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Abstract: Removing redundant features and improving classifier performance necessitates the use of
meta-heuristic and deep learning (DL) algorithms in feature selection and classification problems.
With the maturity of DL tools, many data-driven polarimetric synthetic aperture radar (POLSAR)
representation models have been suggested, most of which are based on deep convolutional neural
networks (DCNNs). In this paper, we propose a hybrid approach of a new multi-objective binary
chimp optimization algorithm (MOBChOA) and DCNN for optimal feature selection. We imple-
mented the proposed method to classify POLSAR images from San Francisco, USA. To do so, we
first performed the necessary preprocessing, including speckle reduction, radiometric calibration,
and feature extraction. After that, we implemented the proposed MOBChOA for optimal feature
selection. Finally, we trained the fully connected DCNN to classify the pixels into specific land-cover
labels. We evaluated the performance of the proposed MOBChOA-DCNN in comparison with nine
competitive methods. Our experimental results with the POLSAR image datasets show that the
proposed architecture had a great performance for different important optimization parameters. The
proposed MOBChOA-DCNN provided fewer features (27) and the highest overall accuracy. The
overall accuracy values of MOBChOA-DCNN on the training and validation datasets were 96.89%
and 96.13%, respectively, which were the best results. The overall accuracy of SVM was 89.30%,
which was the worst result. The results of the proposed MOBChOA on two real-world benchmark
problems were also better than the results with the other methods. Furthermore, it was shown that
the MOBChOA-DCNN performed better than methods from previous studies.

Keywords: feature selection; POLSAR image classification; improved chimp optimization algorithm;
deep convolutional neural network

1. Introduction

Land-cover and land-use classification are important parts of SAR image
application [1–3]. According to the past studies, land surfaces can be more accurately
classified from POLSAR image datasets. SAR image classification has become an impor-
tant research issue since these images from RADARSAT-2, ALOS PALSAR, Terra SAR-X,
and ENVISAT ASAR have been made available [4]. POLSAR images provide important
information about the structures of objects. SAR images are widely used in land-cover
classification due to their ability to monitor objects’ structures [5].

POLSAR images play a vital role in land-cover management due to their unique
capabilities, including image acquisition in day and night and a weather data acquisition
system [2]. Recent advancements in increasing the spatial resolution of POLSAR images
provide a considerable chance to obtain more detailed information about the Earth’s surface.
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However, obtaining high-resolution images requires robust algorithms and classifiers for
classification problems [6].

The presence of many features in POLSAR images creates challenges such as high
computational times and irrelevant features for applications, which may adversely affect
learning tools in both regression and classification [3]. Therefore, to solve these possible
challenges and produce accurate results in POLSAR image classification problems, it
becomes critical to use a feature selection method (for dimensionality reduction) [2]. Hence,
feature selection methods have been studied in many published academic papers. However,
most of these methods select features manually based on proposed classifiers. Thus, these
methods have a limited ability to accurately select optimal features [7]. Currently, feature
selection is still a challenge for POLSAR classification [8].

Feature selection methods are classified into three models: filter-based, embedded, and
wrapper methods. Today, meta-heuristic algorithms are one of the most popular wrapper
methods for feature selection problems [3]. Meta-heuristic algorithms have become very
popular in engineering problems [9–16]. As the complicacy of engineering problems
increases, the need for new meta-heuristics becomes obvious more than before. The reasons
for this request are simple structures and concepts, derivation-free mechanisms, local
optimal avoidance, flexibility, and simple and effective hardware implementation [12]. For
this reason, for this paper, a new meta-heuristic algorithm called MOBChOA was used to
select the optimal features.

In general, land-cover classification requires powerful algorithms in both the feature
selection and classification processes. Classifiers can be broadly divided into two categories:
machine learning (ML) and statistical clustering [17–20]. A well-known statistical classifier
is the Wishart classifier, a pixel-based maximum-likelihood classifier based on the complex
Wishart distribution of the polarimetric coherency matrix [2]. Moreover, numerous ML
methods have been applied to POLSAR image classification, including deep learning (DL),
neural networks (NNs), support vector machines (SVMs), and decision trees. However, the
most effective model for classifying POLSAR images is not clear. Since 2006, DL has become
a popular topic in the ML world [21]. DL models are superior to traditional ML models
due to data availability and system processing power developments [22]. Additionally,
reducing the computation time and increasing the convergence curve have increased the
popularity of these methods. For this reason, for this paper, a deep convolutional neural
network (DCNN) was used for land-cover classification.

