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Abstract: The paper presents an interactive cardio system that can be used to improve healthcare.
The proposed system receives, processes, and analyzes cardio data using an Internet-based software
platform. The system enables the acquisition of biomedical data using various means of recording
cardiac signals located in remote locations around the world. The recorded discretized cardio
information is transmitted to the system for processing and mathematical analysis. At the same time,
the recorded cardio data can also be stored online in established databases. The article presents the
algorithms for the preprocessing and mathematical analysis of cardio data (heart rate variability).
The results of studies conducted on the Holter recordings of healthy individuals and individuals with
cardiovascular diseases are presented. The created system can be used for the remote monitoring of
patients with chronic cardiovascular diseases or patients in remote settlements (where, for example,
there may be no hospitals), control and assistance in the process of treatment, and monitoring the
taking of prescribed drugs to help to improve people’s quality of life. In addition, the issue of
ensuring the security of cardio information and the confidentiality of the personal data of health
users is considered.

Keywords: cardiovascular diseases; computer system; ECG; PPG; Holter records; mathematical
analysis; arrhythmia; heart failure; heart rate variability

1. Introduction

Advances in technology are leading to the ever-greater miniaturization of digital
sensors, leading to an increase in the possibility of ever more accurate and easy continuous
monitoring of individuals, as needed, using mobile sensing devices.

The miniaturization and the development of intelligent applications make it possible
to offer qualitatively new services in healthcare in which the care of the patient’s health and
comfort are placed first. The development of network technologies leads to the possibility
of remote medical monitoring and diagnostics even in remote settlements (which may lack
hospital services) by qualified doctors. This puts healthcare on a new, modern footing,
guaranteeing every patient the best healthcare services, regardless of their location.

Monitoring the activity of the cardiovascular system is an important task on which the
maintenance of the good health of the individual depends. Diseases of the cardiovascular
system are very common; for example, about one million new cases worldwide are regis-
tered every year. According to statistics, 35–40% of patients diagnosed with heart failure
die within a year of diagnosis; by the end of the fifth year, the mortality reaches 75%.

Heart rate testing is performed by recording cardiac signals through the use of an
electrocardiographic (ECG—short-term cardio records), photoplethysmographic (PPG
records), or Holter device (long-term cardio records). The main method for studying heart
activity is heart rate variability (HRV), an indicator of the overall health of the human
organism, which is effectively used in the diagnosis and prevention of cardiac diseases as
well as several other diseases.

HRV gives the most complete picture of the influence of the autonomic nervous
system [1,2] (through the sympathetic and parasympathetic nerves) on cardiac activity.
Variability refers to the changes in the length of the successive time intervals between
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individual heartbeats. By studying the mathematical parameters of HRV [3–6], a complex
assessment of the individual’s health status, the work of their cardiovascular system, and
the ability of their body to adapt to the adverse effects of the environment and stress are
possible. An advantage of HRV parameters is that they are determined non-invasively and
can be calculated in real-time.

The autonomic nervous system (ANS) directly affects cardiovascular activity, the
digestive system, respiration, pupillary response, and other organs in the human body.
Heart rate variability parameters can be used to assess the results of the interaction between
the sympathetic and parasympathetic nervous systems [7], to screen for cardiovascular
disease, depression, stress, diabetes, hypertension, and more.

Several authors who studied HRV before 1996 indicated different values for its normal
parameters that correspond to a healthy organism. This necessitates the creation of a
single standard for determining the parameters of HRV and standardizing the values
for norm and pathology. Today, the research methods used for the analysis of the real
cardiac data of patients with cardiac diseases and healthy individuals must comply with
the HRV standard adopted in March 1996 by the European Society of Cardiology and
the North American Society of Electrophysiology: “Heart Rate Variability—Standards
of Measurement, Physiological Interpretation, and Clinical Use” [8]. The standard was
confirmed in the following years as international and retains its relevance and universality
to this day. It is a basis for creating devices and software programs for recording cardiac
data and evaluating HRV.

Currently, there are several methods by which heart rate variations can be determined.
Mathematical methods can be grouped as follows:

- Linear methods: including time domain, frequency domain, and time-frequency
domain methods.

- Nonlinear methods: including fractal methods, Hurst exponent determination, De-
trended Fluctuation Analysis, Poincaré plot, and others.

The most widely used are linear methods, where traditional methods of analysis in the
time and frequency domain are applied. These methods are standardized in the accepted
variability standard and are considered generally valid.

1.1. Background

The mathematical analysis of HRV is a task to which many current studies have been
devoted [9,10]. HRV analysis software systems developed in recent years offer time-domain
and frequency-domain variability analysis [11,12]. However, heart rate variability is not
yet sufficiently well studied and is the subject of growing scientific interest.

In [13], HRV was investigated in healthy subjects and compared to patients with
abnormal cardiograms. The authors of [14] conducted a study on the HRV of patients
diagnosed with sleep apnea and presented the results of the influence of this disease on
variability. Investigations of HRV in the time and frequency domain and the influence of
the day/night cycle were conducted by Burger et al. [15], observing healthy, heart disease,
and diabetes patients.

The detection and classification of heart attacks and the statistical analysis of ECG and
HRV in a Matlab environment are presented in [16]. Selvaraj [17] examined the influence of
six emotional states (joy, sadness, fear, surprise, disgust, and neutral) in healthy volunteers
on HRV. For this purpose, HRV was studied using statistical methods and the obtained
results indicated low values of HRV during strong negative emotions. Park, in [18], while
applying a spectral analysis of HRV on the ECG of children, found a change in HRV during
the growth of children.

Studies have shown a decrease in HRV with increasing age [19] or with an unhealthy
lifestyle [20] (for example, smoking and alcohol use). In addition, low values of variability
indicators have been reported in advanced hypertension, coronary heart disease, after
myocardial infarction [21], heart failure [22], ischemic heart disease [23], etc. A decrease
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in HRV is accepted as a risk indicator for the occurrence of adverse events not only in
chronically diseased people but also in healthy individuals.

A reduction in HRV measured in the time domain is a predictor of sudden cardiac
death [11,24] and brain death [25]; permanently low values are reported in diabetes [26],
congestive heart failure, sleep apnea, alcohol abuse, hypertension, syncope, and problems
with prenatal fetal development. According to Rich et al. [27], if the value of one of the
parameters (SDNN, for example) is less than 50 ms, the probability of sudden cardiac
death within one year increases 18 times compared to healthy individuals with whom this
parameter is within normal limits.

SDNN and other statistical parameters are independent prognostic indicators, for
example, after acute myocardial infarction (MI). Patients at risk of mortality have lower
values of the SDNN parameter. Follow-up of this index shows that after an experienced
MI, patients with an SDNN less than 70 ms (when examined on a 24-h Holter recording)
are nearly four times more likely to die in the next three years [28,29].

Low HRV is associated with a worse prognosis in the cardiac plan and the development
of diseases, such as diabetes mellitus, epilepsy, Parkinson’s disease, depression, and others.
Many occupations today are associated with high stress, for example, medical workers,
teachers, military personnel, and others; in these occupations, a decrease in HRV and
arrhythmias can be observed. The sympathetic nervous system becomes overloaded as a
result of psychosocial stress and the use of certain drugs [30].

High HRV indicates the body’s adaptability, while low HRV indicates the body’s re-
sponse to the negative effects of stress and diseases [31]. Some researchers believe that peo-
ple are in good health when the heart, respiratory, and central nervous systems are function-
ing in sync. This results in good autonomic nervous system tone and high HRV. Conducting
remote monitoring of patients with at-risk cardiovascular diseases should be a priority and
can lead to adequate treatment, prolonging life, and ensuring a comfortable lifestyle.

An important point in the processing of cardiac data is the sampling frequency of
the registered signals. The authors of [32] found a need for several times the higher
sampling rate of the electrocardiogram in patients with low HRV, while in healthy subjects,
a sampling rate greater than 125 Hz gives good results.

Holter monitoring is the most effective means today for the long-term continuous
monitoring and evaluation of cardiac activity (providing 4 to 12 leads). In addition to it,
wristbands, a ring for one of the fingers of the hand, chest straps, smart clothing with
built-in sensors, and others can be used.

