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Abstract: We construct a spacecraft performance-fault relationship graph of the control system,
which can help space robots locate and repair spacecraft faults quickly. In order to improve the
performance-fault relationship graph, we improve the Deep Deterministic Policy Gradient (DDPG)
algorithm, and propose a relationship prediction method that combines representation learning
reasoning with deep reinforcement learning reasoning. We take the spacecraft performance-fault
relationship graph as the agent learning environment and adopt reinforcement learning to realize
the optimal interaction between the agent and the environment. Meanwhile, our model uses a deep
neural network to construct a complex value function and strategy function, which makes the agent
have excellent perceptual decision-making ability and accurate value judgment ability. We evaluate
our model on a performance-fault relationship graph of the control system. The experimental results
show that our model has high prediction speed and accuracy, which can completely infer the optimal
relationship path between entities to complete the spacecraft performance-fault relationship graph.

Keywords: knowledge graph; relational reasoning; representation learning; deep
reinforcement learning

1. Introduction

In recent years, space robots used for spacecraft fault maintenance have been widely
considered. They need accurate and fast fault location ability, which is one of the difficulties
in application. At present, the mapping relationship between the performance and fault of
a spacecraft control system is generally expressed in the form of failure mode and effects
analysis (FMEA) or a fault tree. When the spacecraft control system is abnormal, the ground
experts can locate the fault source by manual inquiry, so it is difficult to make real-time
diagnosis, accurately locate complex faults, and visualize fault diagnosis. Knowledge
graph [1–9], as an effective tool to describe massive knowledge, knowledge attributes, and
knowledge relationships, provides a new means for fault diagnosis. We can manually or
automatically construct the knowledge graph of the corresponding relationship between
the performance and fault of the spacecraft control system by combining various model
knowledge, expert knowledge, and data, which we call the spacecraft performance-fault
relationship graph. However, there is no systematic and comprehensive spacecraft fault
knowledge base in the aerospace field, so it is difficult to construct a large-scale spacecraft
performance-fault relationship graph for spacecraft fault diagnosis. Taking the spacecraft
control system as an example, its working environment is harsh. Because of its closed-loop
characteristics, there are few fault samples accumulated during long-term in-orbit operation,
and the fault mechanism cannot be traversed. Meanwhile, its structure is complex, and
the components are closely related. Therefore, it is difficult to establish an accurate and
complete performance-fault relationship graph of a spacecraft control system, which affects
the accuracy of fault diagnosis results. It is necessary to use relational reasoning to predict
the relationship and complete the relationship.
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The commonly used relationship reasoning methods at present include representation
learning reasoning, path reasoning, reinforcement learning reasoning, and graph convolu-
tion network reasoning. However, the spacecraft performance-fault relationship graph has
complex relationships, various entities, and rich physical meanings. These methods are
difficult to directly apply to a spacecraft performance-fault relationship graph.

The TransE [10] model is a classic model for learning reasoning. It maps entities and
relationships into a continuous vector space, and calculates the entity vectors to predict
the relationships. However, this method is only suitable for dealing with the one-to-one
correspondence of entities and is not suitable for spacecraft performance-fault relationship
graphs with complex and diverse relationships. A typical path reasoning model is the Path
Ranking Algorithm (PRA) [11], which extracts path feature values from the knowledge
graph, and makes relationship judgment according to path features. COR-PRA (Constant
and Reversed Path Ranking Algorithm) [12] adds a constant path search mechanism on
the basis of PRA, which makes the relationship reasoning more comprehensive. However,
path reasoning pays too much attention to the graph structure information, ignoring the
semantic attributes of entities and relationships, and the reasoning accuracy is not high.
Reference [13] first applied reinforcement learning to relational reasoning and put forward a
reinforcement learning framework DeepPath for learning multi-hop relational paths. Based
on this, reference [14] added long short-term networks and a graphic attention mechanism
as memory components. Reference [15] presented agent MINERVA, which has the built-in
flexibility to take paths of variable length and learns to perform query answering by walking
on a knowledge graph conditioned on an input query. References [16–19] improved reward
functions and strategies for different datasets based on reinforcement learning reasoning.
However, reinforcement learning reasoning requires setting a high reward function and
value function. For the spacecraft performance-fault relationship graph with various states
and complex physical meanings, it is difficult to set an accurate reward function and value
function to achieve a good path finding effect. The graph convolution network [19–29]
directly aggregates the adjacent nodes of the graph, which can better reflect the structural
relationship of graph data and is more suitable for processing directed graph and large
graph data. However, its model is complex and lacks interpretability, so it is not suitable
for the complicated spacecraft performance-fault relationship graph.

