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Abstract: The object detection technologies of remote sensing are widely used in various fields,
such as environmental monitoring, geological disaster investigation, urban planning, and military
defense. However, the detection algorithms lack the robustness to detect tiny objects against com-
plex backgrounds. In this paper, we propose a Multiple Attention Mechanism Enhanced YOLOX
(MAME-YOLOX) algorithm to address the above problem. Firstly, the CBAM attention mechanism is
introduced into the backbone of the YOLOX, so that the detection network can focus on the saliency
information. Secondly, to identify the high-level semantic information and enhance the perception
of local geometric feature information, the Swin Transformer is integrated into the YOLOX’s neck
module. Finally, instead of GIOU loss, CIoU loss is adopted to measure the bounding box regression
loss, which can prevent the GIoU from degenerating into IoU. The experimental results of three pub-
licly available remote sensing datasets, namely, AIBD, HRRSD, and DIOR, show that the algorithm
proposed possesses better performance, both in relation to quantitative and qualitative aspects.
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1. Introduction

Object detection aims to find the position and size of all relevant objects in the image.
Remote sensing images contain sensitive objects, such as vehicles, aircraft, buildings, and
forests. Recently, remote sensing images have been developed towards higher spatial,
spectral, and temporal resolutions, which greatly enriches the information of remote
sensing images. How to use this remote sensing information more effectively has become a
core issue in technology applications.

Remote sensing object detection is an essential application of remote sensing [1]
information. It is widely used in various fields, such as land use and cover statistics, envi-
ronmental monitoring, geological disaster investigation, Geographic Information System
updates, precision agriculture urban planning, military defense, etc. In recent years, tech-
nologies, such as the watershed segmentation algorithm [2], visual saliency algorithm [3],
canny edge detection algorithm [4], and classification algorithm based on SVM [5], have
been applied to the object detection of RGB images and have achieved good results against
simple backgrounds. However, in optical remote sensing imaging, the shooting angle is not
horizontal, and most captured objects are tiny. The remote sensing imaging process is also
easily affected by complex background factors, such as light intensity, shooting time, and
weather. As a result, detection accuracy and speed become worse when the above object
detection methods are applied to remote sensing images. With the widespread use of deep
learning methods in object detection, the accuracy of object detection has been dramatically
improved. Currently, object detection techniques are mainly divided into two categories.

The first category is two-stage algorithms, mainly represented by the R-CNN series,
mainly including R-CNN [6], Fast R-CNN [7], and Faster R-CNN [8]. The above two-stage
object detection algorithms have high accuracy, but run slow. Lin Na et al. [9] used the
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idea of hollow residual convolution to extract shallow features. They fused the shallow
information with deep features, which effectively improved the detection accuracy of
aircraft in remote sensing images. Yao Yanqing et al. [10] used a dual-scale feature fusion
module to alleviate the loss of deep information and effectively improve the detection
ability of multi-scale remote sensing objects. Zhang Xiaoya et al. [11] proposed a remote
sensing-based object detection algorithm with a multi-stage cascade architecture, enhancing
both the detection tasks of the horizontal frame and the rotating frame. According to the
characteristics of different types of aircraft, such as the size scale not being fixed, Dong
Yongfeng et al. [12] proposed an object detection method based on Mask RCNN. Dai Yuan
et al. [13] proposed remote sensing image object detection based on an improved rotation
region generation network. This method was improved based on Faster R-CNN. The test
results in the DOTA dataset show that this algorithm improves detection accuracy. The
above methods all adopt a two-stage convolution neural network algorithm and have good
accuracy; however, the detection efficiency is low, and it is not suitable for mobile terminals.

The second category is single-stage algorithms, represented by the YOLO series,
such as YOLO [14], YOLOv2 [15], YOLOv3 [16], YOLOv4 [17], and YOLOX [18]. These
single-stage detection algorithms only use one convolutional neural network to locate and
directly classify all objects, reducing the step of generating region proposals. Based on
YOLOv3, Zhang Yu et al. [19] proposed a multi-scale feature densely connected remote
sensing object detection model, YOLO-RS, which retained more feature information in
the image and improved the information interaction between feature layers of different
scales. Zhang Tianjun et al. [20] proposed improving the remote sensing image aircraft
object detection method based on YOLOv4. This method greatly improves the detection
accuracy of UCAS-AOD and RSOD public remote sensing datasets, which is conducive
to the rapid detection of remote sensing image aircraft objects in actual industrial scenes.
Lang Lei et al. [21] proposed a lightweight remote sensing image object detection model
based on YOLOX Tiny based on YOLOX, evaluating the effectiveness of the algorithm on
the public remote sensing image object detection dataset DIOR, and the test results proved
the method’s improved detection accuracy. In addition, compared with two-stage object
detection algorithms, the detection speed of one-stage algorithms is greatly improved.