In the real world, many problems have an inherent binary space, such as feature
selection. Moreover, continuous problems can be changed into discrete problems using
binary variables [9–12]. In addition, the no free lunch (NFL) theorem holds that there is no
binary meta-heuristic that can appropriately solve all discrete problems [12]. Therefore, the
development of new binary algorithms is required to solve discrete problems. Hence, in
this study, a new binary version of ChOA is proposed with a new transfer function.

1.1. Related Works

SAR is a new remote sensing technique that operates in the microwave frequency
range, where it provides low- to high-resolution images of the Earth’s surface using reflected
wave signals [23]. Generally, a SAR system operates within the electromagnetic spectrum
from 0.3 GHz up to 40 GHz with a side-looking geometry, where a transmitted wave is
perpendicular to the direction of the flight of the system [24]. The most important benefits
of the SAR system are the ability to work in all weather conditions (smoke, fog, clouds, rain,
and day/night), backscatter sensitivity to ground and object features, coherent imaging
capability, and the ability to transmit/receive polarized radar waves [25]. Hence, these
features are very beneficial for optical and spectral remote sensing systems.

In many remote sensing problems, the scatterers in a volume may have some residual
orientation correlation due to the natural structure (branches in a tree canopy, for example)
or due to agriculture (oriented corn stalks, for example) [26]. The propagation of radar
signals through such a volume can no longer be assumed to be scalar. In this case, the
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volume has two special polarizations. If there is some mismatch between the radar coordi-
nates and the medium’s special modes, then a very complicated situation arises where the
polarization of the incident field changes as a function of the distance into the volume [27].

There are also two major types of configurations we can face in POLSAR images:
that of a well-oriented district whose entropy and HV backscattering are low and that of
an oriented district with a high HV signal and high entropy, especially when estimated
spatially. Disorientation in urban areas is not only followed by an addition to the cross-
pol signal but also an increase in entropy. Disorientation leads to random mixing of
the mechanisms and makes it impossible or at least very difficult to correct the effect of
orientation on the double-bounce mechanism. Even if we are able to highlight the presence
of this effect, other involved mechanisms remain mixed in the resolution cell. This leads to
the common misclassification results, even with orientation effects [27].

Kajimoto and Susaki [26] proposed an algorithm that robustly extracts urban areas
from POLSAR imag41es. Polarization orientation angle (POA) is utilized in the proposed
algorithm. A measure of the POA randomness between neighboring pixels is used to
discriminate between urban areas with nearly homogeneous POAs and mountain areas
with randomly distributed POAs. Experimental results showed that POA-based catego-
rization and the utilization of POA randomness contribute to improving classification
accuracy. Without the use of POA randomness, approximately 50% of mountain areas were
misclassified as urban areas. Conversely, the addition of POA randomness succeeded in
avoiding such a misclassification.

Many widely used SAR image classification algorithms rely on the combination of
hand-designed features and machine learning classifiers, which still experience many is-
sues that remain to be resolved and overcome, including the fuzzy confusion of speckle
noise, optimized feature representation, widespread applicability, etc. To mitigate some
of the issues and to improve the pattern recognition of high-resolution SAR images,
Sun et al. [28] developed a ConvCRF model combined with a superpixel boundary con-
straint. An optimizing strategy using a superpixel boundary constraint in the inference
iterations more efficiently preserves structural details. The experimental results demon-
strated that the proposed method provides competitive advantages over other widely used
models. Zhou et al. [29] used supervised DCNN for POLSAR image classification. With two
cascaded convolutional layers, the designed DCNN can automatically learn hierarchical
polarimetric spatial features from data. The classification result of the San Francisco case
shows that slanted built-up areas, which are conventionally mixed with vegetated areas
in polarimetric feature space, can now be successfully distinguished after taking spatial
features into account.

Geng et al. [30] proposed a multi-scale deep feature learning network with bilateral
filtering (MDFLN-BF) for SAR image classification, which aims to extract discriminative
features and reduce the requirement of labeled samples. MDFLN was also proposed to
extract features from SAR images on multiple scales, where the SAR images are stratified
into different scales. Experiments showed that the proposed MDFLN-BF is able to yield
superior results compared to other related deep networks. Shimoni et al. [31] developed
a logistic regression (LR) as a ‘feature-level fusion’ and a neural network (NN) method
(for higher-level fusion) to classify PolSAR and polarimetric interferometry (PolInSAR)
images. For comparison, a support vector machine (SVM) was also applied. The results
of [31] showed that, for both the NN and SVM algorithms, the overall accuracy for each
of the fused sets was better than the accuracy for the separate feature sets. Moreover,
the fused features from different SAR frequencies were complementary and adequate for
land-cover classification. PolInSAR was complementary to PolSAR information, and both
were essential for producing accurate land-cover classification.

