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Abstract: The introduction of various deep neural network architectures has greatly advanced aircraft
pose estimation using high-resolution images. However, realistic airport surface monitors typically
take low-resolution (LR) images, and the results of the aircraft pose estimation are far from being
accurate enough to be considered acceptable because of long-range capture. To fill this gap, we
propose a brand-new, end-to-end low-resolution aircraft pose estimate network (LRF-SRNet) to
address the problem of estimating the pose of poor-quality airport surface surveillance aircraft
images. The method successfully combines the pose estimation method with the super-resolution
(SR) technique. Specifically, to reconstruct high-resolution aircraft images, a super-resolution network
(SRNet) is created. In addition, an essential component termed the large receptive field block (LRF
block) helps estimate the aircraft’s pose. By broadening the neural network’s receptive field, it enables
the perception of the aircraft’s structure. Experimental results demonstrate that, on the airport surface
surveillance dataset, our method performs significantly better than the most widely used baseline
methods, with AP exceeding Baseline and HRNet by 3.1% and 4.5%.

Keywords: aircraft pose estimation; super resolution; receptive field

1. Introduction

Aircraft pose estimation is a fundamental and challenging vision task that is crucial for
many downstream tasks, such as intelligent airport security monitoring [1], decreasing air-
craft crashes with airport surfaces [2–4], assisting subsequent airport control decisions [5,6],
and establishing digital twin airports [7,8].

The six degrees of freedom (6D) of an aircraft, including its three translations (x, y, z) and
rotation (α, β, γ) around its three axes, are usually referred to as the aircraft’s pose. However,
the altitude (z), roll (α), and pitch (β) are meaningless for the aircraft on the airport surface in
taxiing or parked state, because their values are zero [9,10]. Thus, the 2D position (x, y) and
yaw angle (γ) are used to describe the pose of the aircraft on the airport surface.

The majority of the current methods [10–12] focus on studying how to precisely estimate
the aircraft pose from high-resolution (HR) aircraft images (e.g., 512× 384 or 256× 192). Since
their synthetic datasets cannot completely simulate realistic and complicated airport field
environments, there are massive gaps in the study on estimating aircraft pose in low-resolution
(LR) situations (e.g., 128× 96), as shown in Figure 1a. Although high-resolution images can
provide more details, in real airport scenes, such as long-distance capture, most aircraft images
can only be acquired as poor-quality LR images, as shown in Figure 1b. Therefore, it is
necessary to use super-resolution methods to help aircraft pose estimation.

The main purpose of the method is to estimate the 2D locations (x, y) of the aircraft
joints that make up the aircraft geometry from the image, as illustrated in Figure 2b. The
pose of the aircraft must match the geometry of the aircraft. As shown in Figure 2c, the final
aircraft pose is represented by the aircraft skeleton, which is made up of the geometrical
keypoints of the aircraft and their connections. The majority of deep neural network based
pose estimation methods [13–17] currently use the generation of Gaussian heatmaps to
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represent the positions of actual keypoints, where each pixel in the heatmap indicates the
probability of belonging to a particular type of keypoint. This is because it is currently
difficult for these methods to directly regress the 2D positions of keypoints on the aircraft
surface in the images. Due to the progressive downsampling process’s inevitable loss
of resolution, the heatmap’s resolution is typically lower than that of the input image.
Because of this, the generated heatmap for a given low-resolution image may be quite small
(e.g., 32× 24), which causes serious quantization problems when the aircraft keypoint
heatmap is recovered to the same size as the input image. As a result, precise aircraft
keypoint localization is essential.

(a)  Synthetic SR image (b)  Realistic LR image

Figure 1. (a) Synthetic high-resolution aircraft image of virtual scene and (b) low-resolution aircraft
image of realistic scene.

(a) Aircarft image (b) Aircarft heatmap (c) Aircarft pose

Position (х,у)  

Yaw(γ)

Figure 2. The pose estimation of the aircraft base on the representation of the aircraft skeleton.