To solve the above problems, we improve the DDPG algorithm [30] by combining
representation learning reasoning with deep reinforcement learning reasoning. We study
a Semantic relation and Position Deep Deterministic Policy Gradient reasoning model
(SPDDPG) and apply it to the spacecraft performance-fault relationship graph to realize
relational reasoning. First, this model extracts the semantic and location features of the
embedded vectors of entities and relations. The high-dimensional semantic embedded
vectors of entities and relations are obtained by using the TransE model. However, its
excessively high dimension and scattered features will affect the reasoning accuracy. To
solve this problem, Principal Component Analysis (PCA) [31] is adopted to reduce its
dimension to obtain the key semantic feature vectors. Meanwhile, according to the position
of the entity in the spacecraft performance-fault relationship graph, the position vector
is obtained by Boolean vector conversion. Then, we splice the semantic vector and the
position vector as the embedded vector of the entity and input it into DDPG for processing.
DDPG takes the spacecraft performance-fault relationship graph as the environment, in
which we set different corresponding states and rewards for complex entity types in the
spacecraft performance-fault relationship graph. The strategy network of DDPG outputs
the optimal action vector according to the embedded vector of the current state, and the
value network calculates the action value according to the state vector and the action vector,
updating the network parameters in reverse. Both the strategy network and value network
are deep neural network models, which can fit complex strategy and value functions. Thus,
they are suitable for the spacecraft performance-fault relationship graph with intricate
relationships and complex physical meanings.
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In short, this model can achieve accurate reasoning of the spacecraft performance-fault
relationship graph due to two innovations: 1. It extracts the semantic information and
position information from the spacecraft performance-fault relationship graph. 2. It has a
reasonable network and state setting to realize fast optimal action prediction.

2. Materials and Methods
2.1. Fault Diagnosis Process Based on Spacecraft Performance-Fault Relationship Graph

The fault diagnosis process based on the spacecraft performance-fault relationship
graph is divided into two parts. First, data processing and feature extraction are carried
out on spacecraft on-orbit data, and the obtained results are matched with fault symptom
entities in the performance-fault relationship graph. The fault symptom entity correspond-
ing to the current on-orbit data is then determined. Second, in the performance-fault
relationship graph, reasoning is started from the failure symptom, and the failure cause
entity or failure mode entity corresponding to the current failure symptom is obtained
through an entity-relationship-entity triple search. There may be many fault causes or
modes, so the final fault diagnosis result should be determined by information fusion of
fault occurrence probability and expert experience. As a tool of fault diagnosis, the space-
craft performance-fault relationship graph must be complete and accurate. We propose
a relational reasoning model SPDDPG for the performance-fault relationship graph and
use it to improve the performance-fault relationship graph, which provides reliable and
effective support for subsequent fault diagnosis.

2.2. SPDDPG Model and Process

The steps of relationship reasoning with the SPDDPG model are as follows: 1. Build
the SPDDPG framework based on the spacecraft performance-fault relationship graph
and transform the components in the relationship graph into the basic elements of the
SPDDPG framework. 2. Take the entity in the performance-fault relationship graph as the
current state and select the optimal action by using the strategy network, which we call
the Actor Network, to obtain the entity corresponding to the next state. 3. Use the value
network, which we call the Critic Network, to fit the action value function, and update the
parameters of the strategy network and the value network. The reasoning process of this
model is shown in Figure 1.
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2.3. Construct SPDDPG Framework

We use the deep reinforcement learning algorithm for relational reasoning, so we need
to construct the reinforcement learning framework first. We configure the basic elements
of the framework, including environment, state, action, and reward, according to the
performance-fault relationship graph of the spacecraft control system.

