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Abstract: An appropriate detection network is required to extract building information in remote
sensing images and to relieve the issue of poor detection effects resulting from the deficiency of
detailed features. Firstly, we embed a transposed convolution sampling module fusing multiple
normalization activation layers in the decoder based on the SegFormer network. This step alleviates
the issue of missing feature semantics by adding holes and fillings, cascading multiple normalizations
and activation layers to hold back over-fitting regularization expression and guarantee steady feature
parameter classification. Secondly, the atrous spatial pyramid pooling decoding module is fused
to explore multi-scale contextual information and to overcome issues such as the loss of detailed
information on local buildings and the lack of long-distance information. Ablation experiments and
comparison experiments are performed on the remote sensing image AISD, MBD, and WHU dataset.
The robustness and validity of the improved mechanism are demonstrated by control groups of
ablation experiments. In comparative experiments with the HRnet, PSPNet, U-Net, DeepLabv3+
networks, and the original detection algorithm, the mIoU of the AISD, the MBD, and the WHU dataset
is enhanced by 17.68%, 30.44%, and 15.26%, respectively. The results of the experiments show that
the method of this paper is superior to comparative methods such as U-Net. Furthermore, it is better
for integrity detection of building edges and reduces the number of missing and false detections.

Keywords: machine vision; remote sensing images; building detection; SegFormer; atrous spatial
pyramid

1. Introduction

A building is a key artificial ground object with a roof and walls and is the central
place of human habitation. Building information is essential to carry out various urban and
regional activities such as city planning [1], disaster monitoring [2], traffic management [3],
and scientific planning of the eco-environment [4]. Accurate extraction of building informa-
tion from remote sensing images is difficult due to the complexity of building features and
surrounding ground objects such as buildings, vegetation, roads, and bare areas. Building
features can be diverse due to differences in the material and configuration of ground
objects [5]. A great deal of unnecessary, non-building information can be confounded
in the detection network when the spatial distribution of surface features is complex, re-
sulting in poor classification detection effects. Traditional image processing with manual
selection of design features is time-consuming and labor intensive. Consequently, it is
difficult to satisfy real-time latest requirements and to apply on a large scale. At present,
there is a large gap between intelligent judgment and drawing technology research and its
practical applications.

In recent years, research on the extraction of building information has been conducted
using a high-resolution remote sensing image classification method based on the convo-
lutional neural network (CNN) [6]. These studies reviewed the semantic representation
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capacity of the neural network for road network extraction, building detection, and crop
classification [7]. The feature extraction module presented by a fully convolutional network
(FCN) is widely used for the semantic segmentation of buildings [8]. The U-Net network
proposes the idea of skip connections based on the encoder-decoder. These skip connections
in the U-Net network are used to fuse deep and shallow features to elevate the precision of
semantic segmentation. The U-Net network can extract more intact features compared with
the FCN network [9,10]. By cascading multi-scale-resolution features, a high-resolution
network (HRNet) can effectively decrease the feature information loss, make the extracted
multi-scale features more abundant, and result in the pixel-level extraction of building
information [11,12]. The pyramid scene parsing network (PSPNet) aggregates the multi-
scale features of distinct areas through the pyramid pooling module and the pyramid
scene parsing module, thereby elevating the integrity of building edges [13]. A DeepLab
series network can acquire a preferable edge perception effect by introducing depthwise
separable convolution aggregating multi-scale information features [14,15]. The SegFormer
network can ameliorate the extracted invalid non-building features to a certain degree by
cutting off the positional encoding and utilizing multi-layer perception (MLP) for feature
extraction [16]. Although the above-mentioned feature extraction networks have high de-
tection precision, the issue related to information loss has not been adequately ameliorated.
Additionally, these detection networks have not focused on extracting building features in a
complex environment and suppressing the effect of the extracted non-building information.
Consequently, the extraction of building features in an intricate environment needs to be
further strengthened.

In existing research, the convolutional neural network model has been directly applied
to the remote sensing field [17]. The high-resolution remote sensing building extraction
method based on deep learning has both advantages, as evidenced by multiple experiments,
as well as some problems. For one thing, the network model specially constructed for the
detection or classification of buildings in remote sensing images is relatively lacking [18].
For another, it is necessary to investigate more efficient ways to acquire semantic infor-
mation and detail features of buildings because buildings on remote sensing images are
influenced by factors such as data acquisition, different scales, imaging conditions, intricacy
terrain, building shadows, and building inclination.