The above object detection algorithms are all improvements based on convolutional
neural networks. Although convolutional neural networks can effectively extract local
information, their ability to obtain global context information is limited. Based on the
self-attention mechanism, Transformer [22] retains enough spatial information for object
detection through the multi-head self-attention module, which is beneficial to improve
the detection performance of tiny objects. Compared with CNN, Transformer obtains
global features from shallow layers and contains more spatial information. Transformer
has superior performance in parallel computing in the current hardware environment
(GPU). However, when used on remote sensing images with large-scale changes and
uneven distribution of object sizes, Transformer faces a large amount of calculation, and
the real-time performance is poor. In 2021, Liu et al. proposed the Swin Transformer
architecture [23], built by replacing the standard multi-head self-attention (MSA) module
in the Transformer block with a shifted window-based module, while keeping other layers
unchanged. Swin Transformer is hierarchically produced to solve multi-scale problems and
provide dimensional information on each scale. Swin Transformer uses shifted windows to
allow interaction between adjacent windows, which expands the receptive field, improves
efficiency, and reduces computational complexity. Based on Swin Transformer, Xu et al. [24]
proposed a Local Perception Swin Transformer (LPSW) to explore remote sensing object
detection and instance segmentation to enhance the network’s local perception ability and
improve the detection accuracy of small-scale objects.

Although there have been a great number of studies regarding object detection for
remote sensing images, the detection algorithms still lack the robustness to detect tiny
objects against complex backgrounds.
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Therefore, in this paper we propose a Multiple Attention Mechanism Enhanced
YOLOX [25] (MAME-YOLOX) algorithm to address the above problem. The main contribu-
tions are threefold:

(1) We introduce the CBAM [26] attention mechanism into the backbone of the YOLOX,
so that the detection network can focus on the saliency information.

(2) Based on the idea of the self-attention mechanism, the Swin Transformer is also inte-
grated in the YOLOX’s neck module. This module is used to identify the high-level
semantic information and enhance the perception of local geometric feature information.

(3) Instead of GIOU loss, CIoU loss [27] is adopted to measure the bounding box regres-
sion loss, which can prevent the GIoU from degenerating into IoU. This design can
improve the accuracy of the predicted bounding box.

The remaining sections of this paper are organized as follows. The related works are
reviewed in Section 2. The proposed method is described in Section 3. Section 4 shows the
experiment and analysis. Finally, we present the conclusion in Section 5.

2. Related Works
2.1. YOLOX

YOLOX [28] consists of four parts: input, a backbone for feature extraction, a neck for
feature fusion, and prediction.

The input part includes Mosaic Augmentation, Mixup Augmentation, and Focus
architecture. Mosaic Augmentation reads four pictures at a time, performs operations such
as scaling and flipping on the four pictures and combines them into one image. Through
Mosaic Augmentation, the background of the dataset is enriched, the training speed of the
network is improved, the uneven distribution of objects is changed, the system’s robustness
is improved, and the consumption of GPU memory is reduced. MixUp is an improved
strategy based on Mosaic. MixUp fuses two images according to a specific fusion coefficient,
achieving the same function as Mosaic. Focus extracts a value for every other image pixel,
slices to obtain independent feature layers, then stacks to multiply channels by a factor of 4.

The backbone is the feature extraction network and also the main body of YOLOX.
The backbone of YOLOX is CSPDarknet, which consists of the residual block, CSP block,
and SiLU. The residual network effectively alleviates the gradient disappearance problem
in deep neural networks. CSPBlock dramatically improves the computing and learning
ability of CNN and reduces the amount of calculation. The activation function, SiLU, is an
enhanced version of Sigmoid and ReLU. It is smooth, unbounded, and non-monotonic and
performs better than ReLU in deep networks.

The neck is used for feature fusion, and its core is the feature pyramid network (FPN)
and path aggregation network (PAN) [29,30]. With the deepening of the convolutional
layer, the features of large objects in the high layer are rich, while in the low layer, the
location information of large objects and the category features of tiny objects are better.
The workflow is as follows. First, FPN is used to transfer and fuse the high-level feature
information by up-sampling, and then the predicted feature map is obtained by down-
sampling and fusion through PAN. FPN improves the detection ability of tiny objects, and
PAN better transmits the bottom layer information to the top layer.