Photoplethysmographic signals [12,33,34] are an alternative to electrocardiological
signals and are easier to record; the PPG devices [35], which capture these signals, are more
convenient for longer wear. PPG sensors are small and can be conveniently integrated into
various lightweight and easily portable devices, smartphones, and smartwatches. In the
past few years, with the improvement of PPG sensor manufacturing and miniaturization
technology, PPG technology has entered the daily life of more and more people and become
an integral part of them. Today’s high-tech sensors make it possible to measure various
parameters through which the overall health of the body can be observed.

Electronic health care (e-Health) is increasingly entering the lives of ordinary people.
Telemedicine systems have evolved and today are based on the Internet of Things (IoT)
and are at the service of electronic and mobile healthcare. Body Sensor Networks [36] and
wireless communications [35,37] are technologies providing progress in health care as well
as the possibility of the effective daily monitoring of patients in various risk groups and
timely medical intervention, if necessary. In Body Sensor Networks, light, wearable sensors
are placed on the human body for measuring health parameters such as temperature, heart
activity (ECG, PPG), breathing, and others. During a certain period, the registered signals
are transmitted via the base station to a collection center server in cloud technologies which
doctors can access on their devices. These systems are well suited for daily long-term
remote monitoring where the individual can continue to perform their daily activities.
A schematic of such a system is shown in Figure 1. Several sensors are used, placed on
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different places of the human body, to allow the following parameters to be registered
and recorded in real-time: electrocardiogram and photoplethysmogram, oxygen in the
blood, blood pressure, respiration, electroencephalogram, magnetic resonance imaging,
electromyography, motion sensors. The sensors are then integrated into sensor nodes
containing an analysis and control system. The registered signals are then transmitted
wirelessly to a software platform based on cloud technologies, processing and analyzing the
received biomedical data, which, when a risk event occurs, sends a signal to the supervising
doctor. Logged data is saved to web-based data repositories.
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Figure 1. Scheme of a health system based on body sensors.

The system includes sensors to register biomedical signals, based on which, first aid
can be carried out. These signals can also be used to determine the risk that the monitored
subject has developed a condition that requires emergency medical intervention and can
monitor for the first signs of COVID-19 or other contagious conditions, the early detection
of which can save the individual who is sick and protect others. More and more medical
conditions can be treated through such networks, which will lead to fewer visits to GPs
and fewer emergency and hospital admissions, leaving only those that are truly urgent,
as well as an opportunity to analyze the level of urgency before arriving at the hospital.
Observations on healthy people can provide information on the early signs of future
diseases and the possibility of preventing health problems. The recorded signals assist the
monitored subject, medical personnel arriving on the scene, and doctors who can remotely
assist. The useful indicators are shown on the display along with the Global Positioning
System (GPS) coordinates of the patient’s location.

The PPG recording as a parallel process of the ECG recording of heart activity can
serve to increase the accuracy in locating the maximum amplitude deviations of the signal
and achieve a higher reliability of the information. The parameters that are derived from
the PPG are comparable to measurements that are carried out with an ECG, and scientific
studies show that they correlate with traditional ECG measurements and are a good enough
alternative to study cardiac activity [35].

The monitoring framework (Figure 1) includes sensor nodes where biomedical in-
formation is registered (body sensors); a communication network for the transmission of
recorded signals; a server for the processing and analysis of biomedical information in
remote cloud virtual centers; a database in which the information is stored; and terminal
nodes (doctors, researchers) who use the information.

The following technologies can be used to analyze the collected data and make pre-
dictions: deep architectures [38,39], machine learning [40–42], signal processing [43], and
data fusion [44,45].

In [46], a prototype of a portable system for the remote monitoring of heart rate,
temperature, ECG, and electroencephalogram is presented with the parameters obtained
through a wireless communication system.
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Research in [47] presented a system for remote, wearable non-invasive monitoring
outside of clinical settings by means of ballistocardiography (BCG) signals, with the possi-
bility of recording the signals when the individual is standing and sitting. The research
used piezoelectric film sensors to record the BCG signals and the created portable devices
were tested for their level of energy consumption.

A cloud-integrated BSN (body sensor network) computing system is proposed in
the work [48].

In the study [49], an automated remote cardiac monitoring system is described, in-
cluding a portable ECG device, system nodes, a core processing server, data files, and a
web server.

A system using cloud servers to monitor people with poor cardiovascular health was
described in [50]. This system was developed using Bluetooth, an ECG sensor, Android
Technology, and a web application.

1.2. The Purpose of This Article

In the present article, the focus is on the creation of an experimental interactive cardio
system for conducting the remote monitoring of patients with risky disease states and
making decisions about emergency medical intervention when necessary. The monitoring
of the health status of the individual is carried out using the recording, analysis, and
evaluation of cardio records (ECG, PPG, and Holter). The research conducted on cardio
recordings is based on the mathematical analysis of HRV parameters by linear and non-
linear methods. The studies were carried out on real Holter recordings of diseased (patients
with heart failure and tachycardia) and healthy individuals. The numerical and graphical
results of the conducted research are presented. The interactive system makes it possible to
set the input parameters, select data for research, record the results and data obtained, and
send a signal to a doctor when risky situations occur.

The goal is to study the possibilities of supporting the diagnostic process with the
application of linear and non-linear methods, storing the data from the results, and giving
the opportunity to monitor the development of the disease by comparing the results of
successive studies.

2. Materials and Methods
2.1. Database and Preprocessing

In this study, the database used was obtained from the Medical University of Varna,
Bulgaria. A total of 179 Holter recordings were studied, including recordings from patients
with arrhythmia, heart failure, ischemic heart disease, syncope, and recordings from healthy
individuals. The records are of men and women diagnosed by a cardiologist. The data were
obtained by conducting continuous Holter monitoring (second lead). The data analyzed
in the article represent long-term (approximately 24 h) data recorded from patients with
a Holter device that was funded by the project [51]. The registered data were distributed
according to the diagnosis made by the attending cardiologist and stored in a database [52].
The control group (volunteers) is in the same age group as the observed patients. All people
participating in the study provided written informed consent to participate. Participant
identification has been removed. All data used in this study are anonymized to protect the
personal information of participating healthy volunteers and patients. For the present study,
two groups of recordings with cardiac Holter data were selected: 12 healthy individuals,
14 patients diagnosed with heart failure, and 12 patients with tachycardia. All participants
underwent continuous Holter monitoring for 24 h. This study was approved by the
Research Ethics Committee at Medical University—Varna, Bulgaria, Protocol/Decision
No. 82, 28 March 2019. The participants were from Varna, Bulgaria, and were aged 49 to
68 years, including both men and women. Preprocessing was performed on the recorded
data, including decompression of the data (in case they were obtained in a compressed
form), reduction in disturbances (removal of artifacts, filtering to reduce side noise) [53],
determination of the maximum amplitude deviations in the ECG signal (R peaks) [54],



Sensors 2023, 23, 1186 6 of 21

extraction of RR intervals (time sequence of the time duration between adjacent R peaks),
formation of the normal NN intervals, and formation of the HRV series. The resulting time
series was interpolated using the cubic splines wavelet basis and downsampled at 2 Hz.

2.2. PPG Sensors to Heart Rate Record

To register photoplethysmographic signals at the monitoring sites of patients at risk
(sensor nodes), discrete sensors such as NELLCOR DS100A [55] or compatibles can be
used. To realize the recording of the analog signal, it is necessary to add a circuit for ampli-
fication, filtering, synchronization, analog-to-digital signal conversion, LED control, and
microcontroller connection [56,57], such as the AFE4490 integrated circuit [58] specialized
for measuring heart rate and with the possibility of measuring the content of oxygen in
the blood.

The registration of the photoplethysmographic signals can be carried out and in-
tegrated into sensors. The MAX30102 integrated circuit (manufactured by the Maxim
Integrated company) [59] enables short-term measurements of the heart rate and blood
oxygen content. The scheme has small dimensions, low power consumption, and is inex-
pensive. The integrated circuit includes a red and an infrared LED to provide the necessary
light for the measurements. The red LED operates at 660 nm wavelength and the infrared
LED at 880 nm. The photo sensor reads the power received from the red and/or infrared
LEDs. The current through them is controlled by a Pulse Width Modulator, which achieves
a reduction in consumed energy.

The integrated circuit MAX30102 also includes a circuit to reduce the impact of side
light, a temperature sensor for reading the temperature, analog-to-digital converters, a
digital filtration module, a circuit to control the LEDs, an Interface module for connection
with a microcontroller, and others.

