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Abstract: Bearings are the most commonly used components in rotating machines and the ability to
diagnose their faults and predict their remaining useful life (RUL) is critical for system maintenance.
This paper proposes a smart system combined with a regression model to predict the RUL of bearings.
The method converts the azimuth signal through low-pass filtering (LPF) and a chaotic mapping
system, and uses Euclidean feature values (EFVs) to extract features in order to construct useful
health indicators (HIs). In fault detection, the iterative cumulative moving average (ICMA) is used
to smooth the HIs, and the Euclidean norm is used to find the time-to-start prediction (TSP). In
terms of prediction, this paper uses a self-selective regression model to select the most suitable
regression model to predict the RUL of the bearing. The dataset provided by the Center for Intelligent
Maintenance Systems (IMS) is applied for performance evaluation; in comparison with previous
research, better prediction results can be achieved by applying the proposed smart assessment system.
The proposed system is also applied to the PRONOSTIA (also called FEMTO-ST) bearing dataset in
this paper, demonstrating that acceptable prediction performance can be obtained.

Keywords: smart assessment; remaining useful life (RUL); chaos-based health indicators (CHI);
regression analysis; iterative cumulative moving average (ICMA)

1. Introduction

The real-time monitoring of ball bearings is a core point issue in the current age of
developed technology—not only to facilitate the arrangement of maintenance schedules
but also to avoid missing faults in the ball bearings with different fatigue levels. As modern
industries inevitably utilize a wide range of rotating machinery that uses ball bearings, the
need to ensure safety during their service life has increased significantly. As time goes on,
mechanical systems increasingly rely on prognostic and health management (PHM) [1–3]
to maintain the safety and maintenance of the entire production line.

The PHM system can be divided into three stages: construction of system health
indicators (HIs), prediction of the remaining useful life (RUL) of the system, and health
management (HM) [3]. In the construction of HI values, there are a number of technical
indicators to present the health status of the system, such as the root mean square (RMS) [4],
kurtosis [5], entropy [6], and Mahalanobis distance (MD) [7]. In RUL prediction, the current
state of health indicators is detected. When the health indicators are abnormal, the system
determines the failure and starts to predict the remaining service life. The predicted time is
used to schedule system-related maintenance measures. Ball bearings are the most common
mechanical components in mechanical systems, and their health status and RUL prediction
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have attracted the attention of many scholars [8–16]. When a bearing fails, it can lead to
increased power consumption and the shutdown of engineered systems which, in turn,
affects manufacturing costs. Therefore, being able to predict the fault location in advance
and estimate the RUL of the bearing is crucial for the maintenance of system components
and avoiding the sudden stoppage of the system.

The research on bearing health and RUL prediction can be mainly divided into model-
based [8–10] and data-driven [11–17] research. Model-based methods refer to the setup
of a mathematical or physical model describing the degradation process of a mechanical
system. For example, Gebraeel et al. [8] used a Bayesian approach to monitor bearing
information in real-time in order to update exponential model parameters and estimate
bearing life. Li et al. [9] proposed an improved exponential model of bearing prediction,
using a particle filter to remove random errors in the exponential model. In [10], the
authors used a weighted minimum quantization error to construct HIs and performed RUL
prediction using a maximum likelihood estimation algorithm and a particle-filter-based
algorithm. However, although these methods have good predictive results, model-based
methods also have limitations. To be applied to other systems based on the model, it is
necessary to remake a specific model, increasing the development cost.

Data-driven methods refer to using machine learning to train the run-to-failure pro-
cess of a mechanical system and extract key features of degradation to construct an RUL
prediction system. For example, Loutas et al. [11] used wavelet analysis to extract bear-
ing features and used support-vector regression (SVR) to predict bearings’ RUL. Tran
et al. [12] used residual-based root mean square and Cox proportional hazards models
and support-vector machines (SVMs) for RUL prediction. The authors of [13,14] both
used deep learning to predict the RUL of bearings. Guo et al. [15] proposed a method
based on a recurrent neural network (RNN) to extract 14 kinds of bearing features to con-
struct HIs. Caesarendra et al. [16] used three models—a relevance vector machine (RVM),
logistic regression (LR), and autoregressive moving average/generalized autoregressive
conditional heteroscedasticity (ARMA/GARCH)—to evaluate shaft bearings’ degradation.
Wang et al. [17] detected bearing degradation through signal deviation, and the bearings’
RUL prediction was performed using an enhanced Kalman filter and an expectation maxi-
mization algorithm. Recently, many researchers have proposed hybrid methods. Ahmad
et al. [18] used adaptive regression to select the best regression model to predict bearings’
RUL. In [19], an exponential weighted moving average (EWMA) control chart combining
SVR and random forest regression (RFR) with a differential evolution (DE) algorithm was
proposed to predict ball bearings’ RUL. In [20], Cho proposed a gated recurrent unit (GRU)
that can better handle large training data. The GRU synthesizes a single update gate with
the forgetting gate and the input gate. Meanwhile, in [21], a local-feature-based GRU was
applied to verify the effectiveness of machine health monitoring tasks. Moreover, in [22,23],
the relevance vector machine (RVM) method was applied to further predict the RUL of a
gear system under progressive wear (i.e., fatigue pitting).