Prediction is a classification and regression for YOLOX. Three feature layers of different
scales are obtained through the neck and then, respectively, used to identify large, medium,
and small objects. Each feature layer can be regarded as a collection of feature points,
and each feature point has a position parameter and the number of channels. Prediction
finds whether there is an object corresponding to the feature point. Prediction comprises
Decoupled Head, Anchor Free, SimOTA, and LOSS. Decoupled Head con-verges faster and
with higher precision, but the computational complexity also increases. Compared with
other anchor-based methods, Anchor Free detectors have two-thirds fewer parameters, run
faster, and perform better. SimOTA can perceive loss and quality, provide a center point
prior, dynamically change the number of positive anchors, and cover the global view. As a
result, it is used as an advanced label assignment mechanism.
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The head of YOLOX is different from the previous YOLO head. The decoupling
classification and regression of the previous version are implemented in one convolution,
while the decoupling of the YOLO head in YOLOX is implemented in two parts.

The SimOTA screens the feature points to obtain the candidate bounding boxes of
positive samples. Firstly, it defines a loss function representing the relationship between
the ground truth and the predicted boxes. Then, it filters out the anchors with the center
falling within the range of the ground truth or a square box, of which the center is the same
as the ground truth. The anchors picked out are called candidates. Then, it calculates the
intersection over union (IOU) [31] between the ground truth and its candidates. Then, it
adds up the top ten largest IOUs as the k value of this ground truth, which means that
k feature points correspond to the ground truth. Finally, it calculates the classification
accuracy of every ground truth and its candidates, by which it obtains the cost function.
The k points with the lowest cost are the positive samples of the ground truth.

In YOLOX, the bounding box regression loss function is GIOU loss. The definition of
GIOU loss is shown in Equation (1).

GIOU = IOU− |C− (A∪ B)|
|C| (1)

The classification loss of the YOLOX is cross entropy (CE), while the GIOU loss is
used to measure the intersecting scale between the predicted bounding box and the ground
truth. Assuming C is the smallest rectangular frame containing A and B, when IOU = 0, the
distance between A and B is great, and GIOU tends to -1. This solves the problem of the loss
function not being derivable when the bounding boxes do not coincide and the IOU loss
does not correctly reflect the intersection situation when the size of the two predicted boxes
is the same, which means that the IOU is the same too. However, if multiple prediction
boxes of the same size are inside the ground truth, each minimum box C is the same, and
the union of A and B is also the same. At this time, GIOU loss cannot correctly reflect the
prediction boxes’ intersection situation.

2.2. CBAM

The CBAM [32] uses the channel attention module (CAM) and the spatial attention
module (SAM) to learn where and what to focus on so that it pays more attention to
essential features while ignoring unnecessary ones. The architecture of the CBAM is shown
in Figure 1.
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The CBAM workflow is as follows. Firstly, given a feature map F ∈ RH×C×W, CBAM
first derives one-dimensional channel attention Mc from F, and two-dimensional spatial
attention Ms is introduced after multiplying F and Mc. F is multiplied again to obtain the
output feature map. The output feature map has the same dimensions as the input feature
map F. The calculation equation is shown in Equations (2) and (3).

F′ = Mc(F)⊗ F (2)

F′′ = Ms
(
F′
)
⊗ F′ (3)
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In order to gather spatial information and feature cues of different objects to obtain
more accurate channel attention, the average pooling and the max pooling are simultane-
ously used to compress the spatial dimension of the input feature map. The pooling vector
is fed into a multi-layer perceptron and a hidden layer. The feature vector output from
MLP is added elementwise and activated by sigmoid to obtain channel attention Mc. The
calculation respects Equation (4).

Mc(F) = σ((MLP(AvgPool(F)) + MLP(MaxPool(F))) (4)

Spatial attention contains location information and is the supplement of channel
attention. The obtained channel attention Mc applies average pooling and max pooling
operations along the channel axis. The generated effective feature vectors obtain spatial
attention Ms after convolution operation and sigmoid activation. The computing method
is shown in Equation (5).

Ms(F) = σf(f7×7([AvgPool(F))); (MaxPool(F)])) = σ(f7×7([Fs
avg; Fs

max])) (5)

2.3. Swin Transformer

The Swin Transformer [33] module consists of a multi-layer perceptron, a Window
Multi-head Self-Attention (WMSA), a Shifted Window-based Multi-head Self Attention
(SWMSA), and a Layer Normalization (LN). The workflow is shown as Figure 2.
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First, the input image is normalized through the normalization layer. Then, the feature
is learned through the W-MSA module, and the residual is calculated, which is then fed into
the MLP through a layer of LN. Finally, the residual operation is performed again to obtain
this layer’s output features. The architecture and workflow of SWMSA are similar to those
of WMSA, and the difference is that SWMSA needs to perform a sliding window operation
when calculating the feature part. In addition, WMSA and SWMSA are used in pairs, so
the number of stacked Swin Transformer Blocks is even; the calculation expressions of each
part of the Swin Transformer Backbone network are shown in Equations (6)–(9).