In this work, we explore how to deal with the issue of the precise estimation of low-
resolution 2D aircraft pose. Super-resolution methods have recently been applied as prepro-
cessing and have significantly improved downstream tasks, such as object detection [18–20].
Inspired by this, we extend the SR concept by designing an SRNet as an upstream subnet-
work for aircraft pose estimation. Additionally, as the upsampling of SRNet may lead to
local texture blurring of the aircraft, we propose a large receptive field block (LRF block)
to expand the receptive field to cover the global features of the aircraft. We assess our
method using a tough real-world airport surface surveillance dataset that includes images
of parked aircraft, inbound and outgoing terminal traffic, and the runway being used for
taxiing. We then compare the results to other state-of-the-art baseline methods.

We make the following contributions in this work:

1. The end-to-end low-resolution aircraft 2D pose estimation network LRF-SRNet is
proposed, which combines SR methods with pose estimation methods to precisely
estimate the pose of an aircraft from low-resolution images.

2. A large receptive field block (LRF block) is created as a core component to assist
the network in extending its effective perceptual field and identifying the overall
characteristics of the aircraft.

3. The results of our experiments demonstrate that, when applied to the real-world
airport surface surveillance dataset, our approach can successfully assist the pose
estimate network in improving its performance.
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The remainder of the essay is structured as follows. Section 2 looks at related studies.
Our particular network model’s structure is presented in Section 3, and the experimental
findings are presented in Section 4. A conclusion follows Section 5.

2. Related Work

Recent methods for a variety of aircraft vision tasks involving low-resolution images
are classified into two categories, depending on the solution ways: adding external super-
resolution subnetworks to recover high-quality images and adding internal multiscale percep-
tual field modules to enhance the network’s performance in extracting aircraft features.

Super-Resolution-Based Method

Due to the limitations of the imaging equipment and less than ideal air conditions,
among other factors, the surveillance video captured by digital imaging payloads in real-
world situations is almost always blurry and degraded. As a result, there has been extensive
research on how to handle high-resolution reconstruction in low-resolution imaging. He
et al. [21] enhanced the spatial image resolution of a video taken by small drones using
image fusion technology. Li et al. [22] suggested a technique for combining select high-
resolution multispectral remote sensing photos to create low-resolution super-resolution
(SR) virtual scenes. The proper detection of tiny blurring airplanes in complicated airport
photos is achieved by using an efficient deep belief network (DBN) [23] to rebuild high-
resolution features from numerous input images, including grayscale images and two
locally thresholded images. By creating high-resolution aircraft from low-resolution remote
sensing images, Tang et al. [24] proposed a joint super-resolution and aircraft recognition
(Joint-SRARNet) SRARNet to enhance aircraft recognition performance. However, there
is still a lack of study on the topic of aircraft pose estimation at low resolution, requiring
further research. Thanks to the convolutional receptive field sensing aircraft features, deep
convolutional neural network based aircraft pose estimation has recently been a research
hot-spot in the field of aviation. The network’s ability to aggregate local features depends
on the size and shape of the receptive field, which has a significant impact on the model’s
performance. Since images often present complex backgrounds and hazy situations, many
studies have looked at how to obtain larger fields of perception at shallower network
depths. Zhao et al. [25] suggested a multiscale information augmentation framework
(MS-IAF), which accurately identifies multiscale aircraft and their vital parts by stacking
perceptual fields of various scale sizes in a multipath way. Li et al. [26] developed a new
core component CBL module to increase the receptive field range in the neural network
in order to address the issue of aircraft detection in airport field video images that is
caused by a long shooting distance, small aircraft targets, and mutual occlusion. Wu
et al. [27] enhanced aircraft detection in high-resolution remote sensing images with
dense targets and complex backgrounds by improving Mask-rcnn [28] based on atrous
convolution. However, the majority of these methods use atrous convolution or multilevel
small convolution architectures to implement the large-scale receptive field. Large kernel
has recently been proven efficient for effective receptive fields (ERFs) [29] and implements
state-of-the-art pure convolutional network architectures on ImageNet classification [30],
ADE20K semantic segmentation [31], and COCO target detection [32]. Inspired by this,
we create a new core component LRF block to expand the receptive field of contemporary
convolutional neural networks for effective capture of aircraft features.

