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Abstract: Safety helmet wearing plays a major role in protecting the safety of workers in industry
and construction, so a real-time helmet wearing detection technology is very necessary. This paper
proposes an improved YOLOv4 algorithm to achieve real-time and efficient safety helmet wearing
detection. The improved YOLOv4 algorithm adopts a lightweight network PP-LCNet as the backbone
network and uses deepwise separable convolution to decrease the model parameters. Besides, the
coordinate attention mechanism module is embedded in the three output feature layers of the
backbone network to enhance the feature information, and an improved feature fusion structure
is designed to fuse the target information. In terms of the loss function, we use a new SIoU loss
function that fuses directional information to increase detection precision. The experimental findings
demonstrate that the improved YOLOv4 algorithm achieves an accuracy of 92.98%, a model size of
41.88 M, and a detection speed of 43.23 pictures/s. Compared with the original YOLOv4, the accuracy
increases by 0.52%, the model size decreases by about 83%, and the detection speed increases by 88%.
Compared with other existing methods, it performs better in terms of precision and speed.

Keywords: helmet detection; YOLOv4; PP-LCNet; attention mechanism; feature fusion; SIoU

1. Introduction

Safety management on building sites has steadily drawn more attention with the
progress of industrialization. Personal protective equipment (PPE) plays a vital part in
ensuring the personal safety of workers [1]. As a basic personal protective equipment, the
safety helmet can reduce the impact on the human head to a certain extent and protect
the human life safety when an accident occurs. However, accidents arising from workers
not wearing safety helmets can be seen everywhere due to a lack of a particular sense of
safety protection. Therefore, monitoring whether workers are wearing helmets is crucial to
their safety. Traditional helmet inspection mainly consists of monitoring in the surveillance
room and manual patrol at the construction site. The former requires inspectors to stare
at the screen for long periods, which can cause eye fatigue and lead to misjudgments and
missed inspections, while the latter requires a lot of time and labor. Motivated by this,
new methods for detecting the wearing of safety helmets by construction site workers are
rapidly emerging with the help of sensors and image analysis techniques [2].

Sensor-based detection is mostly carried out by mounting several sensors on the
helmet and determining whether the helmet is being worn or not based on the information
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gathered. Kelm et al. [3] designed an automatic entrance. By embedding RFID and tags in
the PPE, the automatic entrance can effectively detect the PPE wearing status of workers
as they pass through this portal. However, it can only be detected when workers pass
through, and the status after getting into the construction site is uncertain. Kim et al. [4]
developed a system that connects a three-axis acceleration sensor to a helmet, by which it is
possible not only to identify whether the helmet is worn or not, but also to detect whether
the helmet is worn correctly. Zhang et al. [5] monitored the wearing condition by installing
an infrared beam detector and a thermal infrared sensor inside the helmet. However, all
of these methods increase the expense of detection, and sensors embedded in helmets or
other locations can lead to concerns about privacy and health.

In the last few years, due to the rapid advancement of computer technology, it has
become possible to apply GPUs for massively parallel computing to train large deep
neural networks [6,7]. Object detection based on deep learning has received more and
more attention as a non-invasive method. There are two types of existing object detection
algorithms: one-stage algorithms and two-stage algorithms. The two-stage algorithms
mainly consist of two steps. The first step is to generate a series of region proposals that
contain information about the rough location of objects. The second step is to classify and
locate the generated region proposals to obtain the detection result [8]. The two-stage
algorithm is characterized by high accuracy. However, due to the complex model and
many calculation parameters, the speed of the two-stage algorithms cannot reach the real-
time monitoring requirements. The classic two-stage algorithms include R-CNN [9], fast
R-CNN [10], and faster R-CNN [11]. Different from the two-stage algorithms, the one-stage
algorithms do not have the step of generating region proposals, but directly regress the
position and classification probability of the boundary box, enabling an increase in speed.
Therefore, the one-stage algorithms are more applicable to real-time target detection. The
one-stage algorithms include the YOLO series [12–15], CenterNet [16], and SSD [17].