Z
′l = W−MSA(LN(Zl−1)) + Zl−1 (6)

Zl = MLP(LN(Z
′l)) + Z

′l (7)

Z
′l+1 = SW−MSA(LN(Zl)) + Zl (8)

Zl+1 = MLP(LN(Z
′l+1)) + Z

′l+1 (9)

where Z
′l and Zl, respectively, represent the output features corresponding to module l,

module (S)W-MSA, and module MLP. The Swin Transformer computes self-attention
through local windows, which are arranged to evenly divide the image in a non-overlapping
manner. Assuming that each window contains M*M small blocks, the computational com-
plexities of an image based on a global-based MSA module and a h*w block are shown in
Equations (10) and (11), respectively.

Ω(MSA) = 4hwC2 + 2(hw)2C (10)

Ω(W−MSA) = 4hwC2 + 2M2hwC (11)

From Equations (10) and (11), it can be clearly seen that, compared with the MSA
module, the W-MSA design can save a considerable amount of computation.

3. The Proposed Method

In this section, we introduce the proposed Multiple Attention Mechanism Enhanced
YOLOX (MAME-YOLOX) algorithm. The proposed MAME-YOLOX mainly contains three
contributions. Firstly, we introduce the CBAM attention mechanism into the backbone of
the YOLOX, so that the detection network can focus on the saliency information. Secondly,
based on the idea of the self-attention mechanism, the Swin Trans-former is incorporated
into the YOLOX’s neck module. Thirdly, instead of GIOU loss, the CIoUloss is adopted to
measure the bounding box regression loss, which can prevent the GIoU from degenerating
into IoU. The architecture of the improved YOLOX is shown in Figure 4.

3.1. CBAM Enhanced Feature Extraction

Due to the complex background of the remote sensing image itself, in the process of
multiple convolution operations, the iterations of the background will generate a large
amount of redundant information, which conceals the valuable information of the image,
resulting in a decrease in average precision. Therefore, this paper introduces the CBAM
(Convolution Block Attention Module) attention mechanism into the convolutional block
of the backbone of YOLOX, which can reduce the redundant information of the fully
connected layer and enable the detection network to be more concerned about the locations
that need attention. Moreover, it dramatically improves the accuracy of object detection
and recognition, especially the precision of small objects. The architecture of the CCBAM is
shown in Figure 5.
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3.2. Self-Attention Enhanced Feature Representation

Due to the dense objects in remote sensing images, with the deepening of the net-work
and multiple convolution operations, most of the feature information of small objects is
lost in the high-level feature map, which is prone to missed and false detections. The Swin
Transformer uses a multi-head self-attention module to enhance the semantic information
and feature representation of small objects in remote sensing images, which can strengthen
the local perception ability of the network and improve the detection accuracy of small-
scale objects. Compared with the traditional Transformer, the amount of calculation is
significantly minimal. Therefore, the Swin Transformer module idea is introduced into the
feature fusion of YOLOX’s neck. The YOLOX’s neck is based on CSP architecture. On this
basis, we introduced the Swin Transformer into the CSP, which is called CSP_STR. The
architecture of the CSP_STR module after introducing the Swin Transformer into the neck
feature fusion network of YOLOX is shown as Figure 6.
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3.2. Self-Attention Enhanced Feature Representation
Due to the dense objects in remote sensing images, with the deepening of the net-

work and multiple convolution operations, most of the feature information of small ob-
jects is lost in the high-level feature map, which is prone to missed and false detections. 
The Swin Transformer uses a multi-head self-attention module to enhance the semantic 
information and feature representation of small objects in remote sensing images, which 
can strengthen the local perception ability of the network and improve the detection ac-
curacy of small-scale objects. Compared with the traditional Transformer, the amount of 
calculation is significantly minimal. Therefore, the Swin Transformer module idea is in-
troduced into the feature fusion of YOLOX’s neck. The YOLOX’s neck is based on CSP 
architecture. On this basis, we introduced the Swin Transformer into the CSP, which is 
called CSP_STR. The architecture of the CSP_STR module after introducing the Swin 
Transformer into the neck feature fusion network of YOLOX is shown as Figure 6. 

Figure 6. The architecture of the CSP_STR module. 

The CSP_STR controls the computing area in each window by dividing local win-
dows to realize cross-window information interaction, reduces computational complexity 
and network computation, and enhances the semantic information and feature represen-
tation of small objects. 

3.3. Loss Function 
The CIOU loss is used as the regression loss function of the bounding box, which 

solves the problem of GIOU degenerating into IOU. The definition of CIOU loss is shown 
in Equations (12) to (14).
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Figure 6. The architecture of the CSP_STR module.