Environment. We use the performance-fault relationship graph of the spacecraft
control system as the environment to interact with the agent. Because the performance-
fault relationship graph is difficult to directly calculate and process by agents, we transform
it into an n × n (where n is the number of entities) dimensional environment matrix E. The
u relationships between entities are arranged in sequence. If there is a relationship q∈(0,u)
between entity i and entity j, then Eij is set to q; otherwise, it is set to 0. Finally, we obtain
environment matrix E, which is convenient for a computer to calculate and process the
content of the performance-fault relationship graph.
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State. The relationship path of performance-fault relationship graph is complex and
involves many states, so it is difficult to achieve ideal experimental results only by setting
the normal state and the termination state. We divide the states into the normal state,
termination state, and imminent termination state. The imminent termination state refers
to the first-order adjacent state to the termination state, and when the agent reaches the
termination state, it will complete the path finding of relational reasoning. Our innovative
setting of the imminent termination state can help the agent to find the path in the direction
of the termination state quickly. The entities in the performance-fault relationship graph
are taken as the state. However, they need to be converted into a vector form convenient
for computer identification and calculation, which is called the state vector in this paper.
The state vector includes two parts: semantic features and location features.

The first part is semantic feature extraction. We use the TransE model to process triples
in the performance-fault relationship graph, extracting the semantic high-dimensional
vectors of entities and relationships. Then, we use PCA to reduce the dimension and extract
the principal components of the semantic features of entities and relationships, which we
call the semantic vector.

The second part is location feature extraction. We arrange all entities in the order of (e1,
e2, . . . en), and adopt one-hot coding to obtain the position vectors of all entities. Specifically,
we define an n-dimensional zero vector as the position vector of every entity. If entity i
has a relationship with the entity ej, the jth element of the vector is set to 1. The position
vector contains the global position characteristics of the entity in the performance-fault
relationship graph.

Action. In the case of entities as states, the relationships between entities act as the
action to connect states. The agent outputs the predicted action vector according to the
current state to choose the action to reach the next state. The action vector is represented by
the relational semantic vector obtained from the TransE model.

Reward. As the basis for judging the current state, a reward should be set artificially
according to the path distance and path type between the current state and the termination
state. We use the critic network to fit the complex action value function, so the setting of
the state reward can follow the simple and effective principle. The normal state occupies
most of the path of relational reasoning and should not be set too tendentiously, so it is set
to 0. The imminent termination state should guide the agent to the terminal state, so it is
set to 1, and the termination state reward is set to 2. The formula is as follows:

Rt =


0, St /∈ N1(END) and St 6= END

1, St ε N1(END)
2, St = END

where t is the number of steps of agent path finding, St is the current state, Rt is the reward
corresponding to the current state, END is the end state, and N1(END) is the first-order
neighborhood of the end state. The unique reward of the terminal state can help the
agent approach the terminal state quickly from many complicated paths, and enhance the
training effect.

2.4. DDPG Model

The DDPG model consists of two kinds of neural networks, the actor network and
critic network. The actor network is responsible for predicting actions according to the state,
and the critic network is responsible for predicting action values according to the state and
actions. The two types of networks have their own current network and target network.
The current network calculates the estimated value according to the current state, while the
target network calculates the target value according to the next state. The parameters of the
neural network are updated according to the estimated value and the target value. Next,
we elaborate action selection based on the actor network and parameter update based on
the critic network in detail. Figure 2 shows the structure of the DDPG model.
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2.4.1. Action Selection Based on Actor Network

We use the semantic relation and position multilayer perceptron (SPMLP) model as
the actor network. We take the state vector as the input of the SPMLP model and output
the action prediction vector. The model structure is shown in Figure 3.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 15 
 

 

parameter update based on the critic network in detail. Figure 2 shows the structure of 
the DDPG model. 