The recorded cardio signals are processed in a portable device [60] designed for this
purpose. The device checks the accuracy of the registered signals from the sensors, performs
an analog-to-digital conversion of the signals, and reduces noise using filtering. The data
obtained are transmitted for further processing to the created interactive software system.
The information system locates the maximum deviations of the cardio signals and forms
the time series of the intervals between heartbeats (HRV).

2.3. Mathematical Methods of Cardio Analysis
2.3.1. Analysis in the Time Domain

The software system performs mathematical analysis in the time domain by calculating
the static parameters HRmin, HRmax, MeanHR, MeanRR, SDNN, SDANN, RMSSD, NN50,
pNN50, and SDindex (these parameters provide information on the variations between
adjacent cardiac intervals). Normal values for the time indices corresponding to healthy
individuals are given in the standard for HRV (Table 1).

Table 1. Reference values for healthy individuals in the time domain [8].

Parameters Healthy
(Mean ± SD)

Statistical parameters

HRmin {bpm} >50
HRmax {bpm} <120

MeanHR {bpm} >50, <120
MeanRR {ms} -
SDNN {ms} 141 ± 39 (102–180)

SDANN {ms} 127 ± 35 (92–162)
RMSSD {ms} 27 ± 12 (15–39)

NN50 -
pNN50 {%} -

SDindex {ms} -
Geometrical parameters

HRVti {numb} 37 ± 15 (22–52)
TINN {ms} -
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2.3.2. Analysis in the Frequency Domain

In the frequency domain, the spectral components in very low frequencies, low fre-
quencies, and high frequencies are determined and the total spectral power is determined.
Each frequency range in the long-term cardiac data has been found to have a role in the
cardiac–autonomic nervous system relationship [8]:

• Ultra Low Frequency, ULF (0–0.003 Hz)—reflects the change of day and night;
• Very Low Frequency, VLF (0.003–0.04 Hz)—affects the sympathetic nervous system;
• Low Frequency, LF (0.04–0.15 Hz)—affects the sympathetic and parasympathetic

nervous system;
• High Frequency, HF (0.15–0.4 Hz)—influences the parasympathetic nervous system

and respiratory sinus arrhythmia;
• Total Power—reflects the influence of the two lobes of the nervous system and the

overall nervous regulation of cardiac activity.

Additionally, the ratio of low-frequency components to high-frequency components
(LF/HF) is determined which provides information about the sympathovagal balance of the
human body. The spectral components, except in absolute units (ms2), are also calculated
in normal units (n.u).

In the frequency domain, the power spectral density (PSD) is investigated which
provides information about the frequency properties of the data under investigation. PSD
characterizes the intensity of the signal at different frequencies or the average power per
unit bandwidth. The PSD research methods include non-parametric (Fourier transforma-
tions, Welch Periodogram, etc.) and parametric methods (autoregressive method of Burg;
Periodogram method, etc.).

The PSD of an autoregressive process (Burg’s method) from p-th order is calculated by [61]:

PBurg( f ) =
1
fs

.
εp∣∣∣1 + ∑

p
k=1 ap(k).e−2π jk f / fs

∣∣∣2 (1)

where k—index; p—the model order; fs—sampling frequency; εp—least squares error; and
ap—coefficients of autoregressive Burg model.

For cardiac data (sampling rate of 2–4 Hz), the models from 16 to 20 lines are suitable [62].
Normal values for the frequency indices corresponding to healthy individuals are

given in the HRV Standard (Table 2).

Table 2. Reference values for healthy individuals in the frequency domain [8].

Parameters Frequency Range {Hz} Healthy
(Mean ± SD)

TP {ms2} ≤0.4 3466 ± 1018
VLF {ms2} ≤0.04 -
LF {ms2} 0.04–0.15 1170 ± 416
HF {ms2} 0.15–0.4 975 ± 203

LFnu {n.e.} - 54 ± 4
HFnu {n.e.} - 29 ± 3
LF/HF {-} - 1.5–2.0

2.3.3. Analysis in the Time-Frequency Domain

Time-frequency methods allow for visualization of the moments in time in which the
frequency characteristics of the studied data change. In this study, window techniques
(Window periodogram of Burg) and continuous wavelet transformation were used to
determine the frequency characteristics in the time-frequency domain.
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2.3.4. Surface Method

The geometric method with surface determination was used, which gives us a three-
dimensional view of the change in the spectral power of the signal as a function of time and
frequency. The method visually represents the change in signal power, showing the exact
moments in time when this happens, as well as the frequency ranges in which the spectrum
changes. Wide blue areas indicate low variability of the investigated signal, which is an
indicator of poor general health. Areas marked with an orange and red color signal normal
(high) variability of the studied data.

2.3.5. Analysis with Nonlinear Methods

In this study, the following non-linear methods [63] were used to analyze the cardiac data:

• Determination of the Hurst exponent (H) performed via the Rescaled adjusted range
Statistics plot (R/S). Studies conducted on cardiac signals show that they have a
fractal structure characterized by self-similarity. The degree of self-similarity can be
determined by the Hurst exponent—at 0.5 < H < 1, the studied process is fractal. It
was found that there is a difference in the values of this index in healthy and sick
individuals. At values of H close to 1, chronic and pathological diseases are observed.

• Detrended Fluctuation Analysis (DFA). With this method, three parameters (alpha,
alpha 1, and alpha 2) are determined using information obtained on the fractal corre-
lations in the studied time series. If there is no correlation in the time series, then an
alpha of less than 0.5 is obtained. At alpha > 0.5, there is a correlation dependence in
the studied data. Several authors [64–66] have declared a difference in the values of
alpha parameters in healthy and unhealthy people.

2.3.6. Protection of Research Data

When transmitting and storing cardiology data, it is good to implement protection
for the prevention of malicious interference and guarantee the confidentiality of the infor-
mation. Cryptographic protection is applied to both the recorded cardio signal and the
information part of the record containing information about the duration of the registered
signal, physiological data about the patient (age, sex, weight, etc.), diagnosis, history of
the disease, and others. After registering the long-term record, an encryption procedure
is applied to it, including a wavelet transform on the received data sequence, optimized
Energy Packing Efficiency compression, embedding a watermark in the wavelet coefficients,
implementing an encryption procedure using a hybrid cryptographic algorithm, and a
performing an inverse discrete wavelet transform. The technology used, and its evaluation,
is described in [67].

2.4. Statistical Analysis

To determine the normality of the data distribution, the non-parametric Kolmogorov–
Smirnov test and the Shapiro–Wilk test were used, performed using SPSS (IBM Statistics
29.0) software. The tests were applied to all the data involved in the study. The results
showed that a normal distribution of the studied data can be assumed. In this study,
variables and results are presented as the mean and standard deviation (mean ± sd) unless
otherwise stated. From a statistical point of view, a p-value below which the studied
parameter is considered statistically significant is important. In this study, if the p-value is
less than or equal to 0.05 (5%), the result is considered statistically significant. Statistical
analyses (between the study groups with heart disease and the healthy control group) were
performed with a one-way ANOVA statistical test.

3. Results

The software system with which the mathematical analyses were carried out and the
presented numerical and graphical results were obtained was implemented in the MATLAB
development environment and was created to fulfill part of the tasks set in a research
project. The system performs preprocessing of the input data, including noise reduction and
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detection of maximum amplitude deviations in the cardio recording (R peaks), forms the
time series of RR intervals, and forms the sequence of normal cardio intervals (excluding
ectopic beats, which do not originate from the sinus node). Mathematical studies and
analyses are performed at these normal intervals.

The time analysis of HRV is based on the determination of statistical parameters
examining changes in the duration of consecutive normal cardio intervals obtained from
recorded Holter recordings. This type of analysis is performed for long recordings (ap-
proximately 24 h) through statistical and graphical measurements. The analysis in the
frequency domain was performed on a 5-min part of the cardio record (according to the
recommendations of the HRV standard).

3.1. Time Domain Methods

Table 3 presents the demographic characteristics of the examined records of the in-
dividuals, male and female, aged 42 to 68 years. The study included 14 records with a
diagnosis of heart failure, 12 records with tachycardia, and 12 records of healthy volunteers.
Estimates by gender and age did not show significant differences.

Table 3. Demographic characteristics of the examined individuals.

Parameter Heart Failure
n = 14

Tachycardia
n = 12

Healthy
n = 12 p-Value

Men {%} 57.14 58.33 42.67 NS
Age {years ± sd} 62.43 ± 23.08 52.28 ± 13.26 51.62 ± 20.36 NS

NS (no significance)—the value is not significant.