The advancement of object detection has inspired the safety helmet detection method
based on deep learning, and many investigators believe that the deep learning technol-
ogy is an important way to address construction security management problems [18].
Fang et al. [19] developed a smart non-safety helmet detector on the basis of Faster R-CNN
with an accuracy of more than 90% in various scenes, but it takes about 0.2 s to detect an
image, which cannot achieve the real-time demand. Gu et al. [20] used multiscale training
based on Faster R-CNN and added an anchor strategy to improve it, which eventually led
to a 7% improvement in helmet detection accuracy. Due to the shortcomings of two-stage
algorithms that cannot meet real-time, one-stage algorithms are increasingly favored by
researchers. Shen et al. [21] presented a modified SSD safety helmet detection algorithm,
which first uses the SSD network to obtain the rough location of the safety helmet and then
compares it with the detection results of adjoining frames to increase the detection preci-
sion of small objects, but it is considerably slower. In a study by Wu et al. [22], a densely
connected convolutional network [23] was used to substitute the backbone network of
YOLOv3 [14], achieving a better detection performance with the same detection time.

However, in some current helmet detection algorithms, the algorithm based on two-
stage has a large number of parameters and slow detection speed, making it hard to satisfy
the real-time demands. Although the algorithm based on the one-stage has a higher speed,
its accuracy is lower compared to the two-stage algorithm, and it performs poorly when try-
ing to identify small and intensive objects. To address the problems mentioned above and
make high accuracy and fast detection speed, this paper selects YOLOv4 [15] as the base
network. First, to solve the issues of an excessive number of network parameters and slow
detection speed, the improved YOLOv4 discarded the original CSPDarknet53 structure
having a large number of parameters and turned to the lightweight network PP-LCNet [24]
as the backbone network, which is a high-performance network focused on mobile devices
proposed by the Baidu team in 2021, and is significantly superior to other lightweight net-
works such as ShuffleNetV2 [25], MobileNetV2 [26], MobileNetV3 [27], and GhostNet [28]
in terms of inference latency and accuracy balance. Furthermore, since a large number of
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3 × 3 convolutions in the network also generate a large number of parameters, deepwise
separable convolution with high computational efficiency was introduced and the 3 × 3
convolutions present in all parts of YOLOv4 except the backbone network were replaced
with depthwise separable convolutions, further reducing the number of parameters in the
network. With the above lightweight improvements, the number of parameters in YOLOv4
can be significantly reduced. However, the improvement of lightweightedness will bring
a decrease in precision and poor detection of small targets. Therefore, in order to reduce
the impact of lightweight improvements without increasing the number of parameters,
the following three methods are adopted in this paper. First, the coordinate attention
mechanism was introduced and added to the three outputs of the backbone network PP-
LCNet to enable the network to acquire inter-channel information and direction-related
location information, which can help to locate the target better. Second, in order to fully
integrate the high-level and low-level features of the image to distinguish the foreground
from the background, an efficient feature structure for enhanced feature extraction, PANet
and BiFPN (PB) module, was designed by combining the weighted bi-directional feature
pyramid network BiFPN [29] and PANet [30]. Finally, a newly proposed SIoU [31] loss
function was adopted as the loss function of the original YOLOv4 to settle the matter of not
taking into account the mismatched orientation between the ground-truth and predicted
boxes. The primary components of this paper include:

(1) To reduce the parametric number of the model and improve the detection speed of the
model deployed in the devices, PP-LCNet was used as the backbone of YOLOv4 for
extracting features, and the depthwise separable convolution was used to substitute
the normal convolution in the neck and head parts.

(2) The lightweight coordinate attention mechanism module was applied and inserted
behind the output of the backbone network, allowing the model to be more sensitive
to object location and increasing recognition precision.

(3) To merge the semantic information and specific features related to small objects while
minimally increasing parameters, an efficient feature fusion structure PB block was
designed to integrate the different levels of features.

(4) The SIoU loss function was adopted as a replacement for the original CIoU [32] func-
tion to take full account of the effects of the distance, aspect ratio, and angle between
the ground-truth and the prediction boxes, which can speed up the convergence of
the model.

The remaining sections of this paper are organized as follows. In Section 2, the
YOLOv4 algorithm will be introduced. In Section 3, the improved YOLOv4 algorithm
proposed in this paper will be described in detail. In Section 4, some experimental findings
are demonstrated and analyzed. Finally, in Section 5, we summarise this paper and give an
outlook toward future research.

2. Background

The YOLOv4 algorithm is an end-to-end real-time target detection algorithm that
provides significant improvements in both precision and speed compared to YOLOv3.
Therefore, we propose an improved YOLOv4 to obtain a lightweight model and then
facilitate the real-time detection of safety helmets.