Zhang et al. [32] proposed a DL-based unsupervised forest height estimation method
based on the synergy of the PolInSAR and light detection and ranging (LiDAR) datasets.
Unlike traditional PolInSAR-based methods, the proposed method reformulated the forest
height inversion as a pan-sharpening process between the low-resolution LiDAR height
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and the high-resolution PolSAR and PolInSAR features. UAVSAR PolInSAR and LVIS
LiDAR data collected over tropical and boreal forest sites were used for experiments. The
experimental results show that the proposed method performed well compared to other
traditional methods. Biondi [33] used an improvement of the PolSAR decomposition
scheme that permits a more accurate classification. This interferometric polarimetric
SAR multi-chromatic analysis (MCA-PolInSAR) method permits the efficient separation
of oriented buildings from vegetation, yielding considerably improved results in which
oriented urban areas are recognized, from volume scattering, as double-bounce objects.
The results also showed a considerable improvement in the robustness of the classification
as well as the definition and precision.

In many studies, the combination of meta-heuristic and ML algorithms has been used
in order to select the optimal features and improve the classification accuracy of SAR
images [2–8]. Rostami and Kaveh [3] used a hybrid biogeography-based optimization
support vector machine (HBBOSVM) to classify POLSAR images. In the proposed HBBO,
the combination of an onlooker bee and a migration operator was used. Then, SVM was
applied for land-cover classification. According to the results, the HBBOSVM had better
performance than other algorithms in terms of the convergence trend, overall accuracy,
and the kappa coefficient. Salehi et al. [3] proposed an integration of multi-objective GA,
SVM, and an ANN classifier to find the optimal features in order to improve the accuracy
of classification using POLSAR images. The aim of that paper [3] was to minimize the
error of classification and the number of selected features. The experimental results of
Salehi et al. [3] showed that the proposed model outperformed the single-objective ap-
proaches tested against it while saving computational complexity. Finally, their proposed
model [3] had a better performance than the SVM and the Wishart classifier.

In general, the majority of the abovementioned studies have proven that the integration
of meta-heuristic algorithms and ML tools will achieve better accuracy than traditional
feature selection. Hence, in this paper, a combined approach of MOBChOA and CNN
methods was used for land-cover classification.

1.2. Paper Contributions

According to the mentioned drawbacks and weaknesses of the feature selection meth-
ods in the literature, the contributions of this paper are summarized as follows:

• We propose a novel multi-objective binary meta-heuristic algorithm named MOB-
ChOA, in which new concepts such as a transfer function were introduced to better
the exploration and exploitation abilities of the ChOA.

• We combined a meta-heuristic algorithm and DL tools to achieve better SAR image
classification accuracy.

• By using the proposed deep MOBChOA-CNN architecture, we propose an accurate
model for land-cover classification.

1.3. Paper Organization

The rest of this paper is organized as follows: Section 2 describes the methodology
of the paper, including the dataset, data preprocessing, and the proposed MOBChOA
algorithm. Section 3 presents performance evaluations of the MOBChOA-DCNN algorithm
for land-cover classification and benchmark problems in comparison with nine competitive
algorithms, and finally, we present our conclusions for this paper in Section 4.

2. Methodology

In this paper, a DL approach was used as a supervised classification method. Figure 1
shows the research method’s flowchart, which consisted of four major steps. The first step
involved performing the necessary preprocessing, which included radiometric calibration,
speckle-noise reduction, and feature extraction from POLSAR images as well as generating
test and training samples. In the second phase, the proposed MOBChOA was evaluated us-
ing two real-world benchmark problems. Then, the proposed MOBChOA-DCNN approach
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was implemented to select the optimal features. In the third step, the DCNN architecture
was applied for land-cover classification (with optimal features selected from MOBChOA).
Finally, the classification results were generated as a labeled map.
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2.1. Dataset

