model

The BER performance values of 4 × 4 MIMO OFDM models are shown in
Figures 15–19. The performance of deep learning and conventional digital signal pro-
cessing (DSP) models are compared.

5 10 15 20 25 30 35 40
SNRdB

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

DSP linear ZF model
DSP linear MLD model
DSP non-linear 5dB ZF model
DSP non-linear 5dB MLD model
DSP non-linear 7dB ZF model
DSP non-linear 7dB MLD model

Figure 15. BER versus SNR for the original receivers with M = 4.

5 10 15 20 25 30 35 40
SNRdB

10 3

10 2

10 1

BE
R

DSP linear ZF model
DSP non-linear 5dB ZF model
DNN type I linear ZF model
DNN type II linear ZF model
DNN type III linear model
DNN type I non-linear 5dB ZF model
DNN type II non-linear 5dB ZF model
DNN type III non-linear 5dB model

Figure 16. BER versus SNR for the proposed receivers with M = 4, ZF is used and the clipping level
of the nonlinear PAs is 5 dB.

Sensors 2023, 23, 1302 20 of 27

5 10 15 20 25 30 35 40
SNRdB

10 3

10 2

10 1

BE
R

DSP linear ZF model
DSP non-linear 7dB ZF model
DNN type I linear ZF model
DNN type II linear ZF model
DNN type III linear model
DNN type I non-linear 7dB ZF model
DNN type II non-linear 7dB ZF model
DNN type III non-linear 7dB model

Figure 17. BER versus SNR for the proposed receivers with M = 4, ZF is used and the clipping level
of the nonlinear PAs is 7 dB.

5 10 15 20 25 30 35 40
SNRdB

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

DSP linear MLD model
DSP non-linear 5dB MLD model
DNN type I linear MLD model
DNN type II linear MLD model
DNN type III linear model
DNN type I non-linear 5dB MLD model
DNN type II non-linear 5dB MLD model
DNN type III non-linear 5dB model

Figure 18. BER versus SNR for the proposed receivers with M = 4, MLD is used and the clipping
level of the nonlinear PAs is 5 dB.

Sensors 2023, 23, 1302 21 of 27

5 10 15 20 25 30 35 40
SNRdB

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

DSP linear MLD model
DSP non-linear 7dB MLD model
DNN type I linear MLD model
DNN type II linear MLD model
DNN type III linear model
DNN type I non-linear 7dB MLD model
DNN type II non-linear 7dB MLD model
DNN type III non-linear 7dB model

Figure 19. BER versus SNR for the proposed receivers with M = 4, MLD is used and the clipping
level of the nonlinear PAs is 7 dB.

Figure 15 shows the BER performance of the conventional DSP models. For the linear
and non-linear signals, the BER performances of the MLD algorithm are outstanding
compared to the BER values of the ZF algorithm. The BER performances of the linear
signals are slightly higher than those of the non-linear 7B signals and higher than those of
non-linear 5 dB signals.

Figures 16 and 17 show the results of comparisons between the three proposed DNN
models and the conventional DSP model using the ZF signal detectors. For the linear
signals, non-linear 5 dB, and 7 dB signals, the BER performances of the DNN type I and
type II models are higher than those of the conventional DSP model. Meanwhile, the BER
performances of the DNN type III are worse than those of the conventional DSP model.

Figures 18 and 19 show the results of comparisons between the three proposed DNN
models and the conventional DSP model using the LMD signal detectors. The same
conclusions as using the ZF signal detectors, for the linear signals, non-linear 5 dB, and
7 dB signals, the BER performances of the DNN type I and type II models are higher than
those of the conventional DSP model. Meanwhile, the BER performances of the DNN type
III are worse than those of the conventional DSP model.

From these results, we conclude that two DNN type I and type II models are suitable
for the 4× 4 MIMO OFDM systems. Meanwhile, the DNN model type III cannot be applied
to the 4 × 4 MIMO OFDM systems.

Furthermore, we can also see that the BER performances of the 4 × 4 OFDM MIMO
systems are worse than those of the 2 × 2 OFDM MIMO systems due to the higher
complexity of the 4 × 4 OFDM MIMO systems.

Overall, two DNN type I and II models are suitable for the 4 × 4 MIMO OFDM
systems, while DNN model type III is appropriate for the 2 × 2 MIMO OFDM systems.
In the next section, the hardware results of these models are shown to verify whether
practical hardware designs are applicable.