3. Methodology

To solve the aircraft 2D pose estimation problem at low resolution, as shown in
Figure 3, we propose an aircraft super-resolution reconstruction network (Aircraft SRNet)
and an aircraft pose estimation network (Aircraft PoseNet). Aircraft SRNet reconstructs the
aircraft’s high-resolution information using spaced tandem up- and downsampling blocks.
The high-resolution aircraft image is then fed into Aircraft PoseNet as input to predict all
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of the aircraft’s geometric keypoints and generate the aircraft skeleton pose, as shown in
Figure 2.
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Figure 3. Low-resolution aircraft pose estimation pipline.

3.1. Aircraft Keypoint Heatmap

To properly represent the actual positions of aircraft geometric keypoints in space, a
Gaussian-heatmap-based approach is utilized to describe the positions of aircraft geometric
keypoints in the two-dimensional plane as soft annotations. Figure 4 illustrates how a
Gaussian kernel with a variance of σ covers the left tail of the aircraft endpoint, and the
value of pi at any location in the Gaussian heatmap represents the confidence probability
that the endpoint belongs to the left tail of the aircraft. The detailed equation is shown in (1):

Hm(k) =

 exp
(
− ‖k−Pi‖2

2
σ2

)
i f exp

(
−‖k−Pi‖

2
2

σ2

)
> thred

0 otherwise
(1)

The aircraft’s kth geometric keypoint is indicated by the Gaussian heatmap Hm(k) with
standard deviation σ. The confidence level is higher for points (Pi) close to the aircraft’s
keypoint and lowers or even reaches zero for locations far from the keypoint when using a
threshold (thred) benchmark.

Figure 4. Heatmap of the aircraft’s left tail end point.

3.2. Loss Function

The loss function for our aircraft pose estimation is:

Lpose =
t=n

∑
t=0

Lheatmap(k) (2)

Lheatmap is the L2 loss of the model-predicted aircraft keypoint heatmap. The principal
inflection and end points of the aircraft structure are contained in the ten keypoints we
choose, including the nose of the aircraft, the left wing tip, the right wing tip, the right
horizontal tail tip, the left horizontal tail tip, the point where the left horizontal tail attaches
to the fuselage, the point where the right horizontal tail attaches to the fuselage, the point
where the left-wing attaches to the fuselage, the point where the right-wing attaches to the
fuselage, and the midpoint of the two points. Their distribution preserves the symmetry
of the aircraft as a rigid body, making them easily detectable because the relative position
relationship between each keypoint is fixed. These n = 10 aircraft geometrical keypoint
heatmap losses constitute the final aircraft pose estimation losses (Lpose).
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3.3. Aircraft Super-Resolution Network

We organize the cross-cascade architecture of upsampling and downsampling blocks [33]
in Aircraft SRNet so that the features interact with features between the high-resolution se-
mantic space and the low-resolution semantic space in order to reconstruct the high-resolution
features of the aircraft. It reconstructs the high-resolution aircraft features by upsampling
blocks before learning the deep semantic features of the aircraft, downprojecting the high-
resolution features to low resolution, and then up-projecting the deep semantic features to
recover the high-resolution feature maps.