This paper used the POLSAR images of RADARSAT 2 in the C-band from San Fran-
cisco, USA. Figure 2 shows a high-resolution image and a Pauli RGB image of the study
area.
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These datasets were collected at 28 and 29.8◦ incidence angles for the near and far
ranges, respectively. Moreover, the approximate spatial resolutions of these orientation
were 11.1 and 10.5 m. The San Francisco dataset is one of the most widely used images in
SAR image classification in the last decade [2] and includes both man-made and natural
objects [2]. The POLSAR image of RADARSAT 2 was a single-look complex (SLC) image.
We produced ground truth samples using a high-resolution image, a google earth image,
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a Pauli RGB image, and a 2006 national land-cover database (NLCD 2006). The pixel
size of this dataset was 800 × 1400, which consisted of four main classes: ocean (in blue),
vegetation (in green), building (in red), and road (in yellow). Artificial-intelligence-based
algorithms must be contextualized in this context. Table 1 indicates the number of testing
and training samples collected from high-resolution images from the Pauli RGB image and
the 2006 national land-cover database.

Table 1. The number of testing and training samples.

Class # Pixels # Training # Testing

1. Ocean 422,347 6083 416,264
2. Road 121,926 867 121,059
3. Building 269,186 1628 267,558
4. Vegetation 306,541 1086 305,455
Total 1,120,000 (800 × 1400) 9664 1,110,336

2.2. Data Preprocessing

This section included performing the necessary preprocessing, which included radio-
metric calibration, speckle-noise reduction, and feature extraction from POLSAR images.
Speckle is known as noise on POLSAR images. Speckle affects the amount of energy
recorded due to the interaction between the transmitted and received waves. This salt-and-
pepper noise reduces the homogeneity of regions on the POLSAR images [2]. In this paper,
we used an improved Lee filter with a window size of 5 × 5 because this method protects
edges, linear objects, and texture information.

Radiometric calibration enabled the conversion of the pixel values in the SAR image
from being qualitatively representative of the biased backscatter signal to being quantita-
tively representative of the RCS and the backscatter coefficient, respectively, for the cases of
point and extended targets. In this paper, three main methods were used for the radiometric
calibration of SAR images:

1. Topography correction: a digital elevation model (DEM) was used to adjust image
values because the geometry of the surface affects the pixel values of the image.

2. Converting image values to decibels (dBs): we converted the different units (sigma,
beta, and different formats) to dBs using logarithmic transformations.

3. Filtering: a series of functions and special filtering were used.

Generally, POLSAR images have features related to surface roughness and the physical
and appearance details of objects on the earth. There are three main types of features to
display that are extracted from POLSAR images. These features are divided into original
features, discriminators, and decomposition features [2–7]. Altogether, 105 features were
extracted from the POLSAR image according to [2]. Table 2 shows 101 features that were
extracted from the SAR image.

In this paper, before sampling, various features were extracted using the feature
extraction equations of POLSAR images (see [2,34]). In fact, these equations were utilized
to convert SLC images into features. The second step was sampling. In this phase, we took
the sample from the images and converted it to a datasheet format (vector-matrix). In the
datasheet file, the rows were samples and the columns were features. Before entering the
data into the proposed DCNN, preprocessing was required. Since the ranges of the feature
values were different, the values of all features were normalized between zero and one.

2.3. Meta-Heuristic Optimization Algorithms

Concurrently with the new era of information technology, a large number of optimiza-
tion problems are emerging in different fields such as computer vision, bioinformatics, big
data analytics, the Internet of things, etc. [6]. The majority of the real-world optimization
problems are NP-hard in nature and cannot be decoded in a polynomial time domain [3].
Rather than giving up, the investigators thought to use possible meta-heuristic algorithms
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that can find a feasible solution in the given time. Meta-heuristic algorithms can be ap-
plied to almost all optimization problems, as they use the optimizer known as the black
box [35–37]. In designing the meta-heuristic algorithms, two contradictory criteria were
considered: exploration in the search space and the exploitation of the best solutions. In
exploration, unsearched areas are visited to ensure that all areas of the search space are
searched uniformly. Potential areas are explored more fully in exploitation to find a better
solution.

Table 2. Features extracted from the SAR image.

Feature Description Symbol Number

Original features
Covariance matrix C 9
Coherency matrix T 9
Scattering matrix S 4

Decomposition
features

Krogager krog 3
Huynen h 9
Barnes B 9
Cloude Cl 9
Holm Hol 9
Vanzyl V 3

Cloude–Pottier
H, A, alpha, lambda, gamma,
delta, asym, anisotropy, HA,
(1-H)A, H(1-A), (1-H)(1-A), RVI