The specific network structure of YOLOv4 consists of three parts: the backbone
network CSPDarkNet53 (backbone) for extracting image features, the enhanced feature
extraction network (neck) including SPP (spatial pyramid pooling) [33] structure and PANet
structure for further feature extraction, and the predictive decoding part YOLOHead (head).
CSPDarkNet53 is improved on the basis of DarkNet53 [14]. It firstly uses the CSPNet [34]
structure and divides DarkNet53 into two sections, one of which maintains the original
stacking, and the other is connected to the end directly after a slight processing phase.
Secondly, to obtain better accuracy and generalization, the LeakyReLU [15] activation
function from DarkNet53 is changed to a smoother Mish [35] activation function.
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In the SPP structure, pooling kernels of different sizes (such as 1 × 1, 5 × 5, 9 × 9,
13 × 13) are used for maximum pooling, which allows for a more efficient increase in the
received field and a significant separation of important contextual features.

The PANet module builds a feature pyramid, which first propagates high-level se-
mantic features to the underlying network through two upsampling modules. After each
upsampling process, it fuses the features with high-resolution information, which makes it
better at detecting small targets. Then, the feature fusion is further enhanced using two
downsampling modules to fully extract important features.

The head part is still adopting the detection head of YOLOv3 and uses multiple
convolutions for the prediction of the extracted features. After training and testing the
model, the loss function can be determined by a comparison of the obtained prediction
results with the real labeled information.

3. Proposed Methodology

Figure 1 shows the overall architecture of the improved YOLOv4. As shown in
Figure 1, the improved YOLOv4 network structure proposed in this paper consists of
four components: the backbone network PP-LCNet for feature extraction, the coordinate
attention part for obtaining inter-channel relationships and location information, the neck
part for information fusion including the SPP module and the PB module, and the head
part for predictive decoding. Assuming that the size of the input image is (608, 608, 3), three
feature maps of (76, 76, 128), (38, 38, 256), and (19, 19, 512) are obtained after extracting
useful information about the target using the backbone network PP-LCNet. The three
obtained feature maps are passed through the coordinate attention section to capture the
channel and position information. Then, the feature information is integrated using the
SPP and PB modules in the neck section. Finally, the feature maps are parsed in the head
part to obtain the detection results.

Input(608,608,3)

Stem Conv/h-swish

(304,304,16)

DepthSepConv-1

(152,152,64)×2

DepthSepConv-1

(76,76,128)×2

DepthSepConv-1

(38,38,256)×2

DepthSepConv-2

(19,19,512)×7

DSConv×3
Concat+

DSConv×3

Conv + UpSampling

Concat + DSConv×5

Conv + UpSampling

Concat + DSConv×5

DownSampling

Concat + DSConv×5

Concat + DSConv×5

DSConv + Conv

DSConv + Conv

DSConv + Conv

Coordinate 

Attention

Coordinate 

Attention

Coordinate 

Attention

DownSampling

PB Module

PP-LCNet

SPP Module 

Head

5

9

13

5

9

13

Neck

Figure 1. The architecture of the improved YOLOv4. DSConv represents the deepwise separable
convolution, which is used in our method to replace the general convolution to decrease the network
complexity.

3.1. Backbone: PP-LCNet

Due to the large number of layers in the backbone network CSPDarknet53 of YOLOv4,
it can effectively extract deep-level feature information of images, which makes its object
detection performance very excellent. However, this also leads to a more complex network
structure, resulting in an excessive number of parameters and an increase in calculation
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time. Therefore, it is essential to reduce the quantity of parameters of the model so that it is
capable of running on different edge devices in real time. In this paper, PP-LCNet is chosen
as the backbone network for YOLOv4.

PP-LCNet uses DeapthSepCov proposed by MobileNetV1 [36] as the base module and
applies several optimizations based on it. First, DepthSepCov without branches is used
in PP-LCNet to increase the inference speed. Second, PP-LCNet replaces the ReLU [37]
activation function of the backbone network with a better-performance H-Swish [27], which
avoids a huge number of exponential operations. Third, the SE [38] module is inserted
in the end layers of the network to expand the useful feature information. Finally, 5 × 5
convolutional kernels are used instead of 3 × 3 convolution in the deep layer to obtain a
larger perceptual field.

The network structure of PP-LCNet is shown in Figure 2. In order to make the
PP-LCNet be the backbone network for YOLOv4, we remove the GAP and FC layers
from the last three layers of the PP-LCNet and only use its first five layers for feature
extraction. The output of the third, the fourth, and the fifth layer is taken as the input for
the subsequent part.