In the context of these previous works, this paper proposes a hybrid technique for
the prediction of bearings’ RUL, using a low-pass filter (LPF) to efficiently extract specific
frequencies and applying a chaotic mapping strategy [20] combined with Euclidean feature
values (EFVs) [21] to construct chaotic Euclidean feature values (CEFVs) as the bearings’
health indicators (HIs), which have a positive correlation with the bearings’ degradation,
where the iterative cumulative moving average (ICMA) is adopted to smooth the HIs.
Additionally, we select the most suitable regression model to predict RUL according to the
development trend of the CEFVs, which are also confirmed to be effectively applicable to
fault diagnosis [24–26].

The remainder of this paper is organized as follows: In Section 2, the complete process
for the RUL prediction of ball bearing systems is presented step-by-step. In Section 3, the
experimental results are presented and compared with other methods. Finally, a conclusion
is provided in Section 4.
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2. Materials and Methods

The system presented in this paper can be divided into two parts, as shown in Figure 1;
the first part is the TSP detection stage, which aims to detect the time-to-start prediction
(TSP) of degeneration, while the second stage is the assessment of remaining useful life
(RUL). The collected mechanical signals of the bearing are extracted to a specific frequency
through LPF and ICMA to eliminate noise and singular values, and the HI value is es-
tablished to detect whether the bearing has degraded. When the time-to-start prediction
(TSP) [27] is detected, it will enter the RUL estimation system and extract the latest bearing
data in order to build a regression model to predict the RUL of the bearing.
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Figure 1. The proposed bearing RUL prediction system.

2.1. Data Experiment Platform

This paper uses two experimental databases: the first is the Center for Intelligent
Maintenance Systems (IMS) [24] database, used to construct our method, while the second
is the PRONOSTIA (also called FEMTO) bearing dataset [28], used for validation.

2.1.1. IMS Database

This database consists of experimental data collected by the NSF I/UCR Center for
Intelligent Maintenance Systems [29] for rolling bearings’ run-to-failure testing which are
available from the public database of NASA Ames Prognostics [30]. The experimental data
acquisition platform is also presented in [24], where four bearings were installed on one
shaft for simultaneous detection.

The experiment was performed three times, as shown in Table 1. The conditions of the
three experiments were all the same. The rotation speed was 2000 rpm, the load was 6000 lb,
the sampling rate was 20 kHz, and the vibration signal of 1 s was captured every 10 min
through the NI DAQ card 6062E (except for the first 43 files of Test 1 every 5 min) [30]. Each
acquisition resulted in a separate file of 20,480 points. The experimental conditions and
results are shown in Table 1. In Test 1, Bearing 4 had a ball fault and Bearing 3 had a slight
inner-ring fault. In Test 2, Bearing 1 had an outer-ring fault. In Test 3, Bearing 3 had an
outer-ring fault.
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Table 1. Three test conditions for the IMS dataset.

System Information Conditions

Test 1 2 3
Speed 2000 rpm
Load 6000 lb

Sampling rate 20 kHz
Recording interval 1 s/every 10 min

Channels 8 4 4
File 2156 984 6324

2.1.2. The PRONOSTIA (Also Called FEMTO-ST) Bearing Dataset

The PRONOSTIA (also called FEMTO-ST) bearing dataset [29] is an experimental
platform dedicated to testing and validating methods for the detection, diagnosis, and
prediction of bearing faults. The platform was designed and implemented by the AS2M
department of the FEMTO-ST Institute, and the experimental platform is described in [29].

For the PRONOSTIA dataset, data were generated by applying the maximum load of
the bearing, to accelerate the degradation, using three different load and speed tests. In
order to ensure the safety of the platform, the test was stopped when the vibration signal
amplitude exceeded 20 g [31]. The experimental conditions are summarized in Table 2. In
each experiment, two strokes were selected as training data, and the rest were used as test
data. The first case used a radial load of 4000 N and a rotational speed of 1800 rpm; the
second case used a radial load of 4200 N and a rotational speed of 1650 rpm; and the third
case used a radial load of 5000 N and a rotational speed of 1500 rpm. The sampling rate was
25.6 kHz, and 2560 samples were recorded every 10 s (i.e., 1/10 of a second was collected
every 10 s). The vibration signal was captured in the horizontal and vertical directions; we
used the horizontal signal for our experiments.

Table 2. Three test conditions for the FEMTO-ST dataset.