19

Freeman–Durden Fd 3
Yamaguchi Y 4
Touzi Toz 4

Discriminator
features

Correlation
coefficients CC 4

Polarized intensity Pi 1
Degree of
polarization D 1

Span S 1

Figure 3 shows the main categories of meta-heuristic algorithms: evolutionary-based
algorithms, swarm-based algorithms, physics-based algorithms, human-based algorithms,
and hybrid algorithms. Since a few decades ago, a few nature-inspired meta-heuristic algo-
rithms, such as simulated annealing (SA), differential evolution (DE), the genetic algorithm
(GA), ant colony optimization (ACO), and particle swarm optimization (PSO) have been
introduced and used for optimization problems. Afterward, many studies concentrated
on the modification of these algorithms for new applications. Other researchers tried to
introduce new meta-heuristic algorithms by taking inspiration from nature. Some newer
algorithms such as the chimp optimization algorithm (ChOA), the crystal structure algo-
rithm (CryStAl), red fox optimization (RFO), the honey badger algorithm (HBA), and the
gannet optimization algorithm (GOA) are the results of such efforts [35–37]. In this paper, a
new binary version of ChOA is proposed for the feature selection problem.

2.4. Proposed Algorithm (MOBChOA)

ChOA was introduced by Khishe and Mosavi in 2020 [12]. ChOA was inspired by
chimpanzees’ ability to think individually in group hunting and their sexual motivations.
This algorithm divides hunting into four main phases: driving, blocking, chasing, and
attacking. ChOA is initialized by generating a random number of chimps. These chimps
are then randomly classified into four groups: barrier, attacker, driver, and chaser. Driver
chimps follow the prey without trying to reach it. Barrier chimps place themselves in a tree
to create a barrier in the prey’s progress. Chaser chimps move quickly to catch the prey.
Attacker chimps prognosticate the breakout path of the prey to force it back towards the
chasers. Figure 4 indicates the two main phases of the hunting process.
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𝑋 =  𝑋 −  𝑎 (𝑑 )

 𝑋 =  𝑋 −  𝑎 (𝑑 )
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𝑋 (𝑡 + 1) =  
𝑋 + 𝑋 + 𝑋 + 𝑋

4
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where 𝑋  presents the best search agent, 𝑋  is the second-best search agent, 
𝑋  denotes the third-best search agent, 𝑋  is the fourth-best search agent, and 
𝑋 (𝑡 + 1) is the updated position of each chimp (Figure 5). 

Figure 4. Hunting process in ChOA. (a) First phase: exploration, which consists of blocking, driving,
and chasing the prey; (b) Second phase: exploitation, which consists of attacking the prey.

Driving and chasing the prey are formulated as Equations (1)–(5).

d =
∣∣∣c.Xprey (t)−m.Xchimp (t)

∣∣∣ (1)

Xchimp (t + 1) = Xprey (t)− a.d (2)

a = 2. f . r1 − f (3)

c = 2. r2 (4)

m = Chaotic_value (5)
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where Xprey is the prey position vector; Xchimp denotes the chimp position vector; t presents
the current iteration; a, c, and m are the coefficient vectors; f is the dynamic vector
∈ [0, 2.5], r1 and r2 are the random vectors ∈ [0, 1]; and m denotes a chaotic vector.
Chimpanzees first find the position of the prey in the hunting phase using blocker, driver,
and chaser chimps. The position of the prey is then calculated by barrier, attacker, chaser,
and driver chimps, and other chimpanzees update their positions via the prey. These
phases are formulated as Equations (6)–(8).

dAttacher = |c1.XAttacher −m1.X|
dBarrier = |c2.XBarrier −m2.X|
dChaser = |c3.XChaser −m3.X|
dDriver = |c4.XDriver −m4.X|

(6)


X1 = XAttacher − a1(dAttacher)

X2 = XBarrier − a2(dBarrier)
X3 = XChaser − a3(dChaser)
X4 = XDriver − a4(dDriver)

(7)

X (t + 1) =
X1 + X2 + X3 + X4

4
(8)

where XAttacher presents the best search agent, XBarrier is the second-best search agent,
XChaser denotes the third-best search agent, XDriver is the fourth-best search agent, and
X (t + 1) is the updated position of each chimp (Figure 5).
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Finally, all chimpanzees attack their prey after hunting the prey to achieve sexual
motivation regardless of their duties. Sexual motivations are formulated using chaotic
maps (Equation (9)):