Figure 2 presents a continuous 24-h recording from the studied database of a healthy
individual. The duration of RR intervals varies over time, having values from 0.38 s to
1.58 s, which indicates significant variations in the studied time series. Seven minutes of
this series are presented in Figure 3; the graph shows a high variability of heart intervals,
which is an indicator of good health.
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Table 4 shows parameters in the time domain of the studied records. The results show
lower values of the statistical indices SDNN, SDANN, RMSSD, NN50, and pNN50 in the
diseased patients compared to the healthy control group (p-value < 0.05, therefore these
results have statistical significance). From the geometrical parameters, HRVti shows highly
reduced values in the sick patients compared to the healthy control group (p-value < 0.001,
indicating statistical significance). Time domain studies have shown a reduction in HRV in
individuals with cardiovascular disease.

Table 4. Parameters in the time domain of the studied records.

Parameters Heart Failure
(Mean ± SD)

Tachycardia
(Mean ± SD)

Healthy
(Mean ± SD)

p Value
(Mean ± SD)

Statistical parameters

HRmin {bpm} 51 ± 13 61 ± 29 56 ± 14 NS
Hrmax {bpm} 112 ± 27 140 ± 38 103 ± 16 <0.05

MeanHR {bpm} 94.79 ± 22 103 ± 26 72 ± 26 NS
MeanRR {ms} 633.64 ± 123.86 580.56 ± 231.95 849.35 ± 321.32 NS
SDNN {ms} 82.44 ± 19.04 101.34 ± 23.63 141.82 ± 22.08 <0.001

SDANN {ms} 61.73 ± 12.92 91 ± 13.43 130.64 ± 1.5 <0.001
RMSSD {ms} 18.52 ± 2.86 8.37 ± 4.03 26.85 ± 2.3 <0.0001

NN50 640.3 ± 20.41 862.11 ± 6.06 1347.04 ± 87.36 <0.001
pNN50 {%} 14.21 ± 2.65 23.43 ± 8.15 34.92 ± 46.1 <0.001

Sdindex {ms} 56.42 ± 16.32 52.32 ± 12.03 63.04 ± 23.06 NS
Geometrical parameters

HRVti {numb} 11.53 ± 4.02 28.43 ± 7.32 42.61 ± 14.2 <0.001
TINN {ms} 481.62 ± 61.73 420.42 ± 21.31 498.22 ± 48.09 NS

NS (no significance)—the value is not significant.

The software program created compares the results obtained in the analysis of the
HRV with the reference values for the relevant parameters (according to the standard [8])
and when these values are outside the normal range for the relevant parameter, they are
displayed in the table in a red color. The results of the analysis performed in the time
domain as well as the reference values are displayed in the results field (Figure 4 presents
the numerical results for a healthy individual on a cardiac recording obtained with a
Holter device).

Sensors 2023, 23, x FOR PEER REVIEW 11 of 21 
 

 

The software program created compares the results obtained in the analysis of the 
HRV with the reference values for the relevant parameters (according to the standard [8]) 
and when these values are outside the normal range for the relevant parameter, they are 
displayed in the table in a red color. The results of the analysis performed in the time 
domain as well as the reference values are displayed in the results field (Figure 4 presents 
the numerical results for a healthy individual on a cardiac recording obtained with a 
Holter device). 

 
Figure 4. Time domain result field. 

Figure 5 shows the RR time series of a Holter 24-h recording of a patient diagnosed 
with heart failure. The duration of RR intervals fluctuated around a mean value of 0.7 s 
and varied from 0.45 to 1.16 s, which, compared to the record from the control healthy 
group, showed a lower variability of the values of the intervals. 

 
Figure 5. RR intervals of heart failure. 

Figure 6 presents the RR intervals of a recording of a patient with tachycardia; the 
duration fluctuates around a mean value of 1 s and varies from 0.5 to 1.36 s, which also 
shows lower variability. 

Figure 4. Time domain result field.

Figure 5 shows the RR time series of a Holter 24-h recording of a patient diagnosed
with heart failure. The duration of RR intervals fluctuated around a mean value of 0.7 s and
varied from 0.45 to 1.16 s, which, compared to the record from the control healthy group,
showed a lower variability of the values of the intervals.
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Figure 6 presents the RR intervals of a recording of a patient with tachycardia; the
duration fluctuates around a mean value of 1 s and varies from 0.5 to 1.36 s, which also
shows lower variability.
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Figure 6. RR intervals, tachycardia.

The histograms of the RR interval series and heart rate for a healthy individual and
a patient with heart failure are shown in Figure 7. The histogram has the characteristic
appearance of a normal Gaussian distribution, i.e., the highest bars are centrally located
and relatively symmetric about the mode (0.75 s). Figure 8 presents heart failure and
tachycardia histograms. The graphs show the differences in the type of histograms in
healthy individuals and individuals with diseases. The histogram of an individual with
heart failure has a narrow base and tall central pillars while the histogram of a patient with
tachycardia is shifted to the left and has an asymmetric shape.
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3.2. Frequency Domain Methods

In the frequency domain, the studies were performed on a five-minute series of the
studied data according to the recommendations of the standard for HRV [8].

Table 5 presents the results in the frequency domain of the study conducted on
recordings of healthy people and those with heart failure and tachycardia. In the healthy
control group, high values of the spectral parameters can be found in the three frequency
bands tested; the LF/HF ratio for the control group is 1.64, which is within the limits of
the values corresponding to a good state of health according to the standard [8]. Patients
with tachycardia had low properties of LF and HF spectral components and the lowest
LF/HF ratio (0.96 vs. 1.64 for the healthy group, p-value < 0.001). These values show that
tachycardia worsens the spectral HRV characteristics.

Table 5. Parameters in the frequency domain of the studied records.

Parameters Heart Failure
(Mean ± SD)

Tachycardia
(Mean ± SD)

Healthy
(Mean ± SD)

p-Value
(Mean ± SD)

Statistical Parameters

Total Power
{

ms2 } 12,803.92 ± 969.65 11,870.26 ± 863.14 13,921.02 ± 691.08 NS
Power VLF

{
ms2 } 11,939.57 ± 489.73 10,453.88 ± 23.75 11,620.22 ± 348.41 NS

Power LF
{

ms2 } 482.53 ± 113.06 693.71 ± 103.82 1428.31 ± 241.84 <0.05
Power HF

{
ms2 } 381.65 ± 98.55 724.85 ± 111.62 873.02 ± 183.32 <0.05

Power LF {nu} 55.85 ± 7.98 48.92 ± 10.54 62.42 ± 6.24 NS
Power HF {nu} 44.37 ± 8.71 51.11 ± 11.43 37.53 ± 4.06 NS
LF/HF (ratio) 1.26 ± 0.27 0.96 ± 0.16 1.64 ± 0.02 <0.001

NS (no significance)—the value is not significant.

A significant decrease in LF power values was observed in patients with heart failure
(482.53 vs. 1428.31 ms2 in the control group, p-value < 0.05) as well as a decrease in HF
power (381.65 vs. 873.02 ms2 in the control group, p-value < 0.05). The LF and HF power
values showed a 2- to 3-fold decrease in heart failure patients compared to controls.

The values of LF power, HF power, and LF/HF (ratio) have statistical significance
(p-value < 0.05), which shows that sick individuals can be distinguished from healthy ones
by these indices.

The power spectral density of the signal was determined by the Burg method. The
program enables its determination by the periodogram method and by the wavelet-based
method. Figure 9 presents the global PSD of a healthy individual; the figure graphi-
cally illustrates high HRV values in the high-frequency and low-frequency regions in a
healthy individual.