System Information Conditions

Test 1 2 3
Speed 1800 rpm 1650 rpm 1500 rpm
Load 4000 N 4200 N 5000 N

Sampling rate 25.6 kHz
Recording interval 0.1 s/every 10 s

Training data Bearing 1_1
Bearing 1_2

Bearing 2_1
Bearing 2_2

Bearing 3_1
Bearing 3_2

Test data

Bearing 1_3
Bearing 1_4
Bearing 1_5
Bearing 1_6
Bearing 1_7

Bearing 2_3
Bearing 2_4
Bearing 2_5
Bearing 2_6
Bearing 2_7

Bearing 3_3

2.2. Construction of Health Indicators

The HI construction of this paper can be divided into three parts: the low-pass filter
(LPF), chaotic Euclidean feature values (CEFVs), and iterative cumulative moving average
(ICMA), which are introduced one by one.

2.2.1. Low-Pass Filter

In the process of collecting the bearing data, external factors may cause noise. There-
fore, in this experiment, an LPF was used to filter the noise first. The experiment used the
LPF pair of each bearing datum to filter the 3000 Hz response frequency after several tests.
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2.2.2. Chaotic Euclidean Feature Values

After the data pass through the LPF, the HI value can be constructed. The HI converts
the signal through feature extraction to display the trend graph of the bearing’s degradation
status. We used CEFVs to extract HI values from the data because CEFVs can adequately
represent the process of bearing degradation. Compared with the RMS value commonly
used in the past, CEFVs can amplify the value and can better eliminate the unstable signals
in the value, as shown in Figure 2.
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The CEFV is a new HI value that combines the chaotic mapping system and the
Euclidean feature value (EFV) [32]. The chaotic mapping systems used in this study were
two identical Chen–Li chaotic systems [33]—one as the main system and the other as the
data feeding system [32], as shown in Equations (1) and (2), respectively.

.
x1 = −x2x3 + ax1.
x2 = x1x3 + bx2.
x3 = x1x2/3 + cx3

(1)


.

y1 = −y2y3 + ay1.
y2 = y1y3 + by2.
y3 = y1y2/3 + cy3

(2)

The chaotic dynamic error state was set to e(t) = [e1(t),e2(t),e3(t)], where e1 = x1 − y1,
e2 = x2 − y2, e3 = x3 − y3; the chaotic mapping system obtained is shown in Equation (3):

.
e1 =

.
x1 −

.
y1.

e2 =
.
x2 −

.
y2.

e3 =
.
x3 −

.
y3

(3)

We inserted the IMS Test 2 Bearing 1 data from this experiment into the chaotic
mapping system and calculated the dynamic error. Next, we calculated the Euclidean
distance (ED) of the obtained dynamic error and extracted the EFV through Equation (4),
and then we repeated the execution to convert the experimental data of IMS Test 2 Bearing
1 into CEFVs. The results are shown in Figure 3.

EFV =
∑n

i=1 EDi

n
, ED =

√
(xc − xi)

2 + (yc − yi)
2 + (zc − zi)

2 (4)
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2.2.3. Iterative Cumulative Moving Average

In this study, the iterative cumulative moving average (ICMA) was used to smooth
the bearing data in order to improve the overall prediction results. The schematic is shown
in Figure 4. When Box1 is selected and goes through a simple moving average (SMA), Box1
moves forward by one grid, and another SMA is performed for the updated Box2 until
Boxn reaches the maximum data length, as shown in Equation (5), where Pbox represents
the value after the SMA:

ICMA =
Pbox + Pbox−1 + · · ·+ Pbox−(m−1)

m
(5)
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The smoothness of ICMA was better than that of SMA when the m value was set to 7.
The comparison chart is shown in Figure 5.
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2.3. Time-to-Start Prediction

Time-to-start prediction (TSP) [27] indicates the first time a bearing begins to fail. The
TSP detection process of this experiment is shown in Figure 6. First, we selected a window
box to establish tracking for the HI values. When the constructed tracking value exceeds a
certain limit, it indicates that the bearing has started to fail, and the RUL is predicted. Two
methods were used for constructing the tracking values in this paper: the Euclidean norm,
and the gradient, as introduced in Sections 2.3.1 and 2.3.2, respectively.
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2.3.1. Euclidean Norm

The Euclidean norm (norm) refers to the Euclidean distance of a vector in the Euclidean
space, which is calculated as shown in Equation (6):

norm =
√

x1
2 + x22 + . . . + xn2 (6)

The first step converts the selected data (window box = 60) to the Euclidean norm; the
Euclidean distance of the selected data is calculated, and the norm tracking value Normi
is established to track the current state of the bearing. When Normi exceeds a certain
value, the TSP is detected; the detection method is shown in Equation (7). When the
current tracking value Normi is greater than M× Normmean, the point is determined to be
a TSP. Normmean represents the average of all established tracking values, including the
current one. {

Normi ≤ M× Normmean , Continue detection
Normi > M× Normmean , TSP obtained

(7)