Xchimp(t + 1) =
{

Xprey(t)− a.d i f µ < 0.5
Chaotic_value i f µ ≥ 0.5

(9)

where µ is the random number ∈ [0, 1]. In the continuous version of ChOA, chimpanzees
constantly change their position at any point in space. In discrete problems, the solutions
are restricted to binary values. Operators of binary meta-heuristic methods can only move
to the nearer and farther corners of the hypercube by shifting 0 to 1 and 1 to 0. Therefore,
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in the BChOA design, the position update equation should be modified. For this purpose,
a transfer function is needed to map the continuous space to a discrete space. The transfer
function characterizes the probability of changing the position vector elements from 0 to 1
and vice versa. Thus, this transfer function compels chimpanzees to move in discrete space.
In this section, a new method for updating the positions of chimpanzees is introduced. In
the proposed BChOA, the position updating equation is formulated as Equation (10). Here,
a sigmoid function (transfer function) is used as Equation (11):

Xt+1
d =

{
1 i f sigmoid

(
X1+X2+X3+X4

4

)
≥ R

0 otherwise
(10)

Sigmoid (x) =
1

1 + e−14(x−0.45)
(11)

where Xt+1
d is the updated binary position at iteration t; R is a random number ∈ [0, 1];

Sigmoid (x) is the S-shaped functions, X1, X2, X3, and X4, which denote the chimpanzees
movements towards the attacker, barrier, chaser, and driver chimps, respectively.

Figure 6 shows the formulation of the feature selection problem as a chimpanzee
definition in the MOBChOA algorithm. Since there are 101 features in the SAR dataset, the
chimp has an array of 101 features. In Figure 6, a feature value of 1 shows that this feature
is used for classification.
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In this study, two objective functions were used for land-cover classification: maximum
overall accuracy (OA) and the minimum number of features. The weighted sum method
was used to integrate the two objective functions. Therefore, the fitness function was
formulated as Equation (12):

Fitness Function (i) = α.OA(i) + (1− α).log10
N

n(i)
(12)

where Objective Function (i) is the fitness function of the ith chimp, OA(i) is the overall
accuracy of the ith chimp, N = 101 features, and n(i) is the number of features selected
in the ith chimp. Furthermore α is the weight parameter, which is considered to be
0.92. The calibration of α was set by a trial-and-error method. To find the best value for
each of the parameters, the other variables were kept fixed and the objective function
was implemented with different values of parameters. Moreover, the value of the fitness
function was considered as the main criterion for the measurement and calibration of the
parameters. According to the trial-and-error method as well as previous studies [3], the
best value of α was equal to 0.92.

3. Experimental Results

This section is divided into two subsections. In the first subsection, the performance of
the proposed MOBChOA algorithm on two real-world benchmark optimization problems
was evaluated in comparison with four competitive algorithms, including the capuchin
search algorithm (CapSA) [38], black widow optimization (BWO) [39], the grey wolf
optimizer (GWO) algorithm [40], and biogeography-based optimization (BBO) [41]. In
the second subsection, to evaluate the performance of MOBChOA-DCNN for land-cover
classification, three neural network architectures called long short-term memory (LSTM),
the radial basis function neural network (RBFNN), the multiple-layer perceptron neural
network (MLPNN) and two classical architectures called random forest (RF) and SVM
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were used. All architectures were coded in MATLAB, and Table 3 indicates the optimal
parameters of the algorithms.

Table 3. The optimal parameter settings of the algorithms.

Algorithm Parameter Value

MOBChOA

a [−1, 1]
f Linearly decreased from 2 to 0
Population size 150
Iteration 300

CapSA

Velocity control constants 1.00
Inertia parameter 0.64
Balance and elasticity factors 0.73, 9
Population size 150
Iteration 300

BWO

Procreation rate (PP) 0.66
Mutation rate (PM) 0.25
Cannibalism rate (CR) 0.48
Population size 150
Iteration 300

GWO

C 0.7
A 0.3
α Linearly decreased from 2 to 0
Population size 150
Iteration 300

BBO

The probability range for migrating [0, 1]
Maximum emigration (I) and immigration (E) 1
Elitism percent 6%
Mutation rate 0.08
Population size 150
Iteration 300

3.1. Real-World Benchmark Optimization Problems

Two real optimization problems were used to evaluate the performance of MOBChOA.
The problems considered in this section assessed the proposed MOBChOA from different
perspectives. Due to the complexity of real optimization problems, solving them can be a
challenge for proposed algorithms [42].