The objective of this study is to address the poor applicability of the existing models
on building extraction from remote sensing images. This study presents a novel approach
for building detection in remote sensing images based on the SegFormer network structure
and thereby optimizes and improves the above issues. In this study, the transposed
convolutional network [19] is coupled with the sampling module to correlate semantic
feature information better. This coupling results in the efficacious screening of feature
categories and reinforces the construction of network models for building features. Issues
such as loss of building semantic and detail features and missing and false detections are
addressed by using strongly supervised datasets. The atrous spatial pyramid pooling [20]
decoding module is fused to capture lucid building edge information to address the above-
mentioned issues resulting from factors such as building inclination and shadow shading.

2. The Building Extraction Network of Improved SegFormer
2.1. SegFormer

SegFormer [21], a semantic segmentation network, was developed by combining
Transformer with visual classification and was co-launched by the Nvidia Corporation and
the University of Hong Kong in 2021. It has the following improvements in addition to the
potential of high processing efficiency and dense prediction of Transformer series.

@® Alightweight decoder is constructed, and MLP is issued for feature aggregation [22].

@  The hierarchical structure design is adopted. The multi-layer feature map is attained
via the hierarchical Transformer Encoder [23] without positional encoding. The
high-resolution shallow features and low-resolution fine features are obtained at
multiple scales.
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SegFormer stresses robustness and validity in Transformer series networks. While
having challenges against image interference, the semantic segmentation task is completed
efficiently and with higher precision. Issues of building detection in remote sensing images
can be solved better due to the improvements made based on SegFormer.

2.2. Improvement Strategy

The improved network structure presented in this paper is shown in Figure 1. The
improvement has two main aspects:

(1) The structure of the detection network is optimized, and the sampling of semantic
and detailed features of buildings is reinforced to address the poor applicability of the
existing models for building extraction from remote sensing images. The transposed
convolutional network is coupled with the sampling module to correlate semantic fea-
ture information, fuse high and low-layer feature information, and cascade inter-layer
receptive fields. This can lead to receding the impact of spatial heterogeneity and
intricate ground object background and intensifying the establishment of a detection
network model for building features. Multiple normalization activation layers are
fused [24]. The screening efficiency of building semantic information is enhanced by
reducing the quantity of the parameters, inhibiting the disappearance of the gradient,
and speeding up the convergence. To efficiently gain the semantic information fea-
tures for buildings, the effective screening and classification of the intra-class feature
information are realized by embedding the activation layer [25].

(2) The decoding output part of the model is optimized, and the atrous spatial pyra-
mid pooling (ASPP) decoding module is used to address issues such as excessive
interference, loss of semantic and detailed feature information of buildings, and miss-
ing and false detection of building features extracted from remote sensing images.
Multi-scale contextual information is explored by applying multi-sampling rate atrous
convolution [26] and multi-receptive field convolution on the input feature map. A
sufficient amount of contextual information is captured by pooling operations at
different resolutions, and lucid target boundaries are captured by gradually recov-
ering spatial information. The semantic fusion module is used in the output part to
aggregate rough information in the shallow layer and fine information in the deep
layer. The interaction of feature information from different layers is achieved by using
the shuffle [27]. The shuffle is applied to address issues such as the partial loss of
building information and the lack of long-distance information. It is also helped to
efficaciously relieve the loss of feature information resulting from the difference in
image resolution due to miscellaneous data sources. Consequently, issues such as the
loss of edge details of multi-scale buildings and the missing and false classification of
tiny buildings can be addressed.

2.2.1. Sampling Module Based on the Transposed Convolutional Network

The information of remote sensing images is intricate, with many interferences. The
higher the distinction degree between detected ground objects and background information,
the easier the identification of stable features with strong anti-interference. Therefore, in
this paper, we design the enhancement extraction mechanism for interlayer features. This is
based on transposed convolution from the angle of reinforcing the expression of enhancing
features and inhibiting futile background information. The learning is intensified in the
training iteration to acquire the optimum sampling parameters by establishing an adaptive
learning model.
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Figure 1. Schematic diagram of the network structure.

Overlap Patch
Merging

Feature 4

|
I
|
I
I
|
I
|
|
|
I
I
|
I
|
|
|
: Overlap Patch
|
|
|
|
I
I
|
|
|
|
I
I
|
|
: 16x16x512

bbbt |

Transposed Convolution

The size of the feature map gradually lessens following the convolutional operation of
the images several times. Transposed convolution can efficaciously couple the feature infor-
mation of the high layer and the low layer, and cascade the receptive fields between layers.
This will address the issue of over-flow of non-building information due to inconsistent
image resolution or due to different scales in the feature map.