Spacecraft
Performance-

fault
Relationship

Graph

Actor 
Network

(parameters:θ)

Critic
Network

(parameters:w)

Current
State

S

Current
Action

a

Input Output Input

Input

Current
Action
Value

Q(S,a;w)

Output

Actor
Target

Network
(parameters:θ´)

Critic
Target

Network
(parameters:w´)

Next
State
S´

Next
Action

a´

Input Output Input
Next

Action
Value

Q´(S´,a´;w´)

Output

Input

TD-error

Gradient Update θ

Gradient 
update w

Update
θ´
By
θ

Estimation：
q=Q(S,a;w)

Target:
qtarget=r+γQ´(S´,a´;w´)

TD-error=qtarget-qUpdate
w´
By
w

 
Figure 2. The structure of DDPG model. 

2.4.1. Action Selection Based on Actor Network 
We use the semantic relation and position multilayer perceptron (SPMLP) model as 

the actor network. We take the state vector as the input of the SPMLP model and output 
the action prediction vector. The model structure is shown in Figure 3. 

…

…

Input Layer

… … …

Hidden Layer

∑ fo …

Output 
Layer

a1

a2

an−2

Action
Prediction

Vector

A

an−1

an

Semantic
Vector

e

Position
Vector

P

 
Figure 3. The structure of SPMLP model. 

We take the entity vector X and reward R corresponding to the current state S. The 
entity vector X is used as the input vector of the SPMLP input layer. Each element of the 
entity vector X is multiplied by the weight θ1 of the first hidden layer, and summed up. 
After adding the offset value b1, the output h1 of this layer is obtained through the sigmoid 
activation function f1, and the formula is as follows: 

𝒉𝟏 = 𝑓（𝜃 𝑿 + 𝑏 ) (1)

Take the output of the first hidden layer as the input of the next hidden layer, and 
repeat Formula (1) to obtain the output of the last hidden layer as ht. The weight is θy 

Figure 3. The structure of SPMLP model.

We take the entity vector X and reward R corresponding to the current state S. The
entity vector X is used as the input vector of the SPMLP input layer. Each element of the
entity vector X is multiplied by the weight θ1 of the first hidden layer, and summed up.
After adding the offset value b1, the output h1 of this layer is obtained through the sigmoid
activation function f 1, and the formula is as follows:

h1 = f1(θ1X + b1) (1)

Take the output of the first hidden layer as the input of the next hidden layer, and
repeat Formula (1) to obtain the output of the last hidden layer as ht. The weight is θy and
the offset is by. The activation function fo of the output layer selects the softmax function.
The final output action prediction vector A is as follows:

A = fo(θyht + by) (2)
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The element position of the prediction vector A corresponds to the relationship in
the performance-fault relationship graph. The element Ai with the highest probability
in A is the selected optimal action a. Find the next state S′ corresponding to the optimal
action from the environment matrix E, take S′ as the current state, and repeatedly take
the above steps until the end state is reached. Finally, the agent outputs the relationship
prediction path.

2.4.2. Parameters Updating Based on Value Network

The multilayer perceptron (MLP) model is adopted as the critic network, which takes
the action vector and state vector as input and outputs the action value. The hidden layer
structure of the model is the same as that of SPMLP, and the calculation process is similar
to the previous section. The difference is that the action value output by the value network
is a real number, the activation function of the output layer is the Relu function, and the
network parameter is w.