Stem Conv/h-swish

DepthSepConv-1

DepthSepConv-1

DepthSepConv-2

GAP

1280 FC/h-swish

1000 FC

×1

×2

×2

×2

×7

Input

3×3 DW/h-swish

1×1 PW/h-swish

SE

3×3 DW/h-swish

1×1 PW/h-swish

SE

5×5 DW/h-swish

1×1 PW/h-swish

SE

5×5 DW/h-swish

1×1 PW/h-swish

SE

DepthSepConv-1

Figure 2. The structure of PP-LCNet. DW denotes the deepwsie convolution, PW denotes the point
convolution, Stem denotes the standard convolution, GAP denotes the global average pooling, and
FC denotes the fully-connected layer.

3.2. Attention Mechanism: Coordinate Attention

In the actual environment, the effective features used for recognition in the images
captured by the video only account for a minor portion, and the other features are more
complex context information, which will generate a large amount of irrelevant information
in the convolution computation. This irrelevant information will lead to some object details
getting masked and increase the detection difficulty. To overcome the interference brought
by the environment to the detection, this paper uses the attention mechanism to improve
the detection accuracy. The attention mechanism can allocate finite computer resources to
the more critical parts of the image and decrease the effect of other unrelated backgrounds
and help our model to obtain more useful information. To balance the accuracy and the
complexity, the coordinate attention mechanism [39] is adopted in this paper to significantly
improve the performance of our model with extremely few additional parameters.

The coordinate attention module integrates the position details into the channel so
that the region of interest gets more attention and the model can capture information in a
larger area, which will effectively separate the target region from the background. That is
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to say, the coordinate attention mechanism allows the model to locate and distinguish the
target region more accurately.

The whole process of the coordinate attention mechanism can be generally described
in three steps, as illustrated in Figure 3. The first step is coordinate information embedding.
Specifically, the pooling operation is decomposed into two one-dimensional pooling oper-
ations along the x-axis and y-axis orientations to generate a couple of orientation-aware
feature maps, so as to solve the difficulty of pooling operation for preserving position
information. The second step is attention generation. The two feature maps generated in
the first step are concatenated in the spatial dimension and channels are compressed using
a convolution kernel of size 1× 1. Next, the spatial information is encoded in the x-axis and
y-axis directions using BatchNorm and Nonlinear. Then, the feature map is split into two
independent tensors along the spatial dimension and the number of channels is adjusted to
the same as the number of channels of the initial input feature map using a size of 1 × 1
convolution. Finally, the sigmoid activation function is applied to obtain the attention
weights in two different directions. The last step is residual connection. The original input
and the attention weights obtained in the second step are joined by the residuals to obtain
the final result.

Input

X-axis Average 

Pooling

Y-axis Average 

Pooling

BatchNorm 

+ 

Nonlinear

Conv2d

Conv2d

Output

Sigmoid

Sigmoid

Y-axis Average 

Pooling

Concat

+

Conv2d

Figure 3. Coordinate attention structure.

In this paper, the coordinate attention module is added following the output of PP-
LCNet to provide the model with the ability to locate and recognize object regions more
precisely.

3.3. PB Module

The low-level features of an image carry position details of the object, while the high-
level features are rich in classification information. However, as the network deepens, the
high-level features become more obvious, while the low-level features become more vague.
Therefore, in order to make the feature map be characterized by more semantic features,
the BiFPN structure is introduced. BiFPN can fully fuse various features, especially those of
obscured or smaller objects in complex backgrounds, prevent the loss of low-level features,
and effectively distinguish foreground from background. BiFPN is improved on the basis
of the standard feature pyramid. Firstly, nodes with a single input edge are deleted, which
means that the central nodes of the first and the last edges are removed. Then, all edges
except the first and the last edges are added with a residual edge that connects the input to
the output, merging more characteristics at a smaller cost. Finally, a base BiFPN module is
formed, which can be repeated many times to achieve higher level feature fusion.

In this paper, we combine PANet with BiFPN to construct an efficient feature fusion
structure called PB module, which can enhance detection accuracy with a few parameters
introduced. The structure of the PB module is shown in Figure 4. As shown in Figure 4, the
PB module continues to use the original PANet to perform cross-scale weighted feature
fusion and then imports the fused features into BiFPN for deeper information integration.
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PANet BiFPN

Layer1

Layer2

Layer3

Output1

Output2

Output3

Figure 4. The structure of PB module.