The CSP_STR controls the computing area in each window by dividing local windows
to realize cross-window information interaction, reduces computational complexity and
network computation, and enhances the semantic information and feature representation
of small objects.

3.3. Loss Function

The CIOU loss is used as the regression loss function of the bounding box, which
solves the problem of GIOU degenerating into IOU. The definition of CIOU loss is shown
in Equations (12)–(14).

CIOU = 1− IOU +
p2(b1 + b2)

c2 + αv (12)

α =
v

(1− IOU) + v
(13)

v =
4
π2 (arctan

wb1

hb1
− arctan

wb2

hb2 )
2

(14)

where b1 is the center point of the prediction box, b2 is the center point of the ground truth,
and c is the diagonal distance of the smallest box covering the two frames. CIOU loss
considers the Euclidean distance between the prediction and the ground truth. When the
prediction is inside the ground truth, the position of the prediction is different, and the
position of its center is also different, and CIOU loss can be calculated. wb1 , hb1 , wb2 , and
hb2 are the width and height of the prediction box and the ground truth box, respectively.
By introducing v, the aspect ratio between the predicted box and the object box is also
taken into account when the centers of the two boxes coincide, which makes the positioning
frame more accurate and improves detection accuracy. In addition, the classification loss of
the proposed method is cross entropy (CE).

4. Experimental Results and Analysis
4.1. Datasets

Three publicly available object-detection datasets of remote sensing images, namely
DIOR [34], HRRSD [35], and AIBD [36], are used to evaluate the proposed methods in the
experiments. Some examples of DIOR, HRRSD, and AIBD are shown as Figure 7.
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The AIBD dataset is dedicated to self-annotation for building detection tasks. AIBD
was proposed for the first time in a category containing a single object: buildings. The
sample size is 500 × 500, and there are 11,571 samples in total, the same number as the
annotation files. Based on the COCO dataset standard, buildings are classified into large,
medium, and small. The numbers of large, medium, and small instances are 16,824, 121,515,
and 51,977, respectively. They are distinguished from each other by different colors with
vastly different backgrounds. The number of pixels of buildings ranges from tens to
hundreds of thousands. The geometric shapes of these building instances are diverse,
including irregular shapes, such as U-shapes, T-shapes, and L-shapes. The raw data of
AIBD are from the Inria aerial image data, accessible on 1 August 2020, mainly for se-mantic
segmentation; training sets and test sets were selected from five cities. For each city, about
81 square kilometers of regions and 36 image blocks were selected. The training and test
sets contained 180 image patches covering 405 km2. The resolution of each image block
was 5000 × 5000, and the geographic resolution was 0.3 m.

The HRRSD dataset was released by the University of Chinese Academy of Sciences
in 2019. The dataset contains 21,761 images sampled from Google Earth and Baidu Maps,
and the spatial resolution of these images ranges from 0.15 to 1.2 m. The dataset contains
55,740 instances covering 13 different object categories. These categories are airplanes,
baseball fields, intersections, surface fields, basketball courts, bridges, ships, storage tanks,
ports, parking lots, tennis courts, T-junctions, and vehicles. The biggest highlight of this
dataset is that it has balanced samples under the category that cannot be used, and each
category has nearly 4000 samples. In addition, the sample count of the training subset of
this dataset is 5401, and the sample counts of the validation and test subsets are 5417 and
10943, respectively. The “training values” subset is the combination of the training and
validation subsets.

The DIOR dataset is a large-scale benchmark dataset mainly used for object detection
in remote sensing images. Northwestern Polytechnical University in China released DIOR
through sampling on Google Earth. The dataset contains 23,463 images, 20 object classes,
and 192,472 instances. The 20 object categories include airplanes, baseball fields, basketball
courts, airports, bridges, chimneys, highway service areas, dams, highway tollbooths,
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ground track fields, seaports, golf courses, flyovers, stadiums, storage tanks, ships, tennis
courts, vehicles, railway stations, and windmills. The dataset image size is 800 × 800,
with a spatial resolution from 0.5 to 30 m. This dataset has four salient features: (1) it
contains a large number of object instances and images, (2) a variety of different object
scales, and (3) different weather, imaging conditions, seasons, etc., and (4) it has high
intra-class diversity and inter-class similarity.

In this paper, the percentage of the training set, validation set, and test set of the DIOR
dataset is 0.25, 0.25, and 0.5, respectively. The training set and verification set in the other
two datasets, HRRSD and AIBD, are jointly used for model training.