Furthermore, Figure 5a depicts the upsampling block’s structural layout. Assuming
that the feature input is the feature output tensor from the previous stage [F1, · · · , Fn], the
upsampling block produces a high-resolution feature maps:

[H1, · · · , Hn] = Gt
2 + Gt

5 (3)

Gt
5 is the feature map of the final scale-up of the upsampling block, and Gt

2 is the feature
tensor of the first scale-up at stage t. As shown in Equation (4), a scale-down is carried out
in between the two scale-ups, and the reconstructed residuals are propagated forward and
self-corrected backward:

Gt
4 = Gt

1 − Gt
3 (4)

As seen in Figure 5b, using the output feature maps from the previous upsampling [H1, · · · , Hn],
and using the downsampling block, a low-resolution feature maps is produced:

[L1, · · · , Ln] = Pt
2 + Pt

5 (5)

Pt
2 is the feature tensor of the first scale-down, and Pt

5 is the feature map of the final scale-
down. Following the two scale-downs, a scale-up and residual cascade were carried out, as
illustrated in Equation (6):

Pt
4 = Pt

1 − Pt
3 (6)
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(a) Up-sampling block
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(b) Down-sampling block

6×6 conv ,s2

1×1 conv 6×6 deconv,s2

Figure 5. Sampling block in Aircraft SRNet.
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3.4. Aircraft Pose Estimation Network

Despite Aircraft SRNet helping us recover high-resolution aircraft images, upsampling
interpolation is unable to stop the loss of high-frequency information, which softens the
features of the aircraft texture in high-resolution images. It is easier to recognize the
geometric keypoints of the aircraft if concentrating on its overall structure rather than
its texture. We suggest using a large receptive field block (LRF block) to enable CNN to
broaden its field of perception and perceive the aircraft as a whole. The LRF block performs
the receptive field expansion at each stage of downsampling in our aircraft PoseNet, as
shown in Figure 6.

Stem

Down Stage 1

7×7 Conv, s=2

Maxpool

Down Stage 2

Down Stage 3

Down Stage 4

1×1 Conv

K×K DW conv

+

Up Stage 

Aircraft image

Keypoints heatmaps

GeLU

LRF block

LRF block

LRF block

Figure 6. Aircraft PoseNet.
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Large Receptive Field Block

The global structure of the aircraft is better captured by the expanded CNN receptive
field. Equation (7) is used to calculate the perceptual field:

Rt = Rt−1 +

[
(kt − 1) ∗

t−1

∏
i=1

si

]
(7)

where the convolutional receptive field size at the t stage is indicated by the variable Rt. We discuss
7× 7 as an example, as shown in Figure 7. The scalable receptive field of three tiny convolutions
with a series of 3× 3 and an atrous convolution with a dilation rate of 3 is comparable to that of a
convolution with 7× 7, as can be seen. However, their effective receptive fields (ERFs) [34] are
actually dissimilar, as the effective receptive field Equation (8) demonstrates:

ERF ∼ O(k
√

n) (8)

The ERFs of CNN is proportional to the convolutional kernel (k) and proportional to the
square root of the network depth (n), as can be seen from the relationship above. This means
that expanding the network depth, which expands the ERFs of many small convolutions
placed in series, is less effective than expanding the convolution kernel size. Second,
the aircraft-by-pixel prediction task is impacted by the negative effects, since the atrous
convolution kernel is discontinuously sampled.

1×1 Conv

3×3 DW dilation 

conv ,dila=3

+

1×1 Conv

3×3 DW small 

conv ,num=3

+

(a) dilation conv (b) small conv

1×1 Conv

7×7 DW conv

+

(c) large conv
ReLUReLU

GeLU

Figure 7. Different ways to expand the receptive field of CNN. DW conv means depth convolution.

ReLU has a gradient of 0 for the majority of pixels in the region away from the
Gaussian kernel, as seen in Equation (1) or Figure 4, which prevents the corresponding
gradients from updating and converging to the vicinity of the aircraft keypoints. According
to Equation (9), GeLU causes the gradient to be continuously close to 0, which aids in the
heatmap’s convergence toward the location of the aircraft keypoint.

GELU(x) = x · 1
2
[1 + erf(x/

√
2)] (9)

where x represents the pixel points in the feature map, and erf(x) denotes the Gaussian
error function, erf(x) = 2√

π

∫ x
0 e−y2

dy.