In convolution operation C, the convolution Y output for the n-dimensional vector X
can be expressed as CX =Y, and its transposed convolution can be expressed as X = CTY.
The purpose of transposed convolution is to add holes and fillings to restore more semantic
information via rearranging the input and kernel. The specific implementation pattern of
transposed convolution is as follows:

By overlooking the number of channels, it is hypothesized that the stride is s and
the padding is p. The shape of the input tensor is nh xnw, the shape of the convolution
kernel is kh x kw, and the transposed operation yields nh x nw intermediate results. Each
intermediate result is a tensor of (ny, + ky — 1) X (nw + kw — 1) (The parameter is initialized
to 0). The approach to calculating the intermediate tensor is as follows: Each element in
the input tensor is multiplied by the convolution kernel; thereby, the tensor of ky, X ki is
attained, which replaces a part of the intermediate tensor. The position of the replaced part
of each intermediate tensor corresponds to the position of the element in the input tensor.
In the end, all intermediate results are added to obtain the final result. Computational
Formula (1) of the intermediate tensor is as follows

Y[i: (i+h),j: (j+w)]+=X[Lj] xK (1)

when n and k are 2, s =1, p = 0, and the input parameters are {0, 1, 2, 3}; the calculation
form is shown in Figure 2:

Input Core Tensor

011

2|3 2|3
OQutput
oo 01 0|01
0fo0 + 203|402 -+ 0f3|=|0]|4]6
4]6 6|9 4|12]09

Figure 2. The example of the sampling method (whennand kare2,s=1,p =0).
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Based on the aforesaid theory, the transposed convolutional network designed in
this paper is shown in Figure 3: Multi-layer perception output channels of 4C, two 3 x 3
2D convolution layers, two 4 x 4 2D transposed convolution layers and one 1 x 1 2D
convolution layer are embedded in the subsampled part by following the characteristic
map. Through the transposed convolution operation, some information can be efficaciously
recovered while the fuzzy boundary is retained, thereby outputting more targeted detailed
information and semantic information features.

L
-

Conv2d 3x3 Conv2d 3x3  :

Transpose Conv2d Transpose Conv2d
4x4 4x4

Figure 3. Structure diagram of the transposed convolutional network: yellow is convolution, blue is
transpose convolution.

Multiple Normalization Activation Layers

The convolution operation abstracts the local features of the building images; however,
it neglects the interrelationship between pixels. This can lead to inter-class inconsistency,
dramatically affecting the reliability and integrity of building edge segmentation. The
addition of the extra normalization and activation layers upon convolution operation can
result in a stable selection of feature parameters by holding back over-fitting regularization
expression and simultaneously averting the influence of outliers and extremes. Further-
more, the addition of both layers can inhibit noise interference, strengthen the expression
capacity of the network, and can increase the focus on feature channels and spatial positions
with strong significance and enormous information. As a result, the internal correlation
of images or features can be acquired easily; thereby, the issue of precise extraction of
inter-class differences of buildings can be solved.

The normalization layer is set based on the introduction of the transposed convolu-
tional network, and the setting mode is shown in Figure 4.

BN2d  Relu

H/4xW/4x768 |
M _L _L ]'
E —> Conv 15 Conv T Trans | v | Trans | v, Conv

Conv  L=3| Conv L=4

Figure 4. Schematic diagram of the inserting position of the normalization activation layer: red is
activation function; red is activation function; green is batch normalization; yellow is convolution;
blue is transpose convolution.

2.2.2. Spatial Pyramid Pooling Decoding Module Fused Atrous Convolution

The fusion approach of absolute skip connection of semantically dissimilar features
is unable to address the semantic gap resulting from the lack of multi-scale features in
the design of the network. As a consequence, the extraction capacity of the network will
be severely restrained to large-scale building edges and tiny building objects. Based on
this, this paper designs a spatial pyramid pooling decoding module fused with the atrous
convolution. Firstly, the deep-layer network features are dilated according to distinct
dilation rates, the contextual information of multi-scale features is captured by the atrous
spatial pyramid pooling module, and the global average pooling module is introduced to
supplement, thereby refining the contextual information. Secondly, in light of the semantic-
guided fusion module, the corresponding relationship between feature pixels at different
layers is established, and the deep-layer semantic information is fused into the shallow
image details in a bottom-up way. The input feature maps are dilated and divided into
groups according to the dilation coefficient, the features at different scales are extracted
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by adopting distinct dilation kernels, and the shuffle of extraction features is conducted
to achieve information about the interaction of different layers and to strengthen global
semantic information expression.