3.4. Depthwise Separable Convolution

The neck and the head parts in the original YOLOv4 and the proposed PB module
contain a large number of 3 × 3 convolutional structures, which greatly increase network
parameters and computation and then affect the detection speed. To decrease the complexity
of the network, the depthwise separable convolution [40] is used to substitute the general
3 × 3 convolution in this paper to achieve an effective reduction of parameters.

Figure 5 shows the process of extracting features from the general convolution and
the depthwise separable convolution, respectively. For images with three input channels,
the standard convolution has only one step, with the same convolution process being per-
formed on different input channels during each convolution. Unlike standard convolution,
depthwise separable convolution is divided into two steps: depthwise convolution and
point convolution. During the process of depthwise convolution, an individual filter is
used to make a convolution operation for each channel of the input. During the point
convolution, the dimensionality is increased with the use of a convolution kernel with the
size of 1 × 1. Given an input size of M×M× C, a convolutional kernel size of N × N, and
an output channel size of K, the proportion of the computation of depthwise separable
convolution to that of general convolution is calculated as follows:

M×M× C× N × N + K× C×M×M
M×M× C× K× N × N

=
1
K
+

1
N2 (1)

In Equation (1), since the value of N is generally 3 and K is greater than 1, the depthwise
separable convolution requires comparatively little computation.

Standard convolution

Depthwise separable convolution

M

M

M

M

C

C

K

K

N
N

N

N

Figure 5. Comparison of general convolution and depthwise separable convolution.
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3.5. Loss Function

As in the actual scenario, the detection of safety helmets may have features of large
numbers, small targets, and intensive locations. In intensely distributed regions, given that
the oriented disparity between the predicted box and the ground-truth box is not taken into
account by CIoU, it might be the case that the predicted box has large leve ls of freedom
and poor convergence rate of the match between the predicted box and the ground-truth
box, which make the model suffer from mislocalization problems. Therefore, the SIoU loss
function is introduced to replace the CIoU loss function in this paper.

The SIoU loss function is composed of four cost functions, which are angle cost,
distance cost, shape cost, and IoU cost. First, the angle cost function Λ is given by the
following equation:

Λ = 1− 2× sin2
(

arcsin(
ch
σ
)− Π

4

)
, (2)

where

ch = max
(

bgt
cy , bpred

cy

)
−min

(
bgt

cy , bpred
cy

)
, σ =

√(
bgt

cx − bpred
cx

)2
+
(

bgt
cy − bpred

cy

)2
,

bpred and bgt denote the center point positions of the ground-truth box and predicted box,
(bgt

cx , bgt
cy ) and (bpred

cx , bpred
cy ) are the coordinate positions of bgt and bpred respectively, as

shown in Figure 6.

α

σ

bpred

bgt

cw

ch

Figure 6. Diagram of SIoU loss function.

Considering the angle cost described above, the distance cost function ∆ is redefined
as:

∆ = ∑
t=x,y

(
1− e−γρt

)
, (3)

where

ρx =

(
bgt

cx − bpred
cx

cw

)2

, ρy =

 bgt
cy − bpred

cy

ch

2

, γ = 2−Λ.

The shape cost function is defined as:

Ω = ∑
t=w,h

(
1− e−wt

)θ , (4)

where

ωw =

∣∣w− wgt
∣∣

max(w, wgt)
, ωh =

∣∣h− hgt
∣∣

max(h, hgt)
,
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and (w, h) means the width and the height of the predicted box, (wgt, hgt) means the width,
and the height of the ground-truth box; θ is applied to manipulate the extent of attention to
the shape loss.

The IoU cost is defined as follows:

LIoUCost = 1− IoU. (5)

Therefore, the SIoU loss expression is described as:

LSIoU = 1− IoU +
∆ + Ω

2
. (6)

4. Experiment and Analysis
4.1. Dataset and Evaluation Criteria

The Safety Helmet Wearing Dataset (SHWD) [41] is used in this experiment. However,
this dataset has problems such as incorrect labels and unlabeled labels, so we optimized it
by verifying the annotation of the images and correcting the mislabeling. Finally, we obtain
the optimized dataset containing 7004 images, with 7709 targets wearing helmets labeled
as hat and 101,174 targets not wearing helmets labeled as person in all images.