Figure 10 presents the global PSD of a heart failure record, according to Burg’s method.
The figure shows low values of the spectral density in the high-frequency and low-frequency
regions. Figure 11 shows the global PSD of tachycardia, with very low signal power values
in HF and LF, which is particularly pronounced in the HF region.
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Figure 12 graphically presents the dynamics over time of the values of the index of
sympathovagal balance in a recording of a patient with heart failure. The LF/HF values
have significant fluctuations, remaining significantly lower than 1 most of the time, with
an average value of 1.26 due to time intervals in which the index is significantly higher
than 1. The graph shows that despite its low values this index varies over time, which is an
indicator of a change in the influence of the sympathetic and parasympathetic parts of the
autonomic nervous system.
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3.3. Surface Method

The surface determination method is used to visually display the characteristics of the
HRV series. Figure 13 shows a plot of the signal power spectral density surface with the
Burg method of a recording from the study base of an individual with heart disease. The
graph shows one peak in the frequency interval from 0.001 Hz to 0.4 Hz, which is located
in the very low-frequency range. The power of the investigated signal in the remaining
frequency ranges is low, with increases observed in the range of 0.5 to 0.75 Hz. The graph
shows a low HRV in all studied frequency ranges throughout the studied part of the record,
which is characteristic of records of individuals with cardiovascular diseases. However, in
some narrow frequency ranges, distinct increases in spectral power are observed for a short
time. The signal power in the low-frequency and high-frequency ranges was significantly
lower than in healthy people, and the sympathovagal balance index determined by the
Burg method was 1.08, well below the lower limit of 1.5 according to the standard reference
values for healthy individuals (1.5–2.0).
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3.4. Nonlinear Methods

Table 6 presents the results of the conducted research with the non-linear DFA and
Hurst exponent methods. The values of alpha, alpha1, and alpha2 in healthy people
differ from the values of these parameters determined in records with heart failure and
tachycardia. All three DFA indices were higher in healthy individuals, the values having
statistical significance (p-value < 0.001). The calculated value of the Hurst exponent has
values higher in sick individuals (0.91 for heart failure and 0.88 for tachycardia) than
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in healthy individuals (0.76); Hurst exponent values close to 1 indicate the presence of
health problems.

Table 6. Parameters of the nonlinear analysis of the studied records.

Parameters Heart Failure
(Mean ± SD)

Tachycardia
(Mean ± SD)

Healthy
(Mean ± SD)

p-Value
(Mean ± SD)

Statistical Parameters

Alpha (DFA) 0.91 ± 0.36 0.83 ± 0.34 1.05 ± 0.74 <0.001
Alpha1 (DFA) 0.94 ± 0.12 0.89 ± 0.72 1.21 ± 0.83 <0.001
Alpha2 (DFA) 0.82 ± 0.03 0.64 ± 0.71 0.99 ± 0.31 <0.001

Hurst (R/S method) 0.91 ± 0.18 0.88 ± 0.11 0.76 ± 0.04 <0.001

3.5. Examination of PPG, ECG, and Holter Signals for Health Assessment

Photoplethysmographic signals [12,33,37] are easier to register as alternatives to elec-
trocardiological signals. The PPG devices [35,49] used to take these signals are light and
comfortable for longer wear. PPG sensors are small in size and can be conveniently
integrated into various lightweight and easily portable devices, smartphones, and smart-
watches. Photoplethysmography determines the time between heartbeats by continuously
monitoring changes in blood volume in a portion of the peripheral microvasculature. This
non-invasive method of measuring pulse waves can also be the basis for the analysis of
HRV. Determining one’s health status is an issue that more and more people are interested
in and the study of HRV on ECG and PPG signals is the subject of diverse research interests.
The miniaturization of digital sensors has led to an increase in the possibility of increasingly
accurate and easy continuous monitoring of individuals as needed using mobile devices.

To account for differences between the HRV parameters, the determined PPG, ECG
Holter signals, and root mean square error were used:

MSE =
√

∑N
i=1(xi − yi)

2 (2)

where i—interval index; x—first signal; y—second signal; and N—number of spaces.
The cardiac records of 24 individuals (10 men and 14 women) diagnosed with heart

failure and 12 records of volunteers without cardiovascular disease were examined. A
Holter recording of the PP intervals (where P are the points with maximum amplitude
deviations in the recording) of a PPG signal (with a duration of 2 h) is presented in Figure 14.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 21 
 

 

comfortable for longer wear. PPG sensors are small in size and can be conveniently inte-
grated into various lightweight and easily portable devices, smartphones, and smart-
watches. Photoplethysmography determines the time between heartbeats by continu-
ously monitoring changes in blood volume in a portion of the peripheral microvascula-
ture. This non-invasive method of measuring pulse waves can also be the basis for the 
analysis of HRV. Determining one’s health status is an issue that more and more people 
are interested in and the study of HRV on ECG and PPG signals is the subject of diverse 
research interests. The miniaturization of digital sensors has led to an increase in the pos-
sibility of increasingly accurate and easy continuous monitoring of individuals as needed 
using mobile devices. 

To account for differences between the HRV parameters, the determined PPG, ECG 
Holter signals, and root mean square error were used: 

MSE = x y   (2)

where i—interval index; x—first signal; y—second signal; and N—number of spaces. 
The cardiac records of 24 individuals (10 men and 14 women) diagnosed with heart 

failure and 12 records of volunteers without cardiovascular disease were examined. A 
Holter recording of the PP intervals (where P are the points with maximum amplitude 
deviations in the recording) of a PPG signal (with a duration of 2 h) is presented in Figure 
14. 

The results shown in Table 7 indicate a higher relative proportion of frequencies in 
the LF range of signal power as an indicator of patients diagnosed with heart failure when 
compared to the values of healthy patients. The low-frequency range reflects the influence 
of the sympathetic division of the nervous system. The increase in energy in the LF range 
is reflected in the LF/HF ratio, which respectively increases. The obtained results show 
that the lower activity of the sympathetic nervous system reduces the load on the heart 
and contributes to the normalization of its activity. With the high activity of the sympa-
thetic nervous system, the load on the heart is high and its activity becomes difficult. 

 
Figure 14. PP intervals (PPG signal, heart failure). 

Table 7. HRV parameters for ECG, Holter, and PPG records. 

Parameters 
Group 1 

ECG 
(Mean ± SD) 

Group 2 
Holter 

(Mean ± SD) 

Group 3 
PPG 

(Mean ± SD) 

Time do-
main 

Mean RR (PP) {ms} 684.22 ± 214.68 661.33 ± 189.13 692.11 ± 223.83 
SDNN {ms} 84.08 ± 16.88 82.77 ± 24.32 88.66 ± 32.09 

SDANN {ms} 72.56 ± 34.21 76.01 ± 35.43 74.67 ± 31.08 
RMSSD {ms} 13.18 ± 8.65 12.35 ± 14.15 11.06 ±18.98 
SDindex {ms} 61.33 ± 26.11 64.07 ± 22.18 63.88 ± 26.44 

Power VLF {ms } 3098.51 ± 654.22 3127.06 ± 487.34 2995.78 ± 586.39 

Figure 14. PP intervals (PPG signal, heart failure).

The results shown in Table 7 indicate a higher relative proportion of frequencies in
the LF range of signal power as an indicator of patients diagnosed with heart failure when
compared to the values of healthy patients. The low-frequency range reflects the influence
of the sympathetic division of the nervous system. The increase in energy in the LF range
is reflected in the LF/HF ratio, which respectively increases. The obtained results show
that the lower activity of the sympathetic nervous system reduces the load on the heart and
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contributes to the normalization of its activity. With the high activity of the sympathetic
nervous system, the load on the heart is high and its activity becomes difficult.

Table 7. HRV parameters for ECG, Holter, and PPG records.

Parameters
Group 1

ECG
(Mean ± SD)

Group 2
Holter

(Mean ± SD)

Group 3
PPG

(Mean ± SD)

Time domain

Mean RR (PP) {ms} 684.22 ± 214.68 661.33 ± 189.13 692.11 ± 223.83

SDNN {ms} 84.08 ± 16.88 82.77 ± 24.32 88.66 ± 32.09

SDANN {ms} 72.56 ± 34.21 76.01 ± 35.43 74.67 ± 31.08

RMSSD {ms} 13.18 ± 8.65 12.35 ± 14.15 11.06 ±18.98

SDindex {ms} 61.33 ± 26.11 64.07 ± 22.18 63.88 ± 26.44

Frequency
domain

Power VLF {ms2} 3098.51 ± 654.22 3127.06 ± 487.34 2995.78 ± 586.39

Power LF {ms2} 688.22 ± 183.06 691.89 ± 243.99 704.05 ± 433.01

Power HF {ms2} 586.23 ± 204.55 582.99 ± 244.13 602.33 ± 212.03

Power LF {nu} 0.54 ± 0.19 0.54 ± 0.16 0.53 ± 0.87

Power HF {nu} 0.46 ± 0.23 0.46 ± 0.43 0.47 ± 0.68

LF/HF {-} 1.17 ± 0.78 1.19 ± 0.81 1.17 ± 0.93

Table 8 shows the mean squared error calculated by Formula (1). Group 1—ECG
data is indicated in the table with G1; G2—group 2, Holter data; G3—group 3, PPG data.
The table shows the results obtained when comparing the ECG-Holter data (MSEG1−G2),
ECG-PPG (MSEG1−G3), and Holter-PPG (MSEG2−G3). The smaller the mean squared error
(the MSE parameter), the closer the corresponding values of the two studied cardiac series
are, meaning that the two studied methods for determining the temporal sequence of
cardiac intervals provide similar results.