4.2. Evaluation Metrics

In this paper, the mAP (mean average precision) and mAP_50 are selected as the main
indicators of the experimental results. The evaluation metrics used are from the standard
COCO metric set. We also choose mAP_75, mAP_s, mAP_m, and mAP_l as the evaluation
indicators of the experimental results. mAP_50 and mAP_75 indicate the accuracy, with a
threshold value of 0.5 and 0.75, respectively. mAP_s demonstrates that the average accuracy
of the object is small (smaller than 322); mAP_m represents that the average accuracy is at
a medium level (between 322 and 962); and mAP_l expresses that the average accuracy is
large (bigger than 962). mAP is an indicator for measuring recognition accuracy in object
detection, and is the average of AP for multiple categories. mAP is defined in Equation (15).

mAP =

Q
∑

q=1
AveP(q)

Q
(15)

where Q represents the category set of object detection and AveP(q) is the average accuracy
rate of the object under the calculation category. Precision-recall (PR) is calculated as shown
in Equations (16) and (17).

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

where true positive (TP) represents the number of positive samples that are correctly
predicted as positive. True negative (TN) represents the number of negative samples that
are correctly predicted as negative. False positive (FP) represents the number of negative
samples that are incorrectly predicted as positive. False negative (FN) represents the
number of positive samples that are incorrectly predicted as negative.

In addition, the TP, TN, FP, and FN of object detection are derived by the IOU (inter-
section over union). The IOU measures the overlap rate between two regions within the
object detection range, as shown in Equation (18).

IOU =
area

(
Bp ∩ Bgt

)
area

(
Bp ∪ Bgt

) (18)

where IOU represents the overlapping area between the predicted bounding box Bp and the
true bounding box Bgt divided by the union area of the two. The predicted bounding boxes
are classified as true or false by comparing the IOU with a given threshold T. If IOU ≥ T, it
is considered true. If the contrary, the detection is considered false.

4.3. Experimental Setups

The competitive algorithms include Faster R-CNN [37], RetinaNet [38], SSD512 [39],
YOLOv3 [16], and YOLOX [18]. Among them, Faster R-CNN is a typical representative of
two-stage methods, while RetinaNet, SSD512, YOLOv3, and YOLOX are representative
of single-stage methods. In the three datasets for which we visualized test results, the
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true cases (TPs), false positive cases (FPs), and false negative cases (FNs) are represented
by green boxes, red boxes, and yellow boxes, respectively. The parameter settings of the
competitive algorithms are summarized in Table 1.

Table 1. The parameter settings of the competitive algorithms.

Algorithm LR Decay BS Classification
Loss

Bounding
Box Loss Optimizer

Faster
R-CNN 0.02 0.0001 16 Cross

Entropy L1loss SGD

RetinaNet 0.01 0.0001 16 Focal Loss L1loss SGD

SSD512 0.002 0.0005 16 Cross
Entropy SmoothL1 SGD

YOLOv3 0.002 0.0002 16 Cross
Entropy MSELoss SGD

YOLOX 0.01 0.0005 16 Cross
Entropy GIOU loss SGD

MAME-
YOLOX 0.02 0.0001 16 Cross

Entropy CIOU loss SGD

The methods used in the comparison experiment are based on the MMdetection
platform (https://github.com/open-mmlab/mmdetection, accessed on 21 October 2022).
The host computer for model training consists of four graphical processors of Nvidia
GeForce RTX 2080.

4.4. Experimental Analysis

Firstly, the improved algorithm proposed in this paper is compared with the object
detection algorithm mentioned above in the AIBD dataset. The visualized test results are
shown in Figure 8.
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Figure 8. The AIBD dataset’s visualized test results using different algorithms.

In Figure 8, although AIBD is a building object detection dataset containing a single
category, the intra-category differences are very large. It can be seen that the apparent
characteristics of buildings greatly vary, whether for common rectangular buildings or
for buildings with irregular shapes. However, the overall test result of MAME-YOLOX is
satisfactory. The yellow rectangular box is the object of the undetected building, which is a

https://github.com/open-mmlab/mmdetection
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false negative (FNs). Because the color of the building is very similar to the surrounding
roads, the edge features are not clear.

The quantitative comparison experiment results of the AIBD dataset are shown in
Tables 2 and 3. Table 2 presents algorithm, backbone, mAP, and mAP_50 values. Table 3
presents the mAP_75, mAP_s, mAP_m, and mAP_l values.

Table 2. Comparative experimental results of different algorithms on the AIBD dataset.

Algorithm Backbone
Inference Time

per Image
(Secs.)

mAP mAP_50 mAP_75

Faster R-CNN resnet50 0.052 0.465 0.813 0.502

RetinaNet resnet50 0.037 0.439 0.798 0.423

SSD512 resnet50 0.031 0.439 0.805 0.424

YOLOv3 Darknet53 0.028 0.429 0.808 0.402

YOLOX CSPDarknet 0.022 0.461 0.831 0.497

MAME-YOLOX CSPDarknet 0.023 0.479 0.848 0.485

Table 3. Comparative experimental results of different algorithms on the AIBD dataset.