The evaluation indicators used in this experiment are precision (P), recall (R), F1,
average precision (mAP), frames per second (FPS), and model volume size. Precision is the
correct rate of prediction in all samples with positive prediction. Recall is the correct rate of
prediction in all truly positive samples. F1 is the harmonic average of the precision and the
recall. The precision, recall, and F1 can be calculated from the following equations:

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

F1 =
2PR

P + R
, (9)

where TP means that the true category is positive and the detection result is positive, FP
means that the true category is negative and the detection result is positive, and FN means
that the true category is positive and the detection result is negative. The AP value of each
category can be obtained by the area of the precision and recall curves (PR curves), and
then the average of the two categories is taken to obtain the map value. AP and mAP are
calculated as follows:

AP =
∫

PRdr (10)

mAP =
1
k

k

∑
i=1

APi, (11)

where k is used to represent the number of categories; APi is used to represent the value of
the i-th category.

4.2. Training Process and Results

The experiments of this paper are built under a 64-bit windows10 system. The pro-
cessor is i7-10700H CPU, and the GPU is GeForce RTX 3060. The training environment is
CUDA11.0, cuDNN 7.6.4, Python3.7, and PyTorch 1.7.

In this paper, we use the concept of transfer learning to train the model with the
weights of the pretrained backbone network. Transfer learning means transferring the
model to a target domain with similar features after training with a large amount of data
in a known domain. The use of the pretrained in advance allows the model to quickly
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acquire characteristic information in another new domain, decreases the training time to a
certain degree, and speeds up the convergence of the network. First, the backbone part of
the network is frozen, and its parameters are not involved in training, and the parameters
of the other parts are trained to adjust the network to the new dataset. The epoch of the
frozen part is set to 50, the batch size is set to 16, the initial learning rate is 0.001, the Adam
optimizer is used, and the cosine annealing learning rate decay strategy is employed. After
the training of the freezing phase, the backbone network is unfrozen, and all parameters of
the network are involved in the training at this time. The epoch of the unfreezing phase is
set to 150, and the batch size is set to 8. The final loss function curve and precision–recall
curve are shown in Figure 7 and Figure 8, respectively.

Figure 7. Loss value curve.

Figure 8. Precision–recall curve of the improved YOLOv4. The left image is the PR curve of hat and
the right image is the PR curve of person.

4.3. Ablation Experiments

To demonstrate the effectiveness of the improved YOLOv4, an ablation experiment is
adopted in this paper. First, the depthwise separable convolution is employed to displace
the general 3 × 3 convolution located in the neck and head parts of YOLOv4. Second, the
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backbone network CSPDarkNet53 of YOLOv4 is substituted with PP-LCNet. Third, the
coordinate attention module is applied and inserted into the output part of the backbone
network PP-LCNet. After that, the proposed PB module is taken as an enhanced feature
extraction network for YOLOv4. Finally, the loss function CIoU is modified to SIoU.
Table 1 shows the ablation experimental results, where DSC denotes depthwise separable
convolution, and CA denotes the coordinate attention module.

Table 1. Results of ablation experiments.