4. Experiments
4.1. Aircraft Dataset

The Airport surface surveillance dataset, which comprises a total of over 10,000 images
and incorporates images taken from public surveillance footage of civilian airport scenarios,
as well as video from dozens of camera spots, includes more than 30,000 different aircraft.
The majority of the pictures were taken at an oblique upper angle. This dataset, as seen in
Figure 8, is thought to be difficult to analyze, since it contains a lot of blurry target images.
We labeled the aircraft pose to include nine important joints with defined boundaries and
a center point where the wings intersect the fuselage, as shown in Figure 2, in order to
precisely characterize the construction of the aircraft.
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Figure 8. Airport surface surveillance dataset.

4.2. Evaluation Metric

The position of the aircraft’s geometric keypoint determines the skeleton; thus, we use
the widely accepted COCO evaluation criteria [32] to evaluate the aircraft pose: the Object

KeyPoint Similarity index (OKS):OKS =
Σi exp(−d2

i /2s2k2
i )δ(vi>0)

Σiδ(vi>0) . The Euclidean distance in
this case between each related ground truth and the identified keypoint is di. The ground
truth’s visibility flag is represented by the variable vi, and the bounding box area at the
object scale is represented by the variable s. The constant ki regulates the decay at each
keypoint. The primary competitive indicator and metric is the average accuracy (AP)
utilizing 10 OKS levels.

4.3. Implement Details

All experiments are executed on a GIGABYTE 3090 Ti GPU with the Faster-RCNN [35]
aircraft detector in the Ubuntu 18.04, Pytorch [36] environment in order to fairly assess the
superiority of the proposed method in low-quality airport field aircraft pose estimation
tasks. We adhered to the standard data augmentation and training strategies used in
all ablation studies to maintain experiment homogeneity and avoid CNN overfitting.
Specifically, by randomly scaling (±30%), randomly rotating (±40◦), and randomly flipping
horizontally. Our initial learning rate is 1 × 10−3, decreasing to 1 × 10−4 and 1 × 10−5 in
the 90th and 130th epochs, respectively. A total of 150 epochs. Mini-batch = 128. Using the
Adam [37] optimizer, the momentum is 0.9. The following discussion assumes an input
low-resolution image size of 128× 96.

4.4. Comparison with State-of-the-Art Baseline Methods

To evaluate the effectiveness of our proposed method, we compared our method with
two state-of-the-art baseline methods, namely heatmap-based methods (SimpleBaseline [38]
and HRNet [39]), under a low-resolution realistic airport surface surveillance dataset. The
same resolution of 128× 96 is used for both model training and testing.

Table 1 demonstrates that, compared with other state-of-the-art baseline approaches,
our method, which uses HRNet-W48 [39] as the foundation of the Aircraft PoseNet, achieves
an AP of 89.7%. (i) With ResNet-50 serving as the foundation, SR and LRF achieve AP
increases of 2% (85.3–83.3) and 3% (86.3–83.3), respectively, above Baseline. (ii) Using
ResNet-101 as the backbone, SR and LRF experience AP gains of 0.7% (85.5–84.8) and
1.7% (86.5–84.8) in comparison with Baseline, respectively. (iii) SR and LRF obtain AP
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increases of 2.4% (87.0–84.6) and 2.1% (86.7–84.6), respectively, based on HRNet-W32. (iv)
SR and LRF acquire 3.8% (89.4–85.6) and 1.3% (86.9–85.6) AP gains, respectively, based on
HRNet-W48.

Table 1. Comparison with state-of-the-art baseline methods.