Algorithm Backbone mAP_s mAP_m mAP_l

Faster R-CNN resnet50 0.356 0.501 0.546

RetinaNet resnet50 0.338 0.472 0.483

SSD512 resnet50 0.341 0.478 0.494

YOLOv3 Darknet53 0.311 0.476 0.396

YOLOX CSPDarknet 0.367 0.506 0.502

MAME-YOLOX CSPDarknet 0.359 0.516 0.506

From Table 2, we can clearly see MAME-YOLOX has the best effect on the two main
indicators of mAP and mAP_50, which are 0.479 and 0.848, respectively. Moreover, from
Table 2, we can see for different object sizes; MAME-YOLOX’s mAP_m indicator is optimal.
The second-best results of mAP and mAP_50 were obtained by YOLOX, which are 0.467
and 0.832, respectively. Compared with the YOLOX algorithm, MAME-YOLOX’s overall
mAP value increased by 1.8%, while the mAP_50 value increased by 1.7%.

Secondly, the improved algorithm proposed in this paper is compared with the object
detection algorithm mentioned above in the HRRSD dataset, which has 13 object categories.
The visualized test results are shown in Figure 9.

In Figure 9, we can see most of the objects of the HRRSD dataset have obvious features,
such as apparent texture and color, and the size of the object is large. However, information-
rich high-score images also have the problems of small differences between categories,
large differences within categories, and it being difficult to unify semantics. Therefore, the
red rectangular boxes in Figure 9 are all examples of false negative detections. Among
them, the first one is that the highway is wrongly detected as a bridge. From the visual
observation, its foreground and background information is very similar to the bridge. In
the second red rectangle, the road turntable is mistakenly detected as a storage tank. If
the context information of the object image is fully considered, the object should not be
mistakenly detected. The quantitative comparison experiment results on HRRSD datasets
are shown in Tables 4 and 5. Table 4 presents the algorithm, backbone, mAP, and mAP_50
value. Table 5 presents the mAP_75, mAP_s, mAP_m, and mAP_l values.
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Table 4. Comparative experimental results of different algorithms on HRRSD dataset.

Algorithm Backbone
Inference Time

per Image
(Secs.)

mAP mAP_50 mAP_75

Faster R-CNN resnet50 0.061 0.561 0.888 0.704

RetinaNet resnet50 0.043 0.514 0.810 0.537

SSD512 resnet50 0.039 0.521 0.797 0.567

YOLOv3 Darknet53 0.035 0.505 0.827 0.518

YOLOX CSPDarknet 0.024 0.535 0.846 0.524

MAME-YOLOX CSPDarknet 0.027 0.549 0.862 0.607

Table 5. Comparative experimental results of different algorithms on HRRSD dataset.

Algorithm Backbone mAP_s mAP_m mAP_l

Faster R-CNN resnet50 0.231 0.506 0.581

RetinaNet resnet50 0.128 0.460 0.513

SSD512 resnet50 0.096 0.416 0.501

YOLOv3 Darknet53 0.081 0.391 0.502

YOLOX CSPDarknet 0.270 0.443 0.509

MAME-YOLOX CSPDarknet 0.273 0.472 0.533

From Table 4, it can be seen that Faster R-CNN obtained the best mAP and mAP_50
indicator results, at 0.561 and 0.888, respectively. MAME-YOLOX ranks second, and the
results are 0.549 and 0.862, respectively. However, our algorithm processing speed is



Sensors 2023, 23, 1261 14 of 18

better than that of Faster R-CNN. Compared with the YOLOX algorithm, MAME-YOLOX’s
overall mAP value increased by 1.4%, while the mAP_50 value increased by 1.6%.

Thirdly, the improved algorithm proposed in this paper is compared with the object
detection algorithm mentioned above in the DIOR dataset. The visualized test results are
shown in Figure 10.
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SSD512 algorithm, where the mAP result is 0.497 and mAP_50 is 0.759. Compared with 

Figure 10. The DIOR dataset’s visualized test results using different algorithms.

The DIOR dataset contains 20 object categories, and in Figure 10 we can see that when
the object instance has the characteristics of a small size and a dense appearance, such
as vehicles, ports may be detected by mistake. However, objects with relatively fixed
appearance features, such as aircrafts and tanks, are rarely detected by mistake or omitted.
The quantitative comparison experiment results of the DIOR dataset are shown in Tables 6
and 7. Table 6 provides the algorithm, backbone, mAP, and mAP_50 value. Table 7 presents
the mAP_75, mAP_s, mAP_m, and mAP_l values.