Model DSC PP-LCNet CA PB SIoU
AP

mAP ModelSize
Hat Person

Model-1 × × × × × 93.15% 91.77% 92.46% 243.92M

Model-2
√

× × × × 92.71% 91.00% 91.86% 136.13M

Model-3
√ √

× × × 88.85% 89.38% 89.34% 38.75M

Model-4
√ √ √

× × 89.36% 92.82% 90.09% 38.99M

Model-5
√ √ √ √

× 90.54% 92.03% 91.29% 41.88M

Model-6
√ √ √ √ √

94.34% 91.63% 92.98% 41.88M

Model-1 denotes the original YOLOv4 model, and Model-2 denotes the model after
applying the depthwise separable convolution in the neck and head parts of YOLOv4. The
accuracy of Model-2 only decreases by 0.6% compared to Model-1, while the model size
decreases by 44.14%. This demonstrates that the depthwise separable convolution can
greatly lower the number of parameters with little impact on accuracy. Model-3 adopts
PP-LCNet as a replacement for YOLOv4’s backbone network CSPDarknet53 on the basis
of Model-2, which further reduces its model size to 38.75 M, equivalent to 15.89% of the
original network, despite a 3.12% decrease in accuracy compared to the original network
Model-1. Although the use of PP-LCNet can significantly simplify the complexity of the
network, it is simultaneously coupled with a decrease in precision. To solve this problem,
the coordinate attention module is inserted after the three outputs of the backbone network
in Model-4, which provides a 0.75% improvement in accuracy compared to Model-3, but
the model size is basically unchanged. The results illustrate that the coordinate attention
mechanism is capable of increasing the accuracy of the network with almost no additional
cost. Model-5 uses the PB module presented in this paper as a replacement for PANet
structure of the original network based on Model-4. Compared with Model-4, the accuracy
increases by 1.2%, and the model size increases slightly by 2.89M. Finally, Model-6 employs
the SIoU loss function instead of the CIoU loss function. Compared with Model-1, the
accuracy increases by 0.52%, and the model size is only 17.16% of the original network.
The experiments show that the optimized YOLOv4 algorithm provides good detection
precision and a small model size.

Furthermore, to validate the performance of the SIoU loss function during the training
phase, we utilize SIoU and CIoU on the same dataset with the same parameters and
compare the loss variation curves throughout the training phase, as shown in Figure 9.

From the loss curves of CIoU and SIoU, it can be seen that the loss values after using
the SIoU loss function are generally lower than that after using the CIoU loss function, and
the convergence of SIoU is faster, which proves that the model has better performance in
inference after using the SIoU loss function.
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Figure 9. Comparison of CIoU and SIoU in training.

4.4. Comparative Experiments

To further evaluate the validity of the algorithm in this paper, we compare the im-
proved YOLOv4 with other advanced algorithms under the same experimental environ-
ment with the same evaluation criteria, as shown in Table 2. In order to visualize the
comparison result, a histogram is plotted on the basis of the data from the experiment, as
presented in Figure 10. From the data in Table 2, it can be concluded that the YOLOv4
algorithm can achieve high accuracy detection of safety helmet wearing with the advan-
tage of its construction, and the mAP can reach 92.46%, but its detection speed is only
23.02 pictures/s. That is to say, it takes 43 ms to detect an image, and the model size is up
to 243.92 M, which is not desirable to be deployed to the embedded devices for real-time
detection. The improved YOLOv4 algorithm introduced in this paper can increase the
mAP to 92.98% while reducing the model size by 83% and improving the detection speed
to 43.24 picture/s, which means it only takes 23 ms to detect an image, almost 1.87 times
the FPS of YOLOv4. Although the FPS of the improved YOLOv4 is not as good as that of
YOLOv4-Tiny [42] and its model size is larger than that of YOLOv4-Tiny, its P, R, F1, and
mAP are 6.66%, 9.25%, 8.5%, and 11.72% higher than those of YOLOv4-Tiny, respectively.
Compared with Ghost-YOLOv4 [43], which replaces the YOLOv4 backbone with GhostNet,
the improved YOLOv4 has 2.02%, 2.28%, 3.15%, and 6.64 pictures/s increments in the P, R,
F1, mAP, and FPS, respectively, and a 1.72M decrement in model size. For faster R-CNN,
CenterNet, SSD, and EffificientDet-D2 [29], the improved YOLOv4 is superior to them with
regard to detection accuracy, speed, and model size.

Table 2. Comparison results of different models.

Model Precision (%) Recall (%) F1 (%) mAP (%) FPS Model Size (M)

Faster R-CNN [11] 59.74 81.78 69.50 76.53 10.45 108.64
CenterNet [16] 96.34 76.56 85.00 90.54 44.14 124.61

SSD [17] 91.31 77.11 83.50 88.53 33.86 100.27
EffificientDet-D2 [29] 96.51 60.10 72.00 76.92 15.64 31.2
Ghost-YOLOv4 [43] 90.77 84.07 87.00 89.83 36.78 43.6
YOLOv4-Tiny [42] 86.12 77.10 81.50 81.26 118.52 22.42

YOLOv4 [15] 91.80 85.30 88.50 92.46 23.02 243.92
Improved YOLOv4 92.78 86.35 90.00 92.98 43.24 41.88
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Figure 10. Comparison of histograms of the test results of different algorithms.

To validate the reliability of the improved algorithm in some complex scenarios, we
selected images from different environments for safety helmet detection. The results are
shown on Figure 11. We can conclude the following observations from Figure 11.