Table 8. The relative error between the ECG, Holter, and PPG records.

Parameters MSEG1−G2 {%} MSEG1−G3 {%} MSEG2−G3 {%}

Time domain

MeanRR(PP) {ms} 1.34 3.31 0.6

SDNN {ms} 0.64 1.47 0.88

SDANN {ms} 1.49 0.69 0.83

RMSSD {ms} 2.27 3.13 5.27

SDindex {ms} 4.01 3.18 3.58

Frequency
domain

Power VLF {ms2} 2.96 4.92 5.93

Power LF {ms2} 3.04 4.07 1.69

Power HF {ms2} 4.33 6.71 2.78

Power LF {nu} 0.04 1.65 1.97

Power HF {н.e} 0.1 1.37 2.06

LF/HF {-} 0.49 0.08 1.02

From the comparative analysis of the studied data pairs, it follows that the relative
errors for all studied parameters are below 4.33% for the ECG-Holter pair, less than 6.71%
for the ECG-PPG pair, and below 5.93% for the Holter-PPG pair. The calculated relative
errors are small, and it can be assumed that the results obtained in the study of the HRV
with the three types of signals are similar and reliable.
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4. Discussion

Investigating the phenomenon of HRV to study various disease states is an attractive
idea. Researchers are continuing to work in this direction which will lead to the expansion
of the penetration of this method, which is non-invasive, inexpensive, easy to use, and
suitable for clinical practice.

The research and analysis performed on three types of signals, the ECG, PPG, and
Holter, show that the HRVs obtained by their use are similar, with the average value of
the difference between them being 2.36%. This shows that the three types of signals give
identical results and can be used equally to conduct analyses.

Holter devices are still widely used to monitor patients with at-risk cardiovascular
disease. However, they are bulky and require sticking the electrodes to the human skin,
which is inconvenient for prolonged use. The time is not far when they will be replaced
by portable, lighter, and more flexible devices with more capabilities and conveniences
connected to the Internet of Things. Studies have shown the interchangeability of ECG,
PPG, and Holter records. Because of the real-time, unpredictable conditions of remote
monitoring, it is good to register two or more alternative cardiac records (ECG, PPG) to
ensure continuous monitoring in case of the temporary or permanent failure of any of the
cardiac signal recording devices.

The presented system makes it possible to carry out mathematical studies and analyses
on cardio data by means of traditional, standardized linear methods. The non-linear
methods used for HRV analysis provide an additional opportunity to examine the dynamic
characteristics of cardio records. Based on the analyses carried out, predictions can be
made about the development of a disease and the treatment process of the disease can be
supported. The created database makes it possible to store research data for one patient
and monitor the development of the disease and the effect of the prescribed treatment;
Furthermore, additional mathematical methods for HRV research can be added to the
system. However, the operation of the software system in real-time has yet to be realized.

The obtained results from the conducted research are a contribution to the research on
the phenomenon of heart rate variability and are part of the efforts to support the diagnosis,
monitoring, and treatment processes of cardiac diseases (and, in particular, heart failure
and tachycardia).

4.1. Limitations

The research conducted has certain limitations related to the small number of Holter
recordings that were examined (26 recordings of individuals diagnosed with heart failure
or tachycardia and 12 recordings of a healthy control group). Work is underway to expand
the real database from which the Holter records are taken.

4.2. Future Directions

Further research will be carried out using mathematical methods based on wavelet
and fractal analysis. Other graphical methods for studying cardiac activity will also be
applied. The research will be performed using a photoplethysmographic method for cardio
signal registration [56]. Records of individuals with various diseases (atrial fibrillation,
ischemic heart disease, rhythm and conduction disorders, etc.) will also be examined. It is
planned to use 3D technologies [68] as an application of virtual reality to induce stressful
situations, which, in combination with analysis methods, will provide researchers with new
opportunities to analyze the heart rate variability in various physiological, pathological,
and stressful conditions.

5. Conclusions

Recent advances in technology have led to the possibility of creating body sensors to
record health-important biomedical data oriented for use in high-tech environments.

The application of the body sensor network in the Internet of Things enables the
continuous monitoring of patients with high-risk diseases while the patients continue
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to perform their daily activities. Monitoring important indicators for health makes it
possible to control cardiovascular diseases as the analysis of the recorded data allows the
identification of critical situations and the sending of a signal to the supervising physician.

The analysis of the set of indicators of HRV and the assessment of their dynamics in
the patient’s cardiac records allows for supporting the diagnostic process and clarifying
the clinical diagnosis. Today, the practical application of cardiac signal analysis methods
in clinical medicine helps to solve many diagnostic-prognostic questions. The presented
cardio system can improve the assessment of the health status of patients and the accuracy
of the diagnosis and assist the treating cardiologist in the selection of appropriate drugs,
thus shortening the decision-making time of the doctor, speeding up the healing process,
and reducing the cost of treating patients.

Establishing the effective protection of data from unauthorized access through soft-
ware program protection means ensuring data confidentiality. All this leads to an increase
in the quality of health services.

A software system for processing and analyzing cardiac data is an opportunity to
reduce the subjective factor in making a diagnosis and brings greater accuracy and objec-
tivity to the assigned treatment. The system can also be used for preventive actions since
the HRV indices change even before the risky cardiac event; this can help with the early
detection of diseases and their effective treatment.
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Sukupova, L., Lacković, I., Ibbott, G., Eds.; Springer: Singapore, 2019; Volume 68, pp. 682331–682334. [CrossRef]

10. Dong, S.Y.; Lee, M.; Park, H.; Youn, I. Stress resilience measurement with heart-rate variability during mental and physical
stress. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5290–5293.

11. Tarvainen, M.; Niskanen, J.; Lipponen, J.; Rantaaho, P.; Karjalainen, P. Kubios HRV-heart rate variability analysis software.
Comput. Methods Programs Biomed. 2014, 113, 210–220. [CrossRef]

12. Mourot, L. CODESNA_HRV, a new tool to assess the activity of the autonomic nervous system from heart rate variability.
Phys. Med. Rehabil. Res. 2018, 3, 2–6. [CrossRef]

13. Lee, R.-G.; Chou, I.-C.; Lai, C.-C.; Liu, M.-H.; Chiu, M.-J. A Novel QRS detection algorithm to the analysis for heart rate variability
of patients with sleep apnea. Biomed. Eng. Appl. Basis Comm. 2005, 17, 258–262. [CrossRef]

14. Billman, G.E.; Huikuri, H.V.; Sacha, J.; Trimmel, K. An introduction to heart rate variability: Methodological considerations and
clinical applications. Front. Physiol. 2015, 6, 55. [CrossRef] [PubMed]

15. Burger, A.J.; Charlamb, M.; Sherman, H.B. Circadian patterns of heart rate variability in normals, chronic stable angina and
diabetes mellitus. Int. J. Cardiol. 1999, 71, 41–48. [CrossRef] [PubMed]

16. Malia, B.; Zuljb, S.; Magjarevic, R.; Miklavcic, D.; Jarm, T. Matlab-based tool for ECG and HRV analysis. Biomed. Signal Process.
Control. 2014, 10, 108–116. [CrossRef]

17. Selvaraj, J.; Murugappan, M.; Wan, K.; Yaacob, S. Classification of emotional states from electrocardiogram signals: A non-linear
approach based on Hurst. BioMedical Eng. OnLine 2013, 12, 12–44. [CrossRef]

18. Park, Y.H.; Koo, C.-H.; Kim, J.-T.; Kim, H.-S.; Byon, H.-J. Differences of Heart Rate Variability during Sevoflurane Anesthesia in
Children by Age. Open J. Anesthesiol. 2012, 2, 74–78. [CrossRef]

19. Reed, M.J.; Robertson, C.E.; Addison, P.S. Heart rate variability measurements and the prediction of ventricular arrhythmias.
QJM Int. J. Med. 2005, 98, 87–95. [CrossRef]