2.3.2. Gradient

The gradient method [26] entails fitting a linear regression model to the window box
data, as shown in Equation (8). The regression parameters ωg and γ are calculated by the
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least squares method, and ωg is the required gradient. The gradient detection condition
sets a limit value; when the gradient exceeds this limit value, the TSP will be detected.

y = ωgx + γ (8)

2.4. Failure Threshold

The failure threshold (FT) is the stopping point of the predicted RUL, and it also
represents the endpoint of the bearing’s life. When the FT is reached, the prediction of the
new HI value will be stopped, and the RUL of the bearing will be calculated. In this study,
the FT continues to use the norm and gradient tracking values of the TSP, and the FT of
the norm value in this research uses NormTSP, where NormTSP is the Normmean when the
TSP is detected. When the predicted data are converted into tracking values after Normi
exceeds a certain limit, the bearing is identified to fail. When detection does not reach
the FT, the detection of fast growth [34] is carried out, which means that the bearing’s
degradation will expand, and the HI trend will also increase rapidly.

2.5. RUL Prediction
2.5.1. Linear Rectification

In order to prevent the captured data from being too flat, causing the predicted values
of the regression predictions to develop into negative values, we used linear rectification
(LR) to adjust the curve of the data in the prediction window box in order to improve the
accuracy of the regression model and the predicted RUL. The adjustment method can be
divided into growth rate adjustment and HI value adjustment.

Figure 7 shows the growth rate adjustment, and the growth rate is calculated as shown
in Equation (9). When the current window box growth rate Gri is less than the previous
growth rate Gri−1, the growth rate is adjusted. The growth rate adjustment is calculated as
shown in Equation (10).

Gr =
1

box− 1

box

∑
n=2

yn − yn−1 (9)

{
Gri = Gri−1 , Gri < Gri−1
Gri , Gri ≥ Gri−1

(10)
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In the HI value adjustment, when the Gr is adjusted, the window box data are adjusted.
The HI value adjustment is calculated as shown in Equation (11). The window box data are
adjusted from the second datum in the selected data until the last. As shown in Figure 8,
the HI growth trend can develop upward after LR.
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{
yj = yj−1 + Gr , yj < yj−1 ∨ yj > yj−1 + Gr
yj , yj−1 ≤ yj ≤ yj−1 + Gr

(11)
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2.5.2. Self-Selective Regression Model

In this study, after determining the generation of the TSP, a window of size n was
constructed from the point of failure, and a self-selective regression model was estab-
lished by using the HI selected in the window. The opening direction established by
quadratic regression automatically selects the most suitable polynomial regression model.
Equations (12) and (13) are the quadratic regression and self-selective regression model
equations, respectively. The constructed model was used to predict the predicted HI values.

y = β1x2 + β2x + γ (12){
y = β3x2 + β4x + γ , β1 > 0
y = β5x + γ , β1 < 0

(13)

We used the regression prediction proposed in [18] as the basis to make predictions by
fitting a self-selective regression model on the nearest n data points (x1 . . . xn, y1 . . . yn). As
shown in Figure 9, we selected the data in the red window box to construct a self-selective
regression model to predict the predicted HI values. After the prediction is successful,
the window box moves forward by one cell, and the new data points are updated to the
new window box. A self-selective regression model was re-established for the data in the
window box to predict the next HI value, and the window box moved forward by one
grid to update the data; we repeated this step until the predicted result exceeded the FT, at
which point we stopped the prediction and started to calculate the RUL.
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3. Results and Discussion

In this study, the bearings’ RUL was predicted using a self-selective regression model,
and the training and testing process was organized as follows: First, the prediction pa-
rameters were established on the test data and brought back to the training data for RUL
prediction, and the cumulative relative accuracy (CRA) [27] was calculated. By adjusting
the setting parameters, we found the most suitable prediction parameters and calculated
the CRA. We then substituted the established prediction parameters into the test data to
calculate the RUL. In this study, the time for each prediction was ~1 s. The computer used
in this experiment was an ASUS Vivo laptop (ASUS, Hong Kong, China) with an Intel
i5-9300h processor and 12 GB of memory.

3.1. Performance Evolution

The RUL calculation method is shown in Equation (14) [22], where r
(
tp
)

is the pre-
dicted value of the RUL, Ntotal is the total number of predictions when the predicted value
reaches the FT, and ∆T is the sampling period of the database. In this study, the IMS
database sampling period was 10 min, and the FEMTO-ST database sampling period was
10 s.

r
(
tp
)
= Ntotal ·∆T (14)

When the RUL was calculated for all of the data, the performance test of the prediction
result was carried out. The first step was to construct the α-λ performance [27], which is a
method to measure the performance of prediction and determine whether the prediction
results are within an acceptable error range, where α represents the error limit of the RUL
prediction and λ is the given point and end of life (EOL) [27], converting the actual RUL to
a 0–1 scale. For example, when λ = 0.6, it means that the bearing life has reached three-fifths
of the EOL. When λ = 1, it means that the bearing has reached its EOL. The detection can be
calculated as shown in Equation (15), where r