Atrous Convolution (Dilated Convolution)

In contrast to the traditional convolution layer and pooling layer, the atrous convolu-
tion possesses the following advantages: () After the replacement of the atrous convolution,
the training of reasonably dilated new parameters can be avoided when the calculation pa-
rameters are increased, and the performance can be continuously optimized in the training
process. (@ The feature maps at different resolutions can be attained by setting different
atrous rates to alter the size of the receptive field, which decreases the loss of position
information in the subsampled process.

In this paper, the conventional convolution is replaced by the atrous convolution,
and the receptive field in the pooling process is altered by changing the atrous rate of the
atrous convolution. The experiment discovers that distinct dilation rates have a certain
influence on the performance of the model as well. The atrous convolution mode with
a reasonable dilation rate is shown in Figure 5. The authors of [28] show that: @ the
use of atrous convolution with the identical dilation rate can result in the discontinuity
of the convolution kernel, leading to the “Gridding Effect”, as shown in Figure 6; @) the
dilation rate combinations cannot contain the common divisor greater than 1, and the
dilation rate Ri must satisfy Formula (2) as follows; (@) it is hypothesized that the dilation
rates corresponding to n atrous convolutions with the convolution kernel size of k x k
are [rl, ..., ri, ... rn], respectively, and R2 < k should be satisfied, where ri represents the
dilation rate of the ith atrous convolution, Ri represents the largest dilation rate of the ith
atrous convolution, and the default is Rn = rn. Based on the above conclusion, this paper
designs the atrous convolution combination with the dilation rate of 1, 3, 11, 17

R; = max[Ri;1 — 2rj, Rip1 — 2(Ripq — 1), 13] ()

Figure 5. Atrous convolution with reasonable dilation rate.

Figure 6. “Gridding Effect” of atrous convolution.

Atrous Spatial Pyramid Pooling

The atrous spatial pyramid pooling module consists of a series of atrous convolutions
and spatial pyramid pooling structures with different dilation rates. Multi-scale information
of the image is extracted through the parallel connection of multiple atrous convolutions
with distinct dilation rates. The global information of the image is gained by introducing
global average pooling (GAP). When using single atrous convolution, the ASPP module
can overcome the disadvantages of local information loss and long-distance information
deficiency due to the Gridding Effect. The feature information of different scales and clear
high-resolution building edge information can be acquired without using a pooling layer.

Firstly, the ASPP module dilates the input feature F into i groups, which are denoted
as ASPPi (i =1, 2, 3, 4) (Figure 7). Input calculations of different groups can alter the
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dense connection mode between the original feature channels and can gain the gridding
parameters of different corresponding positions. Secondly, the multi-scale object context
information of each grouping feature of ASPPi is attained by conducting the F pooling,
upsampling, and then fusing with the corresponding feature ASPPi’.

ASPP, ASPP;’ |
—> _—
ASPP, ASPP,’
F
ASPP; ASPP, Congat
7 ’ M g 32x32x1280 128x128x256

ASPP, ASPP,’

Figure 7. Schematic diagram of the ASPP module.

Semantic-Guided Fusion Module

This paper puts forward an idea of using the Semantic Fusion Module (SFM) (Figure 8).
In this module, the detailed information obtained by rough feature extraction in the shallow
layer is fused with fine semantic information in the deep layer gained by the ASPP multi-
scale atrous pyramid pooling network operation. Then, the channel shuffle of fusion
information is conducted (Figure 9). The feature channel sequence of the original grouping
is disarranged and rearranged by “remodeling-transposition-remodeling.” The “semantic
flow” information between features with different resolutions is forecasted by network
autonomous learning. Rough features are rectified to fine features with higher resolution,
and pixels between features with different resolutions are “aligned.” The feature layer
with abundant multi-scale information is obtained by shuffling information from different
channels, reconciling multi-scale information, and intensifying the information exchange
between feature channels of different groupings. This will effectively transmit semantic
information from the deep layer to the shallow layer and the efficacious fusion of features
with different resolutions.
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Figure 9. Shuffle.

3. Experiment and Analysis
3.1. Experimental Dataset

The effectiveness and generalization of the method presented in this paper are val-
idated by the multi-method tests. The results are compared with the Aerial Image Seg-
mentation Dataset (AISD) [29], the Massachusetts Buildings Dataset (MBD) [30], and the
Wuhan University (WHU) aerial remote sensing image dataset [31].
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(1) The AISD contains four ground object labels—buildings, roads, water systems, and
vegetation. In this paper, building labels are only used for the analysis. The dataset
covers areas of Berlin, Chicago, Paris, Potsdam, and Zurich, and the images have
a resolution of 0.3 m. This dataset includes 1672 images with 3328 x 2816 pixels
deriving from Google Earth and pixel-level label of Open Street Map.