We set-up the actor target network and the critic target network, and the structure is
consistent with the actor network and the critic network. The actor target network selects
the next optimal action a′ according to the next state S′, and the network parameter θ′ is
periodically copied from θ. The critic target network calculates the action value Q′ (S, a′,
w′) of the next state, and the network parameter w′ is copied from w regularly. Put the {S,
A, R, S′, A′} quintuple of each cycle into the empirical playback set D; take p samples {Sj, Aj,
Rj, Sj

′, Aj
′} from D, where j = 0, 1, 2, . . . . p; calculate the current target Q value Qtarget:

Qtarget = Rj + γQ′
(
Sj
′, aj
′; w′

)
(3)

where γ is the discount factor, γ ∈ (0, 1), and it is 0.9 in this paper.
Parameters w of the current value network are updated by gradient back propagation

of the neural network, and MSE (Mean Square Error) is used as the loss function of the
value network.

MSE =
1
p

p

∑
j=1

(
Qtarget −Q

(
Sj, aj; w

))2 (4)

Parameters θ of the current strategy network are updated by gradient back propagation
of the neural network, and the loss function of the strategy network is:

J(θ) = − 1
p

p

∑
j=1

Q
(
Sj, aj; θ

)
(5)

Set the update frequency c and soft-update the parameters of the actor target network
and critic target network every c cycle:

w′ ← τw + (1− τ)w′ (6)

θ′ ← τθ + (1− τ)θ’ (7)

where τ is the renewal coefficient, is generally small, and is 0.1 in this paper.

3. Experimental Results and Discussion
3.1. Performance-Fault Relationship Graph of Spacecraft Control System

We apply the SPDDPG algorithm to the performance-fault relationship graph of the
spacecraft control system constructed by us. First, based on the models of each part of
the spacecraft control system, the attitude dynamics equation, and the attitude kinematics
equation, we construct the performance-fault relationship graph of the spacecraft control
system. Taking the system composed of three orthogonal gyroscopes, rolling axis infrared
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earth sensors, and three orthogonal momentum wheels as the object, the attitude dynamics
equation of the spacecraft is as follows:

Ix
.

ωx +
(

Iz − Iy
)
ωyωz = −

.
hx (8)

Iy
.

ωy + (Ix − Iz)ωxωz = −
.
hy (9)

Iz
.

ωz +
(

Iy − Ix
)
ωyωx = −

.
hz (10)

where Ix, Iy, and Iz are the three-axis moments of inertia; ωx, ωy, and ωz are the components
of the spacecraft’s space angular velocity along the main inertia axis; hx, hy, and hz are the
three-axis angular momenta of the momentum wheel.

The attitude kinematics equation of spacecraft is
ωx =

.
ϕ−ω0ψ

ωy =
.
θ −ω0

ωz =
.
ψ + ω0 ϕ

(11)

where ϕ, θ, and ψ are Euler angles, and ω0 is the orbital angular velocity of the spacecraft
rotating around the central gravitational body.

Infrared earth sensor model:

ϕh = ϕ + bϕ + Nϕh + fϕ (12)

θh = θ + bθ + Nθh + fθ (13)

where ϕh is the ground sensitivity measurement output of the roll-axis, bϕ is the ground
sensitivity constant error of the roll-axis, Nϕh is the ground sensitivity measurement noise
of the roll-axis, fϕ is the ground sensitivity fault of the roll-axis, θh is the ground sensitivity
measurement output of the pitch-axis, bθ is the ground sensitivity constant error of the
pitch-axis, Nθh is the ground sensitivity measurement noise of the pitch-axis, and fθ is the
ground-sensitive fault of the pitch axis.

Gyro measurement model:g1
g2
g3

 =

ωx
ωy
ωz

+

d1 + b1
d2 + b2
d3 + b3

+

 fg,1
fg,2
fg,3

 (14)

g4 =
[√

3/3
√

3/3
√

3/3
]ωx

ωy
ωz

+ fg,4 (15)

where gi is the gyro measurement output, di is the gyro exponential drift term (di = − 1
τi

di),
bi is the gyro constant drift term, fg,i is the gyro fault, and i = 1, 2, 3.