3.1.1. Design of Tension Spring

The design of a tension spring is a complex problem that was used in this pa-
per. A schematic view of the problem is shown in Figure 7 and can be formulated as
Equations (13)–(18) [43]:

f (X) = (x3 + 2)x2x2
1 (13)

subjected to

g1(X) = 1−
x3x3

2
71, 785x4

1
≤ 0 (14)

g2(X) =
4x2

2 − x1x2

12, 566
(
x2x3

1 − x4
1
) + 1

5108x2
1
− 1 ≤ 0 (15)

g3(X) = 1− 140.45x1

x2
2x3

≤ 0 (16)

g4(X) =
x1 + x2

1.5
− 1 ≤ 0 (17)

0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30, 2 ≤ x3 ≤ 15 (18)
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where:
x1 = wire diameter (d).
x2 = mean coil diameter (D).
x3 = the number of active coils (N).
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Table 4 shows the implementation results of the MOBChOA and other algorithms for
this problem. As can be seen, MOBChOA found the best value for the fitness function. The
best solution that was found for the problem was 0.0126652. The MOBChOA convergence
trend for this problem is shown in Figure 8, which shows that the convergence curve of
MOBChOA was faster than those of the other algorithms.

Table 4. Comparison of the results of the algorithms for spring system design.

Algorithm Best Fitness Mean Fitness Standard Deviation Iteration

MOBChOA 1.26652 × 10−2 1.28705 × 10−2 0.0000356 300
CapSA 1.26849 × 10−2 1.38564 × 10−2 0.0028536 300
BWO 1.26986 × 10−2 1.44263 × 10−2 0.0325691 300
GWO 1.27083 × 10−2 1.46896 × 10−2 0.6523281 300
BBO 1.27176 × 10−2 1.87563 × 10−2 1.2360894 300
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3.1.2. Three-Bar Truss Design Problem

The three-bar truss problem is a widely used real-world engineering optimization
problem. The three-bar truss problem intends to find the minimum weight of a three-bar
truss. A schematic view of the problem is shown in Figure 9 and can be formulated as
Equations (19)–(23) [43]:

f (X) =
(

2
√

2x1 + x2

)
× l (19)
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subjected to

g1(X) =

√
2x1 + x2√

2 x2
1 + 2x1x2

P− σ ≤ 0 (20)

g2(X) =
x2√

2 x2
1 + 2x1x2

P− σ ≤ 0 (21)

g3(X) =
1√

2 x2 + x1
P− σ ≤ 0 (22)

0 ≤ x1, x2 ≤ 1 (23)

where:
x1 = A1.
x2 = A2.
x3 = x1 = A3.
l = 100 cm.
P = 2 KN/cm2.
σ = 2 KN/cm2.

Sensors 2023, 23, 1180 14 of 22 
 

 

𝑥  = 𝑥 =  𝐴 . 
𝑙 =  100 cm. 
𝑃 =  2 KN/cm . 
𝜎 =  2 KN/cm . 

 
Figure 9. A schematic view of the three-bar truss design problem. 

Table 5 shows the comparison of the MOBChOA results with the results from the 
other algorithms. As can be seen, MOBChOA found the best value for the fitness function. 
The best solution that was found for the problem was 263.895843. According to the results, 
MOBChOA had the best standard deviation. Figure 10 indicates the convergence curves 
of MOBChOA and the other algorithms. The convergence curve of MOBChOA was faster 
than those of the other algorithms. 

Table 5. Comparison of the results of the algorithms for the three-bar truss design problem. 

Algorithm Best Fitness Mean Fitness Standard Deviation Iteration 
MOBChOA 263.895843 265.896523 0.0000209 300 
CapSA 264.325698 272.745632 0.0125634 300 
BWO 265.796325 276.745263 0.1396589 300 
GWO 266.896352 278.749236 0.7058932 300 
BBO 267.105962 279.785632 2.8963254 300 

 
Figure 10. The convergence trends of the algorithms for the spring system problem. 

50 100 150 200 250 300
260

280

300

320

340

360

380

Iteration

B
es

t 
fi

tn
es

s

 

 
BBO-DCNN

GWO-DCNN

BWO-DCNN

CapSA-DCNN

MOBChOA-DCNN

Figure 9. A schematic view of the three-bar truss design problem.

Table 5 shows the comparison of the MOBChOA results with the results from the other
algorithms. As can be seen, MOBChOA found the best value for the fitness function. The
best solution that was found for the problem was 263.895843. According to the results,
MOBChOA had the best standard deviation. Figure 10 indicates the convergence curves of
MOBChOA and the other algorithms. The convergence curve of MOBChOA was faster
than those of the other algorithms.

Table 5. Comparison of the results of the algorithms for the three-bar truss design problem.