20. Wolf, M.M.; Varigos, G.A.; Hunt, D.; Sloman, J.G. Sinus arrhythmia in acute myocardial infarction. Med. J. Aust. 1978, 2, 52–53.
[CrossRef]

21. Kleiger, R.; Miller, J.; Bigger, J.; Moss, A.J.; The Multicenter Post-Infarction Research Group. Decreased Heart Rate Variability and
Its Association with Increased Mortality After Acute Myocardial Infarction. Am. J. Cardiol. 1987, 59, 256–262. [CrossRef]

22. Naar, J.; Mlcek, M.; Kruger, A.; Vondrakova, D.; Janotka, M.; Popkova, M.; Kittnar, O.; Neuzil, P.; Ostadal, P. Acute Severe Heart
Failure Reduces Heart Rate Variability: An Experimental Study in a Porcine Model. Int. J. Mol. Sci. 2023, 24, 493. [CrossRef]

23. Neshitov, A.; Tyapochkin, K.; Smorodnikova, E.; Pravdin, P. Wavelet Analysis and Self-Similarity of Photoplethysmography
Signals for HRV Estimation and Quality Assessment. Sensors 2021, 21, 6798. [CrossRef] [PubMed]

24. Paniccia, M.; Paniccia, D.; Thomas, S.; Taha, T.; Reed, N. Clinical and non-clinical depression and anxiety in young people: A
scoping review on heart rate variability. Auton. Neurosci. 2017, 208, 1–14. [CrossRef] [PubMed]

25. Conci, F.; Rienzo, D.; Castiglioni, P. Blood pressure and heart rate variability and baroreflex sensitivity before and after brain
death. J. Neurol. Neurosurg. Psychiatry 2001, 71, 621–631. [CrossRef] [PubMed]

26. Vaisakhi, V.S.; Kumar, K.B.; Sivakami, K. Statistical Analysis of HRV Signals. Int. J. Sci. Eng. Res. 2017, 8, 169–177.
27. Rich, M.W.; Saini, J.S.; Kleiger, R.E.; Carney, R.M.; teVelde, A.; Freedland, K.E. Correlation of heart rate variability with clinical

and angiographic variables and late mortality after coronary angiography. Am. J. Cardiol. 1988, 62 Pt 1, 714–717. [CrossRef]
[PubMed]

28. Alqaraawi, A.; Alwosheel, A.; Alasaade, A. Heart rate variability estimation in photoplethysmography signals using Bayesian
learning approach. Healthc. Tech. Lett. 2016, 3, 136–142. [CrossRef]

29. Buccelletti, F.; Gilardi, E.; Scaini, E.; Galiuto, L.; Persiani, R.; Biondi, A.; Basile, F.; Silveri, N. Heart rate variability and myocardial
infarction: Systematic literature review and metanalysis. Eur. Rev. Med. Pharmacol. Sci. 2009, 13, 299–307.

30. Elghozi, J.-L.; Girard, A.; Laude, D. Effects of drugs on the autonomic control of short-term heart rate variability. Auton. Neurosci.
Basic E-Clin. 2001, 90, 116–121. [CrossRef]

31. Cygankiewicz, I.; Zareba, W. Heart rate variability. Handb. Clin. Neurol. 2013, 117, 379–393.
32. Abboud, S.; Barnea, O. Errors Due to Sampling Frequency of Electrocardiogram in Spectral Analysis of HR Signals with Low

Variability. Comp. Cardiol. 1995, 22, 461–463.
33. Lombardi, F.; Stein, P.K. Origin of heart rate variability and turbulence: An appraisal of autonomic modulation of cardiovascular

function. Front. Physiol. 2011, 2, 95. [CrossRef]
34. Botman, S.; Borchevkin, D.; Petrov, V.; Bogdanov, E.; Patrushev, M.; Shusharina, N. Photoplethysmography-Based Device

Designing for Cardiovascular System Diagnostics. Int. J. Biomed. Biol. Eng. 2015, 9, 689–693.
35. Aimie-Salleh, N.; Ghani, N.A.A.; Hasanudin, N.; Shafie, S.N.S. Heart Rate Variability Recording System Using Photoplethysmog-

raphy Sensor. In Autonomic Nervous System Monitoring; IntechOpen: London, UK, 2019. [CrossRef]
36. Zhang, S.P.; Wu, W. Chapter 12: HRV-based biometric privacy-preserving and security mechanism for wireless body sensor

networks. In Wearable Sensors. Applications, Design, and Implementation; IOP Publishing: Bristol, UK, 2017; pp. 12–27. [CrossRef]

http://doi.org/10.1007/978-981-10-9038-7_62
http://doi.org/10.1016/j.cmpb.2013.07.024
http://doi.org/10.15761/PMRR.1000165
http://doi.org/10.4015/S101623720500038X
http://doi.org/10.3389/fphys.2015.00055
http://www.ncbi.nlm.nih.gov/pubmed/25762937
http://doi.org/10.1016/S0167-5273(99)00110-2
http://www.ncbi.nlm.nih.gov/pubmed/10522563
http://doi.org/10.1016/j.bspc.2014.01.011
http://doi.org/10.1186/1475-925X-12-44
http://doi.org/10.4236/ojanes.2012.23018
http://doi.org/10.1093/qjmed/hci018
http://doi.org/10.5694/j.1326-5377.1978.tb131339.x
http://doi.org/10.1016/0002-9149(87)90795-8
http://doi.org/10.3390/ijms24010493
http://doi.org/10.3390/s21206798
http://www.ncbi.nlm.nih.gov/pubmed/34696011
http://doi.org/10.1016/j.autneu.2017.08.008
http://www.ncbi.nlm.nih.gov/pubmed/28870754
http://doi.org/10.1136/jnnp.71.5.621
http://www.ncbi.nlm.nih.gov/pubmed/11606674
http://doi.org/10.1016/0002-9149(88)91208-8
http://www.ncbi.nlm.nih.gov/pubmed/3421170
http://doi.org/10.1049/htl.2016.0006
http://doi.org/10.1016/S1566-0702(01)00276-4
http://doi.org/10.3389/fphys.2011.00095
http://doi.org/10.5772/intechopen.89901
http://doi.org/10.1088/978-0-7503-1505-0ch12


Sensors 2023, 23, 1186 20 of 21

37. Islam, S.M.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.S. The Internet of Things for Health Care: A Comprehensive Survey.
IEEE Access 2015, 3, 678–708. [CrossRef]

38. Ullah, F.; Islam, I.; Abdullah, H.; Khan, A. Future of Big Data and Deep Learning for Wireless Body Area Networks; Springer: Singapore,
2019; pp. 53–77.

39. Hassan, M.M.; Huda, M.S.; Uddin, M.Z.; Almogren, A.; AlRubaian, M.A. Human Activity Recognition from Body Sensor Data
using Deep Learning. J. Med. Syst. 2018, 42, 99. [CrossRef] [PubMed]

40. Di, M.; Joo, E.M. A survey of machine learning in Wireless Sensor networks From networking and application perspec-
tives. In Proceedings of the 2007 6th International Conference on Information, Communications Signal Processing, Singapore,
10–13 December 2007; pp. 1–5.

41. Bilal, M.; Shaikh, F.K.; Arif, M.; Wyne, M.F. A revised framework of machine learning application for optimal activity recognition.
Clust. Comput. 2017, 22, 7257–7273. [CrossRef]

42. Pace, P.; Fortino, G.; Zhang, Y.; Liotta, A. Intelligence at the Edge of Complex Networks: The Case of Cognitive Transmission
Power Control. IEEE Wirel. Commun. 2019, 26, 97–103. [CrossRef]

43. Fortino, G.; Giannantonio, R.; Gravina, R.; Kuryloski, P.; Jafari, R. Enabling Effective Programming and Flexible Management of
Efficient Body Sensor Network Applications. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 115–133. [CrossRef]

44. Gravina, R.; Alinia, P.; Ghasemzadeh, H.; Fortino, G. Multi-sensor fusion in body sensor networks: State-of-the-art and research
challenges. Inf. Fusion 2017, 35, 68–80. [CrossRef]

45. Fortino, G.; Galzarano, S.; Gravina, R.; Li, W. A framework for collaborative computing and multi-sensor data fusion in body
sensor networks. Inf. Fusion 2015, 22, 50–70. [CrossRef]

46. Pandian, P.; Srinivasa, M. A ZigBee-wireless wearable remote physiological monitoring system. In Proceedings of the 2016 Inter-
national Conference on Signal Processing and Communication (ICSC), Noida, India, 26–28 December 2016; pp. 407–412.