Momentum wheel model:
.
hx = J1

.
ω1 = −ux + fω,1 (16)

.
hy = J2

.
ω2 = −uy + fω,2 (17)

.
hz = J3

.
ω3 = −uz + fω,3 (18)

where J1, J2, and J3 are the rotary inertias of the momentum wheel; ω1, ω2, and ω3 are the
rotation speeds of the momentum wheel; ux, uy, and uz are the expected output torques of
the momentum wheel; fω,1, fω,2, and fω,3 are the momentum wheel failures.
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Based on the models of each part of the spacecraft control system, the entities and
relationships of the performance-fault relationship diagram are extracted according to the
following principles:

1. For each part of the spacecraft control system model, the known quantity and un-
known quantity can be regarded as the “known quantity entity” and “unknown
quantity entity”, respectively.

2. The purpose of this experiment is to infer whether there is a relationship among vari-
ables, so all kinds of errors, noises, constant parameters, and faults are not considered
when constructing the graph.

3. When there are multiple variables on one side of the equation, an “AND entity” needs
to be added to represent them.

4. The relationships of variables in the equation are divided into proportional equiva-
lence, derivative equivalence, equivalence, addition, subtraction, and multiplication.

According to the above principles, the extracted entities are shown in Table 1.

Table 1. Triple set of spacecraft control system model.

Known quantity entity ϕh, θh, g1, g2, g3, ux, uy, uz, ω1, ω2, ω3, hx, hy,
hz, AND

Unknown quantity entity ωx, ωy, ωz, g4, ϕ, θ, ψ

Relation

equivalence,
proportional equivalence,

equivalence,
derivative equivalence,

addition,
subtraction,

multiplication

Triplet

(g1 , proportional equivalence, ωx);
(ωx , addition, AND);(
ωy , addition, AND);
(ωz , addition, AND);

(g4 , equivalence, AND)

According to the extracted entities and relationships, we construct the performance-
fault relationship graph of the spacecraft control system, containing 24 entities, 5 relation-
ships, and 28 triplets. As shown in Figure 4, the colors of connecting lines corresponding to
different relationships are at the top.
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3.2. Experimental Results of SPDDPG

We apply SPDDG to the performance-fault relationship graph of the spacecraft control
system for relational reasoning and relational completion, and the parameters are set as
follows. The output vector dimension of the TransE model is 100, and the dimension of the
semantic vector after PCA dimension reduction is set to 20. The input of the actor network
is a 42-dimensional state vector, and the output is a 7-dimensional predicted action vector.
The number of neurons in the three hidden layers is set to (80, 80, 80), and the learning
rate lr = 0.0005. The input of the critic network is a 40-dimensional vector, the output is a
one-dimensional action value, the single hidden layer contains 60 neurons, and the learning
rate lr = 0.0005. The training times are set to 60,000. Each training will randomly perform
100 pathfinding times. The longest relation path of the control system performance-fault
relation graph is 7, so the training requirements can be met when the training times are
reached or the average path-finding steps per hundred trainings are within seven steps.
Actually, the training reaches the termination condition in 54,200 times, and the average
path-finding step curve of the agent is as Figure 5:
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We take the momentum wheel speedω_1 as an example. It is taken as the initial state,
and the infrared sensor output measurement ϕh is taken as the final state. The path-finding
step of the agent is 5, which costs 0.08 s, and the visual path-finding process is shown in
Figures 6 and 7:
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The computer directly predicts the existence of the relationship between entities, and
manually determines the path of entities that are difficult for the computer to directly
determine. We use SPPDPG to discover 51 new relationships, and the completed spacecraft
performance-fault relationship graph is shown in Figure 8.
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3.3. Experimental Results of Various Models

To further verify the advantages of SPDDPG, we make a comparison between the
performance of SPDDPG and other published models. Due to the practical application
requirements, the relationship reasoning model applied to the spacecraft performance-fault
relationship graph not only needs to predict the existence of the relationship between enti-
ties, but can also output the visual relationship path between entities for manual judgment.
Therefore, we focus on selecting the reinforcement learning methods that meet the require-
ments, DeepPath [13] and MINERVA [15], and compare the experimental results from the
path-finding accuracy and average path-finding steps. In order to verify the improvement
of the DDPG algorithm, we add two DDPG models, DDPG(transE) and DDPG(State).
DDPG(transE) only obtains the embedded vector of the entity and relationship through
TransE, and DDPG(State) only sets the normal state and the termination state. The other
parts of the two models are the same as SPDDPG. The experimental results are shown in
Table 2, and the data are the best results obtained after many experiments.