(
tp
)

is the actual RUL, r
(
tp
)

is the predicted
RUL, and the α error limit is set at 30%:[

(1− α)r
(
tp
)]
≤ r

(
tp
)
≤
[
(1 + α)r

(
tp
)]

(15)

The second step is calculating the CRA. The relative accuracy (RA) of the measured
value can be determined by subtracting the difference between the actual value and the
measured value from the actual value, and then dividing by the actual value, as shown
in Equation (16) [23]. The calculation of the average of the sum of multiple RA values is
called the CRA, and the calculation is shown in Equation (17) [27]. In this study, the CRA
obtained from data points with the same interval was selected to evaluate the accuracy of
life expectancy.

RA = 1−
∣∣r(tp

)
− r
(
tp
)∣∣

r
(
tp
) (16)

CRA =
1

EOL− P + 1

EOL

∑
i=P

RA (17)

3.2. IMS Prediction Results

In the IMS experiments, the bearings Test 2 Bearing 1, Test 1 Bearing 4, and Test 3
Bearing 3 were selected, as they caused the main damage. Test 2 Bearing 1 was used as
training data, while Test 1 Bearing 4 and Test 3 Bearing 3 were used as test data. The
parameters obtained after training are shown in Table 3. The window boxes were all 60.
In the ICMA, the norm value is less susceptible to the influence of the clutter wave, and
the value is 7. In the gradient method, the gradient is more likely to fluctuate due to the
influence of the clutter wave. In order to make the detection more accurate, we used a
value of 20. In the use of the norm value, the M value of TSP is 1.125 times the Normmean,
and NormTSP is the Normmean at the moment when the TSP is detected. When Normi is
greater than 1.4× NormTSP, it indicates the beginning of fast growth; when it exceeds 1.64
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× NormTSP, it indicates that the FT will occur. In the gradient method, when the gradient
exceeds 0.00055, it indicates the occurrence of the TSP; when the gradient is greater than
0.00077, it indicates the beginning of rapid destruction, and when it exceeds 0.00095 it
indicates the occurrence of the FT.

Table 3. IMS dataset prediction parameters.

Parameter Conditions

HI CEFV
Tracking values Norm Gradient

Window box 60 60
ICMA 7 20

TSP 1.125× Normmean 0.00055
Fast growth 1.400× NormTSP 0.00077

Failure threshold 1.640× NormTSP 0.00095

Figure 10 shows the CRA diagram of IMS Test 2 Bearing1. We selected the data of
20 points to calculate the CRA. Through the calculation shown in Equation (17), using the
result of the norm value, the CRA was determined to be 0.9450, which is equivalent to a
95% correct prediction rate. The result using the gradient value was 0.7459, corresponding
to a 75% correct prediction rate.
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Figure 10. IMS Test 2 Bearing 1 CRA: (a) using the norm tracking value; (b) using the gradient
tracking value.

Because the norm had better results, we further used the norm to plot the RUL
prediction trajectory for different test points. The trajectory of the bearings’ HIs using
the norm tracking value is shown in Figure 11. The trajectory was generated at different
time points (7400, 7700, 8000, 8300, 8600, and 8900 min); the predicted results were very
similar to the data after ICMA, demonstrating that the proposed method is effective for
the assessment of the RUL of the ball bearings at different times. Moreover, the prediction
results of Test 1 Bearing 4 and Test 3 Bearing 3 are shown in Figures 12 and 13, respectively,
to verify the performance of the proposed method.

Table 4 shows the CRAs of all of the data with the main damage, and the results for
the training data are highlighted in orange. It can be seen that, when using the norm as the
tracking value to predict the bearings’ RUL, the obtained prediction results are better than
with the use of the gradient, and using the CEFV as the HI can obtain a better CRA.
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Table 4. IMS data CEFV CRA comparison.

Parameter Condition

HI CEFV
Track value Norm Gradient

Test 2 Bearing 1 CRA 0.9450 0.7459
Test 1 Bearing 4 CRA 0.8355 0.8206
Test 3 Bearing 3 CRA 0.9230 0.5507

CRA AVG 0.9012 0.7057

3.3. FEMTO-ST Prediction Result

The CEFV and norm method proposed in this paper was applied to the horizontal
data of FEMTO-ST Test 1 for verification. After training, the experimental data parameters
were as shown in Table 5. The performance of the proposed method after testing is shown
in Figure 14, while Figure 15 shows the predicted trajectory of Bearing 1 using norm values.

Table 5. FEMTO-ST dataset prediction parameters.