(2) The MBD covers the cities and suburbs areas of Boston and contains 151 images with
1500 x 1500 pixels. The occupied area of each image is 2.25 km?, with a resolution of
1m.

(3) The WHU includes 204 images with 512 x 512 pixels in Satellite Dataset(Global Cities),
and the coverage area is the global urban satellite images, with a resolution of 0.3 m.

Samples of different datasets have been shown in Figure 10.

(c)

Figure 10. Samples of (a) the AISD, (b) the WHU dataset, and (c) the MBD.

The division of datasets is shown in Table 1:

Table 1. Datasets used in this paper.

Dataset Category Number Resolution
AISD train 1504 2611 x 2453
val 168 2611 x 2453

test 168 2611 x 2453

MBD train 135 1500 x 1500
val 16 1500 x 1500

test 16 1500 x 1500
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Table 1. Cont.

Dataset Category Number Resolution
WHU train 183 512 x 512
val 21 512 x 512
test 21 512 x 512

3.2. Experimental Environment and Parameter Setting

The experimental operating system is Windows 11, the CPU version is 12th Gen Intel(R)
Core(T.M.)i9-12900H, the GPU is NVIDIA GeForceRTX3080TI, and the deep learning
framework is torch 1.11.0 + cul15. The experiment adopts the transfer learning strategy;,
and the pre-training weights in the ImageNet-1K dataset are used for training. The accuracy
of the detection results is enhanced by the network model by carrying out transfer learning
and by depending on its capacity of unsaturated continuous learning. The training process
is divided into the freezing stage and the unfreezing stage. The training configuration
information is shown in Table 2:

Table 2. Training configuration of the dataset.

Item AISD MBD WHU
Input size 2611 x 2453 1500 x 1500 512 x 512
Train size 512 x 512 512 x 512 512 x 512
Test size 512 x 512 512 x 512 512 x 512

Freeze epoch 50 50 50
UnFreeze epoch 500 600 200
Batch size 8 16 4
Optimizer Sgd Sgd Sgd
Learning decay Cos Cos Cos
Weight decay 0.0005 0.0005 0.0005
Learning rate 1.00 x 107° 1.00 x 1072 1.00 x 1072

3.3. Ablation Experiment

Ablation experiments are performed on the AISD, the MBD, and the WHU dataset
with SegFormer as the baseline system to validate the improved mechanism presented in
this paper. The settings of experimental parameters are consistent with the experimental
environment, and the results are shown in Table 1.

3.3.1. Ablation Experiment with Different Mechanism Modules

To validate the improved mechanism, the ablation experiments are conducted on the
AISD, the MBD, and the WHU dataset, and SegFormer is used as the baseline system. The
promotion effect of model performance is assessed through the evaluation indicators of
mean Intersection over Union (mloU), F1 score, precision, and recall. Therein, mloU is
referred to the percentage mean of intersection-over-union of predicted building pixels and
actual building pixels; the F1 score is taken into account the influence of precision and recall;
precision is meant by the percentage of pixels of the building correctly predicted by the
model to the actual building; recall is referred to the percentage of the correctly predicted
building to the actual building. Suppose that the predicted building is represented as T,
the non-building as F, the actual building as P, and the non-actual building as N, then
Formulas (3)—(6) of the four evaluation indicators are as follows. The network training
process is visualized, and a comprehensive analysis of the effect of the improved network
is conducted.

mloU = ! i L k=1) ©)]
- k+1/SEN+FP TP
Precision = P 4)

TP + FP



Sensors 2023, 23, 1258

10 of 17

TP
Recall = m (5)
Fl — 2 x Precision x Recall ©)

Precision + Recall

(1) Ablation experiments with different improved mechanisms

The original network model and the network model with different mechanisms are
tested on three datasets, and the comparison of the evaluation indicators is shown in Table 3.

Table 3. Comparison of experimental precision between the improved network and the original network.