Table 2. The comparison of experimental results.

Model Path-Finding Accuracy Average Path-Finding Steps

DeepPath 65.91% 19.43
MINERVA 72.86% 14.62

DDPG (transE) 77.64% 12.77
DDPG(State) 83.42% 14.29

SPDDPG 100% 6.91

The experimental results show that the SPDDPG algorithm has a good inference effect
on the performance-fault relationship graph of the spacecraft control system. After the tar-
get entity is given, the accuracy of the agent finding the relationship path between entities
reaches 100%, and the multi-hop relationship path between entities can be successfully
obtained. In the performance-fault relationship graph, the longest relationship path is 7
steps, and the minimum average path-finding step number of agents is 6.91, which can
control the path-finding step number to a few times and has high reasoning efficiency. In
addition, compared with the experimental results of two kinds of DDPG models that have
not been improved, two conclusions can be drawn: 1. The embedded vector extracted by
semantic information and location information can contain more obvious entity features
and improve the accuracy of relational reasoning. 2. Adding the imminent termination
state to the normal state and the termination state can make the purpose of the agent’s
routing clearer, reduce the path-finding steps, and improve the efficiency of relational
reasoning. Therefore, this algorithm provides an interpretable reasoning means for com-
pleting the relationship of the spacecraft performance-fault relationship graph and has
application significance.

4. Conclusions

The spacecraft performance-fault relationship graph has complex physical meanings,
numerous entities, and coupling relationships; we propose a relationship reasoning model
SPDDPG to solve the above problems, which combines the representation learning model
and deep reinforcement learning model. Its advantages are as follows:

(1) The representation learning model is used to extract the semantic features of the entity
and relationships, and the global location features of entities are obtained through
Boolean information conversion. PCA is used to reduce the dimensions of entity
vectors, to retain the high-order features of entities and avoid overfitting. It helps
overcome the difficulty of distinguishing numerous entities, which is beneficial to the
training of neural networks.

(2) The actor network is used to replace the traditional action selection strategy, and the
critic network is used to fit the complex and uncertain value function. The deep neural
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network can distinguish complex physical meanings of the spacecraft performance-
fault relationship graph and improve the efficiency of relationship reasoning.

We apply SPDDPG to the performance-fault relationship graph of the spacecraft
control system, and the experimental results show that the algorithm has a good relationship
reasoning effect on the knowledge graph of the spacecraft system level. In the future work,
we are going to build a model of relationship prediction based on SPDDPG’s relationship
reasoning path, so that it has both predictive ability and interpretability. We will apply
this model to a larger spacecraft performance-fault relationship graph, and improve the
reasoning efficiency.

Author Contributions: Conceptualization, X.X. and S.W.; methodology, X.X.; software, X.X.; valida-
tion, W.L., X.X. and S.W.; formal analysis, X.X.; investigation, W.L.; resources, S.W.; data curation,
S.W.; writing—original draft preparation, X.X.; writing—review and editing, W.L.; visualization, X.X.;
supervision, S.W.; project administration, S.W.; funding acquisition, S.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant number
62022013 and National Key R&D Program of China grant number 2021YFB1715000.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hogan, A.; Blomqvist, E.; Cochez, M. Knowledge graphs. J. ACM Comput. Surv. (CSUR) 2021, 54, 1–37.
2. Liu, Q.; Li, Y.; Duan, H.; Liu, Y.; Qin, Z. Knowledge graph construction techniques. J. Comput. Res. Dev. 2016, 53, 582–600.
3. Zhou, Y.C.; Wang, W.J.; Qiao, Z.Y.; Xiao, M.; Du, Y. A survey on the construction methods and applications of scitech big data

knowledge graph. Sci. Sin. Inf. 2020, 50, 957–987. [CrossRef]
4. Dong, X.; Gabrilovich, E.; Heitz, G.; Horn, W.; Lao, N.; Murphy, K.; Strohmann, T.; Sun, S.; Zhang, W. Knowledge vault: A

web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 601–610.