Sensors 2023, 23, 1302 22 of 27

6.2. Hardware Results

This section shows BER verification results on hardware architectures designed to
demonstrate that our hardware architectures work as designed. In addition, we also provide
comparisons of the number of calculations performed for the conventional MIMO OFDM
system and the proposed DL model systems. Then, the trade-off between performance and
resource consumption is evaluated.

Through the software simulation results, BER performances of model type I and model
type II of the 4 × 4 OFDM MIMO systems are better than those of the conventional systems.
Therefore, the hardware designs of model type I and model type II are implemented
for the 4 × 4 OFDM MIMO systems. Meanwhile, BER performances of model type III
of the 2 × 2 OFDM MIMO systems are better than those of the conventional systems.
Therefore, the hardware designs of model type III are implemented for the 2 × 2 OFDM
MIMO systems.

Figures 20–25 show the hardware simulation results. We can see that the hardware
results provide the same BER performances as their corresponding software results, i.e., the
hardware architectures are designed successfully without any functional defects.

5 10 15 20 25 30 35 40
SNRdB

10 4

10 3

10 2

10 1

BE
R

DSP linear ZF model software result
DSP non-linear 5dB ZF model software result
DNN type III linear model hardware result
DNN type III non-linear 5dB model hardware result

Figure 20. BER versus SNR for the receiver hardware architectures with M = 2, ZF is used and the
clipping level of the nonlinear PAs is 5 dB.

Sensors 2023, 23, 1302 23 of 27

5 10 15 20 25 30 35 40
SNRdB

10 5

10 4

10 3

10 2

10 1

BE
R

DSP linear ZF model software result
DSP non-linear 7dB ZF model software result
DNN type III linear model hardware result
DNN type III non-linear 7dB model hardware result

Figure 21. BER versus SNR for the receiver hardware architectures with M = 2, ZF is used and the
clipping level of the nonlinear PAs is 7 dB.

5 10 15 20 25 30 35 40
SNRdB

10 3

10 2

10 1

BE
R

DSP linear ZF model software result
DSP non-linear 5dB ZF model software result
DNN type I linear ZF model hardware result
DNN type II linear ZF model hardware result
DNN type I non-linear 5dB ZF model hardware result
DNN type II non-linear 5dB ZF model hardware result

Figure 22. BER versus SNR for the receiver hardware architectures with M = 4, ZF is used and the
clipping level of the nonlinear PAs is 5 dB.

Sensors 2023, 23, 1302 24 of 27

5 10 15 20 25 30 35 40
SNRdB

10 3

10 2

10 1

BE
R

DSP linear ZF model software result
DSP non-linear 7dB ZF model software result
DNN type I linear ZF model hardware result
DNN type II linear ZF model hardware result
DNN type I non-linear 7dB ZF model hardware result
DNN type II non-linear 7dB ZF model hardware result

Figure 23. BER versus SNR for the receiver hardware architectures with M = 4, ZF is used and the
clipping level of the nonlinear PAs is 7 dB.

5 10 15 20 25 30 35 40
SNRdB

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

DSP linear MLD model software result
DSP non-linear 5dB MLD model software result
DNN type I linear MLD model hardware result
DNN type II linear MLD model hardware result
DNN type I non-linear 5dB MLD model hardware result
DNN type II non-linear 5dB MLD model hardware result

Figure 24. BER versus SNR for the receiver hardware architectures with M = 4, MLD is used and the
clipping level of the nonlinear PAs is 5 dB.

Sensors 2023, 23, 1302 25 of 27

5 10 15 20 25 30 35 40
SNRdB

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

DSP linear MLD model software result
DSP non-linear 7dB MLD model software result
DNN type I linear MLD model hardware result
DNN type II linear MLD model hardware result
DNN type I non-linear 7dB MLD model hardware result
DNN type II non-linear 7dB MLD model hardware result

Figure 25. BER versus SNR for the receiver hardware architectures with M = 4, MLD is used and the
clipping level of the nonlinear PAs is 7 dB.

Hardware design comparisons are presented in Table 3. In the proposed hardware
design, the 32-bit fixed-point number is used to convert between quantization domains
that are presented in the Section 5.2. The proposed designs using quantization numbers
cost lower bit width than those designs using floating-point numbers, but the accuracy of
our proposed designs remains unchanged.