Method Backbone Parameters AP APM APL AR ARM ARL

TokenPose [40] Transformer 13.5M 78.4 80.6 83.8 83.1 81.2 89.7

Baseline [38] Resnet-50 34.0M 83.3 82.7 86.9 88.4 83.4 94.1
Baseline+SR ResNet-50 35.9M 85.3 85.7 87.6 90.2 86.2 94.8

Baseline+LRF ResNet-50 34.4M 86.3 84.9 89.4 91.2 88.7 93.9
Baseline+both ResNet-50 36.3M 87.5 88.1 89.3 90.9 89.0 93.0

Baseline [38] ResNet-101 53.0M 84.8 81.4 89.2 89.4 86.2 93.0
Baseline+SR ResNet-101 54.9M 85.5 85.5 88.0 89.7 86.3 93.4

Baseline+LRF ResNet-101 53.4M 86.5 88.0 87.6 90.9 89.6 92.3
Baseline+both ResNet-101 55.3M 87.9 89.4 88.6 92.2 90.1 94.6

HRNet-W32 [39] HRNet-W32 28.5M 84.6 83.0 88.6 89.4 85.4 94.0
HRNet-W32+SR HRNet-W32 30.4M 87.0 86.9 88.4 91.4 89.9 93.0

HRNet-W32+LRF HRNet-W32 28.6M 86.7 82.7 91.0 91.1 88.2 94.3
HRNet-W32+both HRNet-W32 30.5M 88.7 91.6 87.6 92.3 91.9 92.6

HRNet-W48 [39] HRNet-W48 63.6M 85.6 86.7 87.3 90.2 87.7 93.1
HRNet-W48+SR HRNet-W48 65.5M 89.4 86.7 92.2 92.9 91.2 94.8

HRNet-W48+LRF HRNet-W48 63.7M 86.9 86.4 90.5 90.9 86.7 95.7
HRNet-W48+both HRNet-W48 65.6M 90.1 86.6 96.4 94.1 91.3 97.3

Based on Baseline, we discovered that the SRNet preprocessing is much worse than
the LRF impact. On the other hand, when HRNet is employed as the backbone of Aircraft
PoseNet, the SRNet result is noticeably better than LRF. The two examples above demon-
strate that while high-resolution features appear to be more significant in the case of HRNet
multibranch multiscale information interaction, the gain of receptive field expansion in a
single-branch architecture is more sensitive. Figure 9 displays the Baseline (ResNet-101),
HRNet-W48, and our aircraft pose findings to more clearly demonstrate the efficacy of our
method. The degree of overlap visually reflects the validity of the methods.

4.5. Ablation Studies

In this section, we first perform ablation studies on the impact of different super-
resolution subnetworks on the aircraft pose estimation task to demonstrate the advantages
of our method. Table 2 shows that our super-resolution subnetwork achieves the best results
with relatively low GFLOPs (+3.77), significantly better than FSRCNN [41], RDN [42], and
SOF-VSR [43]. Our method improves AP by 1.2% with little more computational costs
than FeNet [44], which is a lightweight SR network. Then, we investigated how various
receptive field expansion methods affect how well aircraft pose work is estimated. The
several methods for enlarging the 7× 7 receptive field are listed in Table 3, including a 3× 3
atrous convolution with a dilation rate = 3, three tandem 3× 3 small convolutions, and a
7× 7 large convolution. The findings demonstrate that the atrous convolution is sampled
in a discontinuous manner in a detrimental way for the work on estimating aircraft pose.
When compared with using a single large convolution kernel directly, the tandem small
convolution has a lower paradigm efficiency.

Then, we examine how different activation functions and convolutional kernel sizes
affect the LRF. As shown in Table 4, we perform ablation tests on two alternative types of
the backbone with different convolutional kernel sizes and different activation functions.
The outcomes demonstrate that the GeLU activation function and the 11-bit convolution
kernel size are the best options for this task.
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HRNet-W48 OursBaseline

Figure 9. The results (blue) of the aircraft pose visualization and ground truth skeleton (red) for a
better view of the aircraft skeleton.

Table 2. Effect of different super-resolution subnetworks on aircraft pose estimation.