Table 6. Comparative experimental results of different algorithms on the DIOR dataset.

Algorithm Backbone
Inference Time

per Image
(Secs.)

mAP mAP_50 mAP_75

Faster R-CNN resnet50 0.059 0.415 0.678 0.448

RetinaNet resnet50 0.041 0.313 0.539 0.336

SSD512 resnet50 0.038 0.497 0.759 0.536

YOLOv3 Darknet53 0.032 0.334 0.651 0.288

YOLOX CSPDarknet 0.023 0.469 0.738 0.522

MAME-YOLOX CSPDarknet 0.025 0.501 0.772 0.547
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Table 7. Comparative experimental results of different algorithms on the DIOR dataset.

Algorithm Backbone mAP_s mAP_m mAP_l

Faster R-CNN resnet50 0.073 0.254 0.529

RetinaNet resnet50 0.041 0.199 0.411

SSD512 resnet50 0.078 0.311 0.606

YOLOv3 Darknet53 0.061 0.207 0.392

YOLOX CSPDarknet 0.084 0.310 0.499

MAME-YOLOX CSPDarknet 0.101 0.355 0.602

From Table 6, we can see MAME-YOLOX obtains the optimal mAP indicator, 0.501,
and the optimal mAP_50 indicator, 0.772, respectively. Second place is obtained by the
SSD512 algorithm, where the mAP result is 0.497 and mAP_50 is 0.759. Compared with
the YOLOX algorithm, MAME-YOLOX’s overall mAP value increased by 3.2%, while the
mAP_50 value increased by 3.4%.

The ablation experiments on the AIBD, HRRSD, and DIOR datasets are shown in
Tables 8–10, respectively.

Table 8. The ablation experiments on the AIBD dataset.

Algorithm mAP mAP_50 mAP_75

YOLOX 0.461 0.831 0.497

YOLOX + SwinTrans. 0.463 0.836 0.492

YOLOX + CBAM 0.465 0.834 0.488

MAME-YOLOX 0.479 0.848 0.485

Table 9. The ablation experiments on the HRRSD dataset.

Algorithm mAP mAP_50 mAP_75

YOLOX 0.270 0.443 0.509

YOLOX + SwinTrans. 0.272 0.452 0.524

YOLOX + CBAM 0.269 0.468 0.517

MAME-YOLOX 0.273 0.472 0.533

Table 10. The ablation experiments on the DIOR dataset.

Algorithm mAP mAP_50 mAP_75

YOLOX 0.084 0.310 0.499

YOLOX + SwinTrans. 0.096 0.345 0.561

YOLOX + CBAM 0.088 0.337 0.589

MAME-YOLOX 0.101 0.355 0.602

The experimental results demonstrate that the architecture of the proposed method is ef-
fective and achieves better results. For example, the mAP and mAP_50 of the MAME-YOLOX
are 0.273 and 0.472, respectively, being better than those of the YOLOX, YOLOX + SwinTrans.,
and YOLOX + CBAM. The SwinTrans. module and CBAM module are all beneficial to
improve the performance; however, the MAME-YOLOX achieves the best results.

From the qualitative visualization examples of the three datasets, the proposed frame-
work in this paper fits more closely with the remote sensing object to be detected. At the
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same time, this method can detect some small remote sensing objects that are not easy
to find, which reduces the missed detection rate of small objects to a certain extent, and
thus improves the detection accuracy of remote sensing objects. MAME-YOLOX is a very
promising method, which has a strong ability for object detection in remote sensing images.
It is not only applicable to datasets of multiple object categories, but also applicable to
datasets of single object categories.

5. Conclusions

Aiming at detection robustness for tiny objects against complex backgrounds, in this
paper, we proposed a Multiple Attention Mechanism Enhanced YOLOX (MAME-YOLOX)
algorithm. Firstly, the CBAM attention mechanism was introduced into the convolution
block of YOLOX’s backbone to reduce the redundant information. This mechanism could
improve the detection accuracy. Secondly, the idea of the Swin Transformer was integrated
into the feature fusion of YOLOX’s neck to enhance the global perception for small objects.
This design produced a better fitting effect on small objects. Finally, we used CIoU loss to
replace the GIOU loss as the regression loss of the bounding box, enhancing the accuracy
of object detection. The experimental results showed that the mAP of the MAME-YOLOX
improved the original YOLOX by 1.8, 1.4, and 3.2% on the three datasets, AIBD, HRRSD,
and DIOR, respectively. This demonstrated the effectiveness of MAME-YOLOX for remote
sensing object detection.

In the future, we will explore lightweight feature extraction networks and simplify the
network architecture.
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