Evaluation Indicator

Dataset Network mloU F1 Precision Recall
segf 82.17 90.11 89.93 90.3
AISD segf + Transconv 83.58 90.97 90.9 91.05
segf + ASPP 83.19 91.3 91.8 90.8
This study 88.4316.26 93.8113.7 93.8513.92 93.7713.47
segf 66.09 77.70 82.49 73.44
segf + Transconv 74.23 85.44 87.35 83.61
MBD segf + ASPP 72.74 86.97 92.49 82.08
This study 75.8519.76 88.24110.54 93.07110.58 83.89110.45
segf 79.5 88.23 88.17 88.31
WHU segf + Transconv 80.69 89.01 88.86 89.18
segf + ASPP 81.23 91.16 92.95 89.45
This study 81.6912.19 91.0912.86 92.4614.78 89.7611.45

When the experiments are conducted on the AISD, the MBD, and the WHU dataset, the
precision evaluation indicators obtained for the improved network are superior compared
to those obtained for the original network (Table 3). This suggests the validity of the im-
proved network for building extraction suggested in this paper. For the improved network,
the enhancing effects of the precision indicators on the MBD are the best, where mloU, F1,
precision, and recall indicators increased by 9.76%, 10.54%, 10.58%, and 10.45%, respectively.
However, the applicability of the original network to this dataset is inferior, with a mloU
of 66.09%. After the optimization, the improved network shows a stronger capability of
feature extraction and fusion. This can improve the focus and recovery of semantic and
feature information of different layers and efficaciously elevate the segmentation precision
of the whole model.

(2) Visualization of the training process

During the training process, variations of the loss value and segmentation precision of
both original and improved SegFormer network models are tested on the MBD and are
shown in Figure 11.

During the training process, the overall training curve shows a gentle tendency, and
the fluctuation of the precision curve of the improved network is smaller than that of the
original network after adding the transposed convolutional network module (Figure 11a,b).
Higher precision of the improved network can be realized in a shorter time compared with
the original network. During the training process, the improved network can dynamically
adjust according to the contextual information, as shown by the contrast of the dynamic
variation curves of precision and loss. Furthermore, the improved network can more
efficiently supplement the detail features and semantic features, possessing preferable
extraction precision, generalization capacity, and universality.
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Figure 11. (a) Variation curve of training precision of the original model. (b) Variation curve of
training precision of the improved model. (c) Variation curve of training loss of the original model.
(d) Variation curve of training loss of the improved model.

3.3.2. Ablation Experiment of Multiple Normalization Activation Layers

The multiple accumulations on the MBD are adopted to analyze the improvement
effect of the stacking normalization activation layer. This will increase the understanding
of the availability and contribution of the added modules in the established transposed
convolutional networks, and investigate the promotion effect of cascading multiple normal-
ization activation on the network expression capacity and precision. The addition method
is shown in Figure 4.

The selected evaluation indicators of mloU, F1, precision, and recall are improved
along with the multiple superpositions of normalization activation layers (Table 4). Among
them, mloU, F1, precision, and recall increased by 3.11%, 1.27%, 0.58%, and 1.81%, respec-
tively. The precision improvement is reached to the maximum when the four normalization
activation layers are embedded in the convolution network. Experiments validate that
the detection capacity of the improved network can be enhanced after the introduction of
multiple normalization activation layers.



Sensors 2023, 23, 1258

12 of 17

Table 4. Ablation experiment of the normalization activation layer.

L=1 X v v v v
The number of L=2 % % v v v . .
normalization Optimal mechamsm
activation layers L=3 X X X v v promotion
L=4 X X X X v
mloU 7274 7402 7478 7542 75.85 311
F1 8697 87.02 8752 8754 88.24 1.27
Precision 9249 925 9274 9311 93.07 0.58
Recall 82.08 8216 8287 826  83.89 1.81

3.3.3. Dilation Rate Ablation Experiment of Atrous Spatial Pyramid Pooling
Decoding Module

This paper also verifies the effects of different dilation rate combinations on the
performance of the ASPP module. The comparative experimental results based on the
MBD are shown in Table 5, which demonstrates that the effect of non-identical continuous
convolution is superior. The precision of the combination of 1, 3, 6, 9 is increased by 0.33%
compared with the combination of 1, 2, 2, 2, and the effect of prime number combination
is better with the large dilated kernel. When the combination is 1, 5, 11, 17, the precision
is elevated by 0.27% compared with the combination of 1, 6, 12, 18. The second dilation
rate is not greater than the maximum size of the convolution kernel. However, when the
combination is 1, 3, 11, 17, the precision is enhanced by 2.15% relative to the combination
of 1, 5,11, 17. Based on this, the discontinuous atrous convolution combination of 1, 3, 11,
17 with the common divisor of 1 and a large dilation rate is chosen. During the experiment,
the precision of this combination is enhanced by 1.96-3.93% relative to other combinations.
The loss of relevant information can be reduced, and the effect of capturing contextual
information of objects at different scales can be advanced at a reasonable dilation rate.