5. Nickel, M.; Murphy, K.; Tresp, V.; Gabrilovich, E. A review of relational machine learning for knowledge graphs. Proc. IEEE 2015,
104, 11–33. [CrossRef]

6. Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Trans.
Knowl. Data Eng. 2017, 29, 2724–2743. [CrossRef]

7. Lin, Y.; Han, X.; Xie, R.; Liu, Z.; Sun, M. Knowledge representation learning: A quantitative review. arXiv 2018, arXiv:1812.10901.
8. Paulheim, H. Knowledge graph refinement: A survey of approaches and evaluation methods. Semant. Web 2016, 8, 489–508.

[CrossRef]
9. Wu, T.; Qi, G.; Li, C.; Wang, M. A Survey of Techniques for Constructing Chinese Knowledge Graphs and Their Applications.

Sustainability 2018, 10, 3245. [CrossRef]
10. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data.

Adv. Neural Inf. Process. Syst. 2013, 26, r5–r10.
11. Lao, N.; Mitchell, T.; Cohen, W. Random walk inference and learning in a large scale knowledge base. In Proceedings of the 2011

Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 27–31 July 2011; pp. 529–539.
12. Lao, N.; Minkov, E.; Cohen, W. Learning relational features with backward random walks. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Beijing, China, 26–31 July 2015; pp. 666–675.

13. Xiong, W.; Hoang, T.; Wang, W.Y. Deeppath: A reinforcement learning method for knowledge graph reasoning. arXiv 2017,
arXiv:1707.06690.

14. Wang, H.; Li, S.; Pan, R.; Mao, M. Incorporating graph attention mechanism into knowledge graph reasoning based on deep
reinforcement learning. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019;
pp. 2623–2631.

15. Das, R.; Dhuliawala, S.; Zaheer, M.; Vilnis, L.; Durugkar, I.; Krishnamurthy, A.; Smola, A.; McCallum, A. Go for a walk and arrive
at the answer: Reasoning over paths in knowledge bases using reinforcement learning. arXiv 2017, arXiv:1711.05851.

16. Shen, Y.; Chen, J.; Huang, P.S.; Guo, Y.; Gao, J. M-walk: Learning to walk over graphs using monte carlo tree search. arXiv 2018,
arXiv:1802.04394.

17. Zeng, X.; He, S.; Liu, K.; Zhao, J. Large scaled relation extraction with reinforcement learning. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

http://doi.org/10.1360/SSI-2019-0271
http://doi.org/10.1109/JPROC.2015.2483592
http://doi.org/10.1109/TKDE.2017.2754499
http://doi.org/10.3233/SW-160218
http://doi.org/10.3390/su10093245


Sensors 2023, 23, 1223 14 of 14

18. Lin, X.V.; Socher, R.; Xiong, C. Multi-Hop Knowledge Graph Reasoning with Reward Shaping. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 3243–3253.

19. Fu, C.; Chen, T.; Qu, M.; Jin, W.; Ren, X. Collaborative Policy Learning for Open Knowledge Graph Reasoning. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 2672–2681.

20. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv 2013,
arXiv:1312.6203.

21. Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; Van Den Berg, R.; Titov, I.; Welling, M. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference; Springer: Cham, Switzerland, 2018; pp. 593–607.

22. Vashishth, S.; Sanyal, S.; Nitin, V.; Talukdar, P. Composition-based multi-relational graph convolutional networks. arXiv 2019,
arXiv:1911.03082.

23. Shang, C.; Tang, Y.; Huang, J.; Bi, J.; He, X.; Zhou, B. End-to-end structure-aware convolutional networks for knowledge base
completion. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
Volume 33, pp. 3060–3067.
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