Parameter Conditions

HI CEFV
Tracking values Norm

Window box 60
ICMA 11

TSP 1.15× Normmean
Fast growth 2.00× NormTSP

Failure threshold 2.95× NormTSP
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Figure 15. Trajectories of bearings’ health indicators using norm values. The trajectory was generated
at different time points: (a) 13,000, (b) 14,300, (c) 15,600, (d) 16,900, (e) 18,200, and (f) 19,500 s.

Table 6 provides the CRA scores of the applied method and those used in [35] for
comparison. As can be seen from Table 4, our method can achieve good prediction results.

Table 6. FEMTO-ST CRA comparison.

Gebraeel Method Linear Method NWP Method Our Method

Bearing 1 0.6230 0.5890 0.6960 0.9259
Bearing 2 0.5411 0.7771 0.8429 0.8361
Bearing 3 0.6961 0.6402 0.7808 0.8222
Bearing 4 0.6876 0.7573 0.7647 0.9276

3.4. Discussion

In the IMS data, the CEFV value can better represent the bearing degradation than
the previous RMS. On the other hand, we used the norm and gradient to detect the RUL.
Using the norm value provided a better performance in our method. Additionally, our
proposed method was validated on FEMTO data. Although some data had not yet been
predicted, the data collection was stopped because the vibration of the machine exceeded
20 g, resulting in a failure in the prediction. However, judging from the successful results,
our proposed method still provided good prediction results.

4. Conclusions

This paper proposes a smart system combined with a regression prediction system to
predict the RUL of ball bearings. Based on the results of the experiments described in this
paper, the proposed method can achieve good results in the prediction of bearings’ RUL.
Four conclusions can be drawn: (1) The HI after LPF and ICMA will show a smooth curve,
which can improve the accuracy of prediction, and ICMA can make the curve smoother
than the general SMA. (2) In this study, the Euclidean norm was used as the tracking
value. The Euclidean norm is good for tracking the process of bearings’ degradation.
Compared with the gradient in the RUL prediction, the effect of using the Euclidean norm
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was better than that of the gradient. (3) Through the method used in our experiments, the
average CRA could exceed 90% in the prediction results of IMS data. (4) Applying the
method proposed in this paper to the FEMTO-ST experimental data, the prediction also
achieved good results. This study can be considered as a first step; thus, more extensive
studies should be conducted in the future to further verify the effectiveness of the proposed
method. In future research, deep learning tools should be taken into consideration for
feature extraction, along with more appropriate TSP decisions and accuracy improvement,
where a chaotic mapping strategy can also be applied to develop the main health indicators.

Author Contributions: Conceptualization, S.-Y.L., L.-M.T. and C.-S.C.; methodology, S.-Y.L. and
H.-A.L.; software, S.-Y.L. and H.-A.L.; validation, H.-A.L.; formal analysis, S.-Y.L., L.-M.T. and C.-
S.C.; investigation, H.-A.L., S.-Y.L., L.-M.T. and C.-S.C.; resources, S.-Y.L.; writing—original draft
preparation, H.-A.L.; writing—review and editing, S.-Y.L., L.-M.T., C.-S.C. and H.-A.L.; visualization,
S.-Y.L. and H.-A.L.; supervision, S.-Y.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This paper was supported in part by the University System of Taipei Joint Research
Program with grant no. USTP-NTUT-NTOU-112-03, supported in part by the Ministry of Science and
Technology with grant no. MOST 110-2221-E-027-080, MOST 111-2218-E-027-003, supported in part
by the Ministry of Education with grant no. PEE1110056, and supported in part by the Institute for
the Development and Quality, Macau, Macao.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created in this paper.

Acknowledgments: We deeply appreciate the significant support from the Ministry of Science and
Technology, the National Taipei University of Technology, Taiwan, the Ministry of Education, and the
support from the Institute for Development and Quality, Macau, Macao.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Kim, N.H.; An, D.; Choi, J.H. Prognostics and Health Management of Engineering Systems; Springer International Publishing: Cham,

Switzerland, 2017.
2. Zhang, J.L. A review on prognostics and health monitoring of Li-ion battery. J. Power Sources 2011, 196, 6007–6014. [CrossRef]
3. Dong, W.; Tsui, K.; Miao, Q. Prognostics and health management: A review of vibration based bearing and gear health indicators.

IEEE Access 2017, 6, 665–676.
4. Williams, T.; Ribadeneira, X.; Billington, S.; Kurfess, T. Rolling element bearing diagnostics in run-to-failure lifetime testing. Mech.

Syst. Signal Process. 2001, 15, 979–993. [CrossRef]
5. Antoni, J. The spectral kurtosis: A useful tool for characterising non-stationary signals. Mech. Syst. Signal Process. 2006, 20,

282–307. [CrossRef]
6. Yan, R.; Gao, R.X. Approximate entropy as a diagnostic tool for machine health monitoring. Mech. Syst. Signal Process. 2007, 21,

824–839. [CrossRef]
7. Jin, X.; Wang, Y.; Chow, T.W.; Sun, Y. MD-based approaches for system health monitoring: A review. IET Sci. Meas. Technol. 2017,

11, 371–379. [CrossRef]
8. Gebraeel, N.Z.; Lawley, M.A.; Li, R.; Ryan, J.K. Residual-life distributions from component degradation signals: A Bayesian

approach. IiE Trans. 2005, 37, 543–557. [CrossRef]
9. Li, N.; Lei, Y.; Lin, J.; Ding, S.X. An improved exponential model for predicting remaining useful life of rolling element bearings.