Table 5. Effects of different dilation Rates on the performance of the ASPP module.

Dilation Rate Combination mloU
1,2,2,2 71.92

1,3,6,9 72.25

1,2,5,11 72.96
1,6,12,18 73.43
1,5,11,17 73.7
1,3,11,17 75.85

3.4. Comparison Experiment

The experimental dataset is obtained from the AISD, the MBD, and the WHU dataset,
and the analysis is based on high-precision pixel-level labels. Therefore, the scope, dis-
tribution, and geometric outline of buildings on images can be precisely shown. In this
experiment, the label information of the original dataset is visualized on images and
compared with the experimental results. The validity of this improved algorithm is demon-
strated using several kinds of classical mainstream deep learning semantic segmentation
algorithms. High-resolution net (HRnet), PSPNet, U-Net, DeepLabv3+, and the original
SegFormer network are selected to compare the algorithm of this paper, and comparative
results are presented in Table 6:
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Table 6. Precision comparison of different methods.

Detection Network

Dataset Evaluation HRnet PSPNet U-Net DeepLabv3+ SegFormer 1_}/[;?;:3 of P Optl.m al o
Indicator (%) per romotion (%)
mloU 7717 7075  80.39 76.37 82.17 88.43 17.68
F1 8695 8256  89.00 86.42 90.11 93.81 11.25
AISD Precision 8674 8268 8394 86.26 89.93 93.85 11.17
Recall 8717 8245  89.07 86.59 90.30 93.77 11.32
mloU 5593 4541 7358 53.52 66.09 75.85 30.44
Fl 6871 6050  83.68 67.64 77.70 88.24 27.74
MBD Precision 7610 7305 8692 78.15 82.49 93.07 20.02
Recall 6262 5163  80.67 59.62 73.44 83.89 32.26
mloU 7532 6643  77.10 72.22 79.50 81.69 15.26
F1 8541 7887  86.67 83.21 88.24 91.09 12.22
WHU Precision 8562  80.60  87.84 84.14 88.17 92.46 11.86
Recall 8520 7722 8554 82.30 88.31 89.76 12.54

The overall experimental precision of the improved method is superior to that of
the original SegFormer model and the other mainstream methods used in the last few
years (Table 6). Therein, on the AISD, mloU, F1, precision, and recall are up to 88.43%,
93.81%, 93.85%, and 93.77%, respectively; on the MBD, these four indicators are 75.85%,
88.24%, 93.07%, and 83.89%, respectively; on the WHU dataset, the values of corresponding
four indicators are reached to 81.69%, 91.09%, 92.46%, and 89.76%, respectively. On
three datasets, relative to the comparison method, the optimal promotion of mloU of the
improved method is 17.68%, 30.44%, and 15.26%, and the optimal promotion in precision is
11.17%, 20.02%, and 11.86%.

When diverse extraction methods are used to test the MBD, the experimental precision
of all algorithms is significantly lower than that of the other two datasets (Table 6). This
is because all images in the MBD are large-scale scene images. As shown in Figure 10,
the coverage area of a single image is extremely wide, and there is a significant difference
between the image scale of the MBD and that of the other two datasets. Additionally, when
extracting buildings in wide-range scenes, the building styles, spectral features, and shadow
features of the MBD are more diverse and complicated than those of the other two datasets.
The experimental effect of the segmentation network on the MBD is not ideal. Nevertheless,
after the network optimization, the improved network has efficaciously enhanced the
detection precision of the MBD, among which mloU, F1, precision, and recall have increased
by 9.76%, 10.54%, 10.58%, and 10.45%, respectively. After the network improvement, the
experimental detection precision has been elevated by the order of magnitude. This is
indicated by the strengthened applicability of large-scale scene images, better performance
on large-scale datasets, and stronger robustness in the face of intricate buildings and
variable environments, validating the effectiveness of the improved algorithmsection.