47. Liu, M.; Jiang, F.; Jiang, H.; Ye, S.; Chen, H. Low-power, noninvasive measurement system for wearable ballistocardiography in
sitting and standing positions. Comput. Ind. 2017, 91, 24–32. [CrossRef]

48. Fortino, G.; Parisi, D.; Pirrone, V.; Di Fatta, G. BodyCloud: A SaaS approach for community body sensor networks. Future Gener.
Comput. Syst. 2014, 35, 62–79. [CrossRef]

49. Hussein, A.F.; Kumar, A.; Burbano-Fernandez, M.; Ramirez-Gonzalez, G.; Abdulhay, E.; de Albuquerque, V.H.C. An Automated
Remote Cloud-Based Heart Rate Variability Monitoring System. IEEE Access 2018, 6, 77055–77064. [CrossRef]

50. Batumalay, M.; Ming, H.S.; Arrova Dewi, D. Cloud based Heartbeat Rate Monitoring System with Location Tracking. INTI J. 2020,
2020. Available online: http://eprints.intimal.edu.my/1415/1/vol.2020_008.pdf (accessed on 5 January 2023).

51. Scientific Project “Research on the Application of New Mathematical Methods for the Analysis of Cardiac Data” Financed by the
Bulgarian National Science Fund. Available online: https://www.cardiomath.org/ (accessed on 5 January 2023).

52. Available online: http://hrvdata.vtlab.eu/ (accessed on 5 January 2023).
53. Georgieva-Tsaneva, G. Wavelet Based Interval Varying Algorithm for Optimal Non-Stationary Signal Denoising. In Proceedings

of the 20th International Conference on Computer Systems and Technologies, Ruse, Bulgaria, 21–22 June 2019; pp. 200–206.
[CrossRef]

54. Georgieva-Tsaneva, G. QRS detection algorithm for long-term Holter records. In Proceedings of the 14th International Conference
on Computer Systems and Technologies, Ruse, Bulgaria, 28–29 June 2013; pp. 112–119. [CrossRef]

55. Nellcor™ Reusable SpO2 Sensors with OxiMax™ Technology. Available online: http://www.medtronic.com/covidien/en-us/
products/pulseoximetry/nellcor-reusable-spo2-sensors.html (accessed on 5 January 2023).

56. Gospodinov, M.; Cheshmedziev, K. Three-Sensor Portable Information System for Physiological Data Registration. In Proceedings
of the 20th International Conference on Computer Systems and Technologies, Ruse, Bulgaria, 21–22 June 2019; pp. 36–41.
[CrossRef]

57. Cheshmedzhiev, K.; Gospodinova, E.; Gospodinov, M.; Lebamovski, P. Electronic sensor system for registering ECG and
PPG signals. In Proceedings of the 22nd International Conference on Computer Systems and Technologies, Ruse, Bulgaria,
18–19 June 2021; pp. 141–144. [CrossRef]

58. AFE4490 Integrated Analog Front End (AFE) for Pulse Oximeters. Available online: http://www.ti.com/product/AFE4490
(accessed on 5 January 2023).

59. MAX30102 High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for Wearable Health. Available online: https://www.
maximintegrated.com/en/products/interface/sensor-interface/MAX30102.html (accessed on 5 January 2023).

60. Georgieva-Tsaneva, G.; Gospodinova, E.; Gospodinov, M.; Cheshmedzhiev, K. Portable Sensor System for Registration, Processing
and Mathematical Analysis of PPG Signals. Appl. Sci. 2020, 10, 1051. [CrossRef]

61. Akar, S.A.; Kara, S.; Latifoglu, F.; Biggic, V. Spectral analysis of photoplethysmographic signals: The importance of preprocessing.
Biomed. Signal Process. Control. 2013, 8, 16–22. [CrossRef]

62. Boardman, A.; Schlindwein, F.S.; Rocha, A.P.; Leite, A. A study on the optimum order of autoregressive models for heart rate
variability. Physiol. Meas. 2002, 23, 325–336. [CrossRef]

63. Gospodinova, E.; Gospodinov, M.; Dey, N.; Domuschiev, I.; Ashou, A.S.; Balas, S.V.; Olariu, T. Specialized Software System for
Heart Rate Variability Analysis: An Implementation of Nonlinear Graphical Methods. In Soft Computing Applications, Proceedings
of the SOFA 2016 Advances in Intelligent Systems and Computing, Arad, Romania, 24–26 August 2016; Balas, V., Jain, L., Balas, M., Eds.;
Springer: Cham, Switzerland, 2016; Volume 633, p. 633. [CrossRef]

http://doi.org/10.1109/ACCESS.2015.2437951
http://doi.org/10.1007/s10916-018-0948-z
http://www.ncbi.nlm.nih.gov/pubmed/29663090
http://doi.org/10.1007/s10586-017-1212-x
http://doi.org/10.1109/MWC.2019.1800354
http://doi.org/10.1109/TSMCC.2012.2215852
http://doi.org/10.1016/j.inffus.2016.09.005
http://doi.org/10.1016/j.inffus.2014.03.005
http://doi.org/10.1016/j.compind.2017.05.005
http://doi.org/10.1016/j.future.2013.12.015
http://doi.org/10.1109/ACCESS.2018.2831209
http://eprints.intimal.edu.my/1415/1/vol.2020_008.pdf
https://www.cardiomath.org/
http://hrvdata.vtlab.eu/
http://doi.org/10.1145/3345252.3345268
http://doi.org/10.1145/2516775.2516811
http://www.medtronic.com/covidien/en-us/products/pulseoximetry/nellcor-reusable-spo2-sensors.html
http://www.medtronic.com/covidien/en-us/products/pulseoximetry/nellcor-reusable-spo2-sensors.html
http://doi.org/10.1145/3345252.3345281
http://doi.org/10.1145/3472410.3472422
http://www.ti.com/product/AFE4490
https://www.maximintegrated.com/en/products/interface/sensor-interface/MAX30102.html
https://www.maximintegrated.com/en/products/interface/sensor-interface/MAX30102.html
http://doi.org/10.3390/app10031051
http://doi.org/10.1016/j.bspc.2012.04.002
http://doi.org/10.1088/0967-3334/23/2/308
http://doi.org/10.1007/978-3-319-62521-8_31


Sensors 2023, 23, 1186 21 of 21

64. Acharya, U.R.; Min, L.C.; Joseph, P. HRV analysis using correlation dimension and DFA. Innov. Tech. Biol. Med. 2002, 23, 333–339.
65. Barquero-Perez, O.; Marques de Sa, J.; Rojo-Alvarez, J.L.; Goya-Esteban, R. Changes in detrended fluctuation indices with aging

in healthy and congestive heart failure subjects. Comput. Cardiol. 2008, 35, 45–48.
66. Ernst, G. Heart Rate Variability; Springer: London, UK, 2014; p. 336.
67. Georgieva-Tsaneva, G.; Bogdanova, G.; Gospodinova, E. Mathematically Based Assessment of the Accuracy of Protection of

Cardiac Data Realized with the Help of Cryptography and Steganography. Mathematics 2022, 10, 390. [CrossRef]
68. Lebamovski, P. Analysis of 3D technologies for stereo visualization. In Proceedings of the International Conference Automatics

and Informatics (ICAI), Varna, Bulgaria, 30 September–2 October 2021; pp. 206–209. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/math10030390
http://doi.org/10.1109/ICAI52893.2021.9639534

	Introduction 
	Background 
	The Purpose of This Article 

	Materials and Methods 
	Database and Preprocessing 
	PPG Sensors to Heart Rate Record 
	Mathematical Methods of Cardio Analysis 
	Analysis in the Time Domain 
	Analysis in the Frequency Domain 
	Analysis in the Time-Frequency Domain 
	Surface Method 
	Analysis with Nonlinear Methods 
	Protection of Research Data 

	Statistical Analysis 

	Results 
	Time Domain Methods 
	Frequency Domain Methods 
	Surface Method 
	Nonlinear Methods 
	Examination of PPG, ECG, and Holter Signals for Health Assessment 

	Discussion 
	Limitations 
	Future Directions 

	Conclusions 
	References