IEEE Trans. Ind. Electron. 2015, 62, 7762–7773. [CrossRef]
10. Lei, Y.; Li, N.; Gontarz, S.; Lin, J.; Radkowski, S.; Dybala, J. A model-based method for remaining useful life prediction of

machinery. IEEE Trans. Reliab. 2016, 65, 1314–1326. [CrossRef]
11. Loutas, T.H.; Roulias, D.; Georgoulas, G. Remaining Useful Life Estimation in Rolling Bearings Utilizing Data-Driven Probabilistic

E-Support Vectors Regression. IEEE Trans. Reliab. 2013, 62, 821–832. [CrossRef]
12. Tran, V.T.; Pham, H.T.; Yang, B.S.; Nguyen, T.T. Machine performance degradation assessment and remaining useful life prediction

using proportional hazard model and support vector machine. Mech. Syst. Signal Process. 2012, 32, 320–330. [CrossRef]

http://doi.org/10.1016/j.jpowsour.2011.03.101
http://doi.org/10.1006/mssp.2001.1418
http://doi.org/10.1016/j.ymssp.2004.09.001
http://doi.org/10.1016/j.ymssp.2006.02.009
http://doi.org/10.1049/iet-smt.2016.0340
http://doi.org/10.1080/07408170590929018
http://doi.org/10.1109/TIE.2015.2455055
http://doi.org/10.1109/TR.2016.2570568
http://doi.org/10.1109/TR.2013.2285318
http://doi.org/10.1016/j.ymssp.2012.02.015


Sensors 2023, 23, 1267 16 of 16

13. Ren, L.; Cui, J.; Sun, Y.; Cheng, X. Multi-bearing remaining useful life collaborative prediction: A deep learning approach. J.
Manuf. Syst. 2017, 43, 248–256. [CrossRef]

14. Jiang, J.R.; Lee, J.E.; Zeng, Y.M. Time series multiple channel convolutional neural network with attention-based long short-term
memory for predicting bearing remaining useful life. Sensors 2020, 20, 166. [CrossRef] [PubMed]

15. Guo, L.; Li, N.; Jia, F.; Lei, Y.; Lin, J. A recurrent neural network based health indicator for remaining useful life prediction of
bearings. Neurocomputing 2017, 240, 98–109. [CrossRef]

16. Caesarendra, W.; Widodo, A.; Thom, P.H.; Yang, B.S.; Setiawan, J.D. Combined probability approach and indirect data-driven
method for bearing degradation prognostics. IEEE Trans. Reliab. 2011, 60, 14–20. [CrossRef]

17. Wang, Y.; Peng, Y.; Zi, Y.; Jin, X.; Tsui, K.L. A two-stage data-driven-based prognostic approach for bearing degradation problem.
IEEE Trans. Ind. Inform. 2016, 12, 924–932. [CrossRef]

18. Ahmad, W.; Khan, S.A.; Kim, J.M. A hybrid prognostics technique for rolling element bearings using adaptive predictive models.
IEEE Trans. Ind. Electron. 2017, 65, 1577–1584. [CrossRef]

19. Wang, F.K.; Mamo, T. Hybrid approach for remaining useful life prediction of ball bearings. Qual. Reliab. Eng. Int. 2019, 35,
2494–2505. [CrossRef]

20. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. Comput. Lang. 2014, arXiv:1406.1078. Available online: https:
//arxiv.org/abs/1406.1078 (accessed on 3 September 2014).

21. Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; Wang, J. Machine health monitoring using local feature-based gated recurrent unit
networks. IEEE Trans. Ind. Electron. 2018, 65, 1539–1548. [CrossRef]

22. Caesarendra, W.; Widodo, A.; Yang, B. Application of relevance vector machine and logistic regression for machine degradation
assessment. Mech. Syst. Signal Process. 2010, 24, 1161–1171. [CrossRef]

23. Feng, K.; Ji, J.; Ni, Q. A novel gear fatigue monitoring indicator and its application to remaining useful life prediction for spur
gear in intelligent manufacturing systems. Int. J. Fatigue 2023, 168, 107459. [CrossRef]

24. Li, S.Y.; Gu, K.R. Smart fault-detection machine for ball-bearing system with chaotic mapping strategy. Sensors 2019, 19, 2178.
[CrossRef] [PubMed]

25. Li, S.Y.; Gu, K.R.; Chen, C.S. A novel smart fault-diagnosis method with procedures of feature productions and extractions. In
Proceedings of the 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), Toyonaka, Japan,
3–5 July 2019; pp. 268–273.