The model complexity and efficiency of Hrnet, PSPNet, UNet, Deeplabv3+ and the
original SegFormer network are compared with the algorithm in this paper, and the results
are shown in Table 7. In the experiment, the input size is set to 512 x 512 when calculating
GFLOPs. The training time is the time required for one iteration of the MBD. As can be
seen from Table 7, the mIoU of the algorithm in this paper improves greatly when GFLOPs,
parameters and training time increase slightly, which is of high application value while
costing less.
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Table 7. Network complexity analysis.
GFLOPS Parameters Computation Time
Network IG ™M (seclepoch) mloU
HRnet 79.539 29.538 14 75.32
PSPNet 5.873 2.377 7 66.43
U-Net 451.94 24.891 20 77.1
DeepLabv3+ 52.846 5.818 7 72.22
SegFormer 13.674 3.72 15 79.5
Methods of this paper 27.17 3.903 18 81.69

Figure 12 shows the experimental prediction results of HRnet, PSPNet, U-Net, DeepLabv3+,

the original SegFormer algorithm, and the algorithm presented in this paper. The performance
of various algorithms is assessed according to the visualization of detection results. Therein,
column (a) is the original image, column (h) is the dataset label, columns (b)—(f) are the detection
results of the other networks, and column (g) is the detection results of the improved network.
According to Figure 12, while testing on the identical image, the detection results of the improved
network are better than those of other networks in the following aspects:

@

@)

®)

4)

The integrity of the detection edge is better, and the boundary transition is more
regular and smoother: the architectural form of the building is neat. The 1st and 2nd
rows in Figure 12 show that the detection of a single independent building by the
HRnet, PSPNet, and SegFormer is poor, especially depicting the right-angle side of
the building. The U-Net and improved network can exactly locate the sideline of
the building. Nevertheless, in edge detection, the improved network is more intact
and reasonable in the transition of edge detection details than the U-Net network.
The improved network in this study can better differentiate the background from
the building boundary relative to the SegFormer network. The improved network
revises the regular edges of buildings better and obtains apparent enhancement in the
detection effect.

The construction of building feature information is improved, the missing and false
detection due to the inter-class similarity of ground objects is efficaciously inhib-
ited, the multi-scale generalization capacity is strong, and the detection rate of tiny
buildings is enhanced. In the 3rd and 4th rows of Figure 12, when the color of tiny
buildings in the original image is similar to that of the ground objects in surrounding
background and when there is a large-scale difference between tiny buildings and the
surrounding buildings, the phenomenon of missing buildings occurs in the PSPNet
and DeepLabv3+ experiments. In the experiments of HRnet, U-Net, and SegFormer,
though the positioning of some buildings can be realized, they cannot be validly
detected. In contrast, the improved network exactly locates tiny buildings and detects
their distribution range and edges.

The reservation of detailed feature information is abundant and intact, and the dif-
ferentiation capacity for buildings and their surrounding backgrounds is powerful.
According to the 5th and 6th rows in Figure 12, when detecting polygonal buildings
and aiming at the transition of edge texture, the evident edge fitting, the severe loss of
edge details in angle and corner, and the erroneous judgment of building distribution
on a large scale exist in the comparison algorithms. However, the improved network
restores more intact details compared with other networks. There is little difference in
the distribution range and outline when the detection results of the improved network
are compared with the label information.

Limited by feature similarity: the spectral similarity interferes greatly and the inhibi-
tion of negative features is weak. When the background with similar characteristics
is mixed, the building classification performance is mediocre. There are still great
challenges in the discrimination of detection algorithms.
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Figure 12. Detection effects of different networks: (a) original image; (b) Hrnet; (c) PSPNet; (d) UNet;
(e) Deeplabv3+; (f) SegFormer; (g) this study; (h) label.

4. Conclusions

To obtain high-precision extraction of buildings in remote sensing images, based on
SegFormer, this paper presents a method for building detection in remote sensing images.
This novel method consists of an improved sampling mechanism and a decoding structure,
which ameliorates issues such as missing and false detection of buildings, poor edge in-
tegrity, and poor effects of intelligent interpretation of remote sensing images resulting from
inter-class similarity and intra-class inconsistency of buildings. The main improvements of
the new algorithm are the use of a spatial pyramid pooling decoding module fusing atrous
convolution and the introduction of the transposed convolutional network to optimize
the sampling mode. These improvements make the algorithm efficiently screen positive
information about buildings while inhibiting and filtering negative information and easing
the issue of missing semantic information and detail features. The ablation and contrast
experiments are carried out on the remote sensing image AISD, MBD, and WHU dataset.
The experimental results show that the improved algorithm is more accurate in boundary
segmentation than the other methods, and the false detection of buildings is reduced. It
can be applied to large-scale scene detection and intelligent judgment and drawing, which
provides strong support for surveying and mapping production. In the next step, we will
explore the building detection method to suppress the spectral imaging interference of
remote sensing images.
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