Table 3 shows that the proposed models can be entirely hardware implemented on
the Virtex 7 vc709 FPGA board. To compare the complexity among the three models,
the hardware resources of the lookup table (LUT), lookup table random access memory
(LUT RAM), flip flop (FF), block random access memory (BRAM), digital signal processing
unit (DSP), input/output pin (IO), global clock buffer (BUFG) are shown. From the im-
plementation results, the 4 × 4 model type II costs the highest resources since this model
includes the DSP signal detection module, DNN noise prediction module, noise canceling
module, and demapping module. Meanwhile, the 4 × 4 model type I costs the smallest
hardware resources since the noise canceling and the demapping modules are not used.
The hardware resources of the 2 × 2 model type III are quite high since the DNN module is
large to replace for whole DSP signal detection and demapping modules. The complexity
of hardware design also affects power consumption and processing latency. The higher
complexity design costs larger power consumption and takes longer processing latency.

Sensors 2023, 23, 1302 26 of 27

Table 3. Comparison of the hardware complexity implementation on FPGA.

Parameters The 4 × 4 Model Type I The 4 × 4 Model Type II The 2 × 2 Model Type III

LUT 50,972 (11.77%) 312,123 (72.05%) 192,633 (44.47%)

LUT RAM 15 (0.01%) 112 (0.06%) 44 (0.03%)

FF 35,027 (4.04%) 186,990 (21.58%) 130,400 (15.05%)

BRAM 11.5 (0.78%) 384 (26.12%) 127.5 (8.67%)

DSP 402 (11.17%) 1536 (42.67%) 3344 (92.89%)

IO 61 (7.18%) 43 (5.06%) 99 (11.65%)

BUFG 1 (3.13%) 1 (3.13%) 2 (6.26%)

Power (W) 2.029 7.531 6.48

Frequency (MHz) 188.679 119.047 135.135

Latency of inference phase,

(cycles)
2065 16,521 4106

7. Conclusions

MIMO OFDM is one of the most popular technologies in wireless communication
today. However, the problem of high PAPR often occurs. In this paper, three DNN model
types are proposed to solve the problem of non-linear distortions introduced by the PAs of
the transmitters and replace the conventional digital signal processing (DSP) modules at
the receivers in 2 × 2 MIMO OFDM and 4 × 4 MIMO OFDM systems. Proposed model
type I uses the DNN model to de-map (de-modulate) the signals at the receiver. Model type
II uses the DNN model to learn and filter out the channel noises at the receiver. Model type
III uses the DNN model to de-map and detect the signals at the receiver. All three model
types attempt to solve the non-linear problem. The robust performances of the proposed
receivers are achieved. Both the software and hardware implementation results show that
the BER performances of the DNN type I and type II models are higher than those of the
conventional DSP model for the MIMO OFDM 4 × 4 systems and the BER performances of
the DNN type III model are higher than those of the conventional DSP model the MIMO
OFDM 2 × 2 systems. In addition, the hardware architectures of the three proposed models
are successfully designed with the quantization technique to save the hardware resources,
run-time, and power consumption. Therefore, our study would confirm that the hardware
designs for wireless communication by applying DNN models are practical. In future
works, we try to continue improving the performance as well as the simplicity of our
systems. Moreover, we also develop the Multi-Users MIMO OFDM systems.

Author Contributions: Investigation, V.D.T.; Methodology, D.K.L. and T.H.T.; Project administration,
D.K.L.; Supervision, D.K.L. and T.H.T.; Writing—original draft, V.D.T.; Writing—review and editing,
D.K.L. and T.H.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by University of Information Technology (UIT), Vietnam National
University, HoChiMinh City (VNU-HCM).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2023, 23, 1302 27 of 27

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hammed, Z.S.; Ameen, S.Y.; Zeebaree, S.R.M. Massive MIMO-OFDM Performance Enhancement on 5G. In Proceedings of the

2021 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Hvar, Croatia, 23–25
September 2021; pp. 1–6. [CrossRef]

2. Riadi, A.; Boulouird, M.; Hassani, M.M. Least Squares Channel Estimation of an OFDM Massive MIMO System for 5G Wireless
Communications. In Proceedings of the 8th International Conference on Sciences of Electronics, Technologies of Information and
Telecommunications (SETIT’18), Genoa, Italy, 18–20 December 2018; Volume 2, pp. 440–450.