26. Chen, C.S.; Ke, Y.C.; Tam, L.M.; Li, S.Y. A Smart Real-Time Monitoring System for Fault-Diagnosis of Ball-Bearing. In Proceedings
of the 2019 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Yilan, Taiwan, 20–22 May 2019; pp. 1–2.

27. Saxena, A.; Celaya, J.; Balaban, E.; Goebel, K.; Saha, B.; Saha, S.; Schwabacher, M. Metrics for evaluating performance of prognostic
techniques. In Proceedings of the 2008 International Conference on Prognostics and Health Management, Denver, CO, USA,
6–9 October 2008; pp. 1–17.

28. Nectoux, P.; Gouriveau, R.; Medjaher, K.; Ramasso, E.; Chebel-Morello, B.; Zerhouni, N.; Varnier, C. PRONOSTIA: An experimental
platform for bearings accelerated degradation tests. In Proceedings of theIEEE International Conference on Prognostics and
Health Management, PHM’12, Denver, CO, USA, 18–21 June 2012; pp. 1–8.

29. Qiu, H.; Lee, J.; Lin, J.; Yu, G. Wavelet filter-based weak signature detection method and its application on rolling element bearing
prognostics. J. Sound Vib. 2006, 289, 1066–1090. [CrossRef]

30. Qiu, H.; Lee, J.; Yu, G.; Lin, J. Rexnord Technical Services, “Bearing Data Set”, IMS, University of Cincinnati, NASA Ames Prognostics
Data Repository; NASA Ames: Moffett Field, CA, USA, 2007. Available online: http://ti.arc.nasa.gov/project/prognosticdata-
repository (accessed on 4 January 2023).

31. IEEE PHM 2012 Prognostic Challenge. Outline, Experiments, Scoring of Results, Winners. Available online: http://www.femto-
st.fr/f/d/IEEEPHM2012-Challenge-Details.pdf (accessed on 4 January 2023).

32. Li, S.Y.; Gu, K.R. A smart fault-detection approach with feature production and extraction processes. Inf. Sci. 2020, 513, 553–564.
[CrossRef]

33. Chen, H.K.; Lee, C.I. Anti-control of chaos in rigid body motion. Chaos Solitons Fractals 2004, 21, 957–965. [CrossRef]
34. Qian, Y.; Yan, R.; Gao, R.X. A multi-time scale approach to remaining useful life prediction in rolling bearing. Mech. Syst. Signal

Process. 2017, 83, 549–567. [CrossRef]
35. Wen, J.; Gao, H.; Zhang, J. Bearing remaining useful life prediction based on a nonlinear wiener process model. Shock. Vib. 2018,

2018, 4068431. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jmsy.2017.02.013
http://doi.org/10.3390/s20010166
http://www.ncbi.nlm.nih.gov/pubmed/31888110
http://doi.org/10.1016/j.neucom.2017.02.045
http://doi.org/10.1109/TR.2011.2104716
http://doi.org/10.1109/TII.2016.2535368
http://doi.org/10.1109/TIE.2017.2733487
http://doi.org/10.1002/qre.2538
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
http://doi.org/10.1109/TIE.2017.2733438
http://doi.org/10.1016/j.ymssp.2009.10.011
http://doi.org/10.1016/j.ijfatigue.2022.107459
http://doi.org/10.3390/s19092178
http://www.ncbi.nlm.nih.gov/pubmed/31083448
http://doi.org/10.1016/j.jsv.2005.03.007
http://ti.arc.nasa.gov/project/prognosticdata-repository
http://ti.arc.nasa.gov/project/prognosticdata-repository
http://www.femto-st.fr/f/d/IEEEPHM2012-Challenge-Details.pdf
http://www.femto-st.fr/f/d/IEEEPHM2012-Challenge-Details.pdf
http://doi.org/10.1016/j.ins.2019.11.010
http://doi.org/10.1016/j.chaos.2003.12.034
http://doi.org/10.1016/j.ymssp.2016.06.031
http://doi.org/10.1155/2018/4068431

	Introduction 
	Materials and Methods 
	Data Experiment Platform 
	IMS Database 
	The PRONOSTIA (Also Called FEMTO-ST) Bearing Dataset 

	Construction of Health Indicators 
	Low-Pass Filter 
	Chaotic Euclidean Feature Values 
	Iterative Cumulative Moving Average 

	Time-to-Start Prediction 
	Euclidean Norm 
	Gradient 

	Failure Threshold 
	RUL Prediction 
	Linear Rectification 
	Self-Selective Regression Model 


	Results and Discussion 
	Performance Evolution 
	IMS Prediction Results 
	FEMTO-ST Prediction Result 
	Discussion 

	Conclusions 
	References