(a)

(b)

Figure 11. Cont.
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Figure 11. Cont.
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(g)

(h)

Figure 11. Comparison results of actual detection with different algorithms: (a) Faster R-CNN;
(b) CenterNet; (c) SSD; (d) EfficientDet-D2; (e) Ghost-YOLOv4; (f) YOLOv4-Tiny; (g) YOLOv4; and
(h) Improved YOLOv4. The images in the first row of each algorithm show the detection results for
a single target, a small number of targets and blurred targets, respectively, while the images in the
second row of each algorithm show the detection results for densely obscured targets, small targets
at a long distance and poorly light targets, respectively.

For a single target, all models have higher accuracy, among which faster-RCNN,
YOLOv4-Tiny, and the improved YOLOv4 have the highest accuracy.

For a small number of targets, faster R-CNN, SSD, and Ghost-YOLOv4 all have false
detections. The accuracy of other models is not as high as that of the improved YOLOv4.

For the blurred targets, only faster R-CNN, SSD, and the improved YOLOv4 can detect
the targets completely, and the improved YOLOv4 has the best effect, while other models
have some missing detections. For example, CenterNet, Ghsot-YOLOv4, and YOLOv4 have
one missing detection, YOLOv4-Tiny has three missing detections, and EfficientDet-D2 has
four missing detections.

For the densely occluded targets, the improved YOLOv4 can correctly identify all
targets, including some severely occluded targets, while other models have certainly
missed detections when identifying severely occluded targets. Some models also have
false detection. For example, faster R-CNN identifies the car tires in the test image as the
category of person, and Ghost-YOLOv4 recognizes a helmet that is not worn on the head as
the category of hat.

For the small targets at long range, all models have missed detection, but the improved
YOLOv4 has a low missed detection rate, with only two targets missed in the current test
image, while YOLOv4 misses eight targets, and all other models have more than 10 missed
detections. Therefore, for lightweight networks, the improved YOLOv4 algorithm achieves
better effectiveness in the detection of small targets.

For the dim and poorly light targets, the improved YOLOv4 model shows a good
test result, while other models have false and missed detections, such as CenterNet, SSD,



Sensors 2023, 23, 1256 16 of 18

EfficientDet-D2, Ghost-YOLOv4, and YOLOv4-Tiny. In addition, faster R-CNN, SSD, and
YOLOv4-Tiny identify a worker wearing a helmet and working with head down as the
category of person, and YOLOv4 identifies a worker driving without a helmet as the
category of hat. The above detection findings demonstrate that the improved YOLOv4
algorithm dramatically increases the detection in all kinds of scenarios.

Figure 12 represents the test results using the improved YOLOv4 proposed in this
paper on another two datasets, Hard Hat Dataset [44] and Helmet Dataset [45]. The experi-
mental results further demonstrate the effectiveness of the improved YOLOv4 for helmet
wearing detection, which verifies the proposed model have well generalization ability.

Figure 12. The three images in the first row are from Hard Hat Dataset and the three images in the
second row are from Helmet Dataset.

5. Conclusions

To decrease the accidents resulting from workers not wearing safety helmets in con-
struction sites, this paper presents a lightweight safety helmet wearing detection algorithm.
On the basis of the YOLOv4 algorithm, PP-LCNet is adopted to replace CSPDarknet53 as
the backbone network, and the depthwise separable convolution is used as a substitute
for the normal convolution in the network structure, significantly squeezing the model
volume. Furthermore, to compensate for the decreased accuracy after the modification,
the coordinate attention module is added to the output position of the backbone network,
which can effectively distinguish the foreground and background while not expanding
the model space, and then improve the detection accuracy. After that, the PB module
is constructed by integrating PANet and BiFPN to reinforce feature fusion and acquire
effective features. Finally, the SIoU loss function is applied to significantly minimize the
cost in degrees of freedom. The experimental results demonstrate that, compared with
the original YOLOv4 model, the accuracy of the improved YOLOv4 model is increased by
0.52%, and its model size is reduced by about 83%. Compared with other networks, the
improved YOLOv4 also provides a better combination of accuracy and speed for safety
helmet detection tasks. Although the improved YOLOv4 proposed in this paper can greatly
reduce the model size and increase the detection speed while maintaining a high level of
accuracy, there are still problems that can be optimized. For example, in the comparative
experiments, although the improved YOLOv4 has achieved better results compared with
other models for small targets at a long distance, there are still cases of missing detection
due to too small targets. In the future, we will further investigate the detection problem for
the special case of small targets.
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