Method Backbone GFLOPs AP APM APL AR ARM ARL

+FSRCNN [41] ResNet-50 +4.18 83.6 84.8 84.4 89.0 85.6 90.2
+RDN [42] ResNet-50 +16.3 84.2 85.4 85.0 89.3 86.2 91.6

+SOF-VSR [43] ResNet-50 +15.6 84.8 85.7 86.3 89.5 86.3 92.8
+FeNet [44] ResNet-50 +1.87 84.1 84.9 85.6 89.2 85.8 91.5

+SR ResNet-50 +3.77 85.3 86.8 87.6 90.2 87.3 94.8

+FSRCNN [41] HRNet-W32 +4.18 85.3 85.4 86.0 89.2 87.3 89.6
+RDN [42] HRNet-W32 +16.3 85.9 86.5 86.2 90.0 89.9 90.1

+SOF-VSR [43] HRNet-W32 +15.6 86.1 86.9 84.6 90.0 89.6 90.4
+FeNet [44] HRNet-W32 +1.87 85.6 86.0 85.6 89.9 86.8 89.8

+SR HRNet-W32 +3.77 87.0 89.2 88.4 91.4 89.9 93.0
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Table 3. Effect of different ways of extending the reception field on aircraft pose estimation.

Conv Type Backbone AP APM APL AR ARM ARL

Dilation ResNet-50 82.6 81.4 85.2 88.6 85.2 92.4
Small ResNet-50 83.8 82.9 87.0 88.8 85.5 92.5
Large ResNet-50 86.3 84.9 89.4 91.2 88.7 93.9

Dilation ResNet-101 84.0 85.2 85.9 89.5 86.3 93.1
Small ResNet-101 85.3 86.3 87.4 90.0 87.0 93.3
Large ResNet-101 86.5 88.0 87.6 90.9 89.6 92.3

Dilation HRNet-W32 82.1 79.5 85.0 87.0 84.5 89.8
Small HRNet-W32 85.1 80.7 90.0 89.6 85.7 94.1
Large HRNet-W32 86.7 82.7 91.0 91.1 88.2 94.3

Dilation HRNet-W48 84.8 81.4 89.2 89.4 86.2 93.0
Small HRNet-W48 85.9 83.0 89.3 90.9 88.5 93.6
Large HRNet-W48 86.9 86.4 90.5 90.9 86.7 95.7

Table 4. Effect of different sizes of reception field on aircraft pose estimation.

Kernel Backbone Activation Function AP APM APL AR ARM ARL

3 ResNet-50 GeLU 83.6 84.4 85.2 88.7 85.9 91.9
7 ResNet-50 GeLU 86.3 84.9 89.4 91.2 88.7 93.9

11 ResNet-50 GeLU 85.8 84.4 90.3 89.3 85.1 94.2
13 ResNet-50 GeLU 84.9 79.5 91.6 88.7 84.0 94.1
7 ResNet-50 ReLU 84.0 83.4 88.0 88.3 83.7 93.5
3 HRNet-W32 GeLU 84.8 87.4 82.3 89.6 91.1 87.9
7 HRNet-W32 GeLU 86.7 82.7 91.0 91.1 88.2 94.3

11 HRNet-W32 GeLU 86.6 82.7 91.3 91.1 88.2 94.3
13 HRNet-W32 GeLU 85.8 84.4 90.3 89.3 85.1 94.2
7 HRNet-W32 ReLU 86.5 83.6 90.4 90.9 89.0 93.0

5. Conclusions

In this paper, we propose a novel end-to-end 2D aircraft pose estimation approach
to deal with the issue of aircraft pose estimation on airport surface at low resolution. The
method uses a subnetwork SRNet to recover high-resolution details of the aircraft, as well
as a core component LRF block to focus on the aircraft as a whole and overcome the local
texture feature of the SRNet’s blurring. Through extensive experiments using the airport
surface surveillance dataset, we establish in this study the necessity for high-resolution
reconstruction of the low-resolution aircraft pose estimate problem. We also demonstrate
the potential of a large convolutional extended receptive field. Finally, ablation studies
show that diverse PoseNet methods do not all benefit equally from resolution and receptive
field. Compared with the other most widely used baseline methods, our suggested method
is more precise and efficient.
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