3. He, H.; Wen, C.K.; Jin, S. Bayesian Optimal Data Detector for Hybrid mmWave MIMO-OFDM Systems With Low-Resolution
ADCs. IEEE J. Sel. Top. Signal Process. 2018, 12, 469–483. [CrossRef]

4. Wang, B.; Jian, M.; Gao, F.; Li, G.Y.; Lin, H. Beam Squint and Channel Estimation for Wideband mmWave Massive MIMO-OFDM
Systems. IEEE Trans. Signal Process. 2019, 67, 5893–5908. [CrossRef]

5. Zhang, W.; Yin, Q.; Gao, F. Computationally Efficient Blind Estimation of Carrier Frequency Offset for MIMO-OFDM Systems.
IEEE Trans. Wirel. Commun. 2016, 15, 7644–7656. [CrossRef]

6. Singal, A.; Kedia, D. Performance Analysis of MIMO-OFDM System Using SLM with Additive Mapping and U2 Phase Sequence
for PAPR Reduction. Wirel. Pers. Commun. 2020, 111, 1377–1390. [CrossRef]

7. Li, X.; Cimini, L.J. Effects of clipping and filtering on the performance of OFDM. IEEE Commun. Lett. 1998, 2, 131–133. [CrossRef]
8. Baek, M.S.; Kwak, S.; Jung, J.Y.; Kim, H.M.; Choi, D.J. Implementation Methodologies of Deep Learning-Based Signal Detection

for Conventional MIMO Transmitters. IEEE Trans. Broadcast. 2019, 65, 636–642. [CrossRef]
9. Xia, J.; He, K.; Xu, W.; Zhang, S.; Fan, L.; Karagiannidis, G.K. A MIMO Detector With Deep Learning in the Presence of Correlated

Interference. IEEE Trans. Veh. Technol. 2020, 69, 4492–4497. [CrossRef]
10. He, K.; Wang, Z.; Huang, W.; Deng, D.; Xia, J.; Fan, L. Generic Deep Learning-Based Linear Detectors for MIMO Systems Over

Correlated Noise Environments. IEEE Access 2020, 8, 29922–29929. [CrossRef]
11. He, K.; Wang, Z.; Li, D.; Zhu, F.; Fan, L. Ultra-reliable MU-MIMO detector based on deep learning for 5G/B5G-enabled IoT. Phys.

Commun. 2020, 43, 101181. .: 10.1016/j.phycom.2020.101181. [CrossRef]
12. Xu, L.; Gao, F.; Zhang, W.; Ma, S. Model Aided Deep Learning Based MIMO OFDM Receiver With Nonlinear Power Amplifiers.

In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1
April 2021; pp. 1–6. [CrossRef]

13. Ye, H.; Li, G.Y.; Juang, B.H. Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wirel.
Commun. Lett. 2018, 7, 114–117. [CrossRef]

14. Cho, Y.S.; Kim, J.; Yang, W.Y.; Kang, C.G. MIMO-OFDM Wireless Communications with MATLAB; John Wiley & Sons: Hoboken, NJ,
USA, 2010.

15. Li, X.; Cimini, L.J. Effects of clipping and filtering on the performance of OFDM. In Proceedings of the 1997 IEEE 47th Vehicular
Technology Conference, Technology in Motion, Phoenix, AZ, USA, 4–7 May 1997; pp. 1634–1638.

16. Zhang, M.; Vassiliadis, S.; Delgado-Frias, J. Sigmoid generators for neural computing using piecewise approximations. IEEE
Trans. Comput. 1996, 45, 1045–1049. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.23919/SoftCOM52868.2021.9559117
http://dx.doi.org/10.1109/JSTSP.2018.2818063
http://dx.doi.org/10.1109/TSP.2019.2949502
http://dx.doi.org/10.1109/TWC.2016.2605678
http://dx.doi.org/10.1007/s11277-019-06921-x
http://dx.doi.org/10.1109/4234.673657
http://dx.doi.org/10.1109/TBC.2019.2891051
http://dx.doi.org/10.1109/TVT.2020.2972806
http://dx.doi.org/10.1109/ACCESS.2020.2973000
http://dx.doi.org/10.1016/j.phycom.2020.101181
http://dx.doi.org/10.1109/WCNC49053.2021.9417512
http://dx.doi.org/10.1109/LWC.2017.2757490
http://dx.doi.org/10.1109/12.537127

	Introduction
	System Model
	Background
	Channel Estimator
	Conventional Detector
	ZF Detector
	MMSE Detector
	MLD Detector

	Non-Linear Noise in MIMO OFDM Systems

	Proposed DNN-Based MIMO OFDM Models
	Model Type I
	Model Type II
	Model Type III

	Hardware Architectures
	The Usual Neural Network Hardware Architecture
	Matrix Computation Block
	Activation Function Calculation Block

	The Quantized Neural Network Hardware Architecture
	Quantization Technique
	Hardware Design for the Quantized Neural Network

	Experimental Results and Discussions
	Software Results
	2 2 MIMO OFDM Model
	4 4 MIMO OFDM Model

	Hardware Results

	Conclusions
	References