Algorithm Best Fitness Mean Fitness Standard Deviation Iteration

MOBChOA 263.895843 265.896523 0.0000209 300
CapSA 264.325698 272.745632 0.0125634 300
BWO 265.796325 276.745263 0.1396589 300
GWO 266.896352 278.749236 0.7058932 300
BBO 267.105962 279.785632 2.8963254 300

3.2. SAR Image Classification

Figure 11 shows the images classified by MOBChOA-DCNN, CapSA-DCNN, BWO-
DCNN, GWO-DCNN, and BBO-DCNN. On the left side of the study area, the results
indicate a low-density urban area, and on the right side of the study area the results
indicate a high-density urban area. According to Figure 11, the classified images based
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on the Pauli RGB image, the high-resolution image, and the ground truth samples were
accurately identified.
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As shown in the classified images, MOBChOA-DCNN accurately detected the build-
ing and ocean classes. In Figure 11b–e, some ocean pixels were misclassified due to the
appearance of waves and speckle at the sea surface. Figure 12 shows these misclassified
pixels. However, in MOBChOA-DCNN, the ocean class was well identified. According
to the ground truth samples and classified images (Figure 11), there were some flat sur-
faces inside the vegetation that were not roads (in the center-left of the classified images).
Figure 13 shows these flat surfaces within the vegetation. The road pixels also had a flat
surface. The flat surface scattering mechanism in POLSAR images is double-bounce. For
this reason, those flat surfaces were considered double-bounce scattering (road class), and
MOBChOA-DCNN detects these areas accurately.
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For the validation of classified images, sensitivity, overall accuracy, and specificity
metrics were used to compare the efficiency of the hybrid architectures. These criteria can
be calculated using Equations (24)–(26) [44]:

Sensitivity =
TP

TP + FN
(24)

Speci f icity =
TN

TN + FP
(25)

Accuracy =
TP + TN

TP + FN + FP + TN
(26)

where TP = true positive, FN = false negative, TN = true negative, and FP = false positive.
Table 6 shows the specificity, sensitivity, and overall accuracy of architectures for land-cover
classification. As can be seen, MOBChOA-DCNN showed the highest efficiency on the
training and validation datasets. MOBChOA-DCNN achieved 96.89% and 96.13% accuracy
values in the testing and training datasets, respectively. Moreover, the results of the DL
architectures trained by meta-heuristics were better than the LSTM, RBFNN, MLPNN, RF,
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and SVM architectures. As shown in Table 6, the “Average RunTime” of MOBChOA-DCNN
was shorter than those of the other algorithms for land-cover image classification.
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Table 6. Algorithm results for the validation of classified images.

Deep Architectures
Training Dataset Validation Dataset

Run Time
Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

MOBChOA-DCNN 97.25% 94.43% 96.89% 96.63% 94.09% 96.13% 832 s
CapSA-DCNN 96.08% 92.51% 95.53% 95.14% 91.88% 94.16% 986 s
BWO-DCNN 94.12% 91.08% 93.76% 93.21% 90.69% 92.43% 1056 s
GWO-DCNN 93.86% 90.14% 93.06% 92.75% 89.26% 92.12% 1008 s
BBO-DCNN 93.24% 89.73% 92.58% 92.16% 88.49% 91.29% 1161 s

LSTM 92.86% 88.52% 91.89% 91.64% 87.29% 90.83% 1351 s
RBFNN 92.07% 87.39% 90.96% 91.09% 86.73% 90.08% 1269 s
MLPNN 92.18% 87.19% 90.72% 90.86% 86.49% 89.79% 1412 s

RF 91.52% 86.72% 90.81% 90.19% 86.08% 89.45% 1096 s
SVM 91.69% 86.53% 90.67% 90.26% 85.98% 89.30% 1196 s

Figures 14 and 15 provide comparisons of the algorithms according to these met-
rics. According to these figures, the ranking of the algorithms was MOBChOA-DCNN,
CapSA-DCNN, BWO-DCNN, GWO-DCNN, and BBO-DCNN, respectively. The results
of MOBChOA-DCNN on the testing and training datasets showed that the proposed fea-
ture selection method performed well because the specificity, accuracy, and sensitivity of
MOBChOA-DCNN were highly stable.
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Table 7 provides a comparison of the architectures according to mean square error
(MSE) criteria. MOBChOA-DCNN had a smaller MSE than the other architectures. The
MSE function can be calculated using Equation (27), where n is the total number of samples,
yi is the system output, and di shows the desired value:

MSE =
1
n

n

∑
i=1

(yi − di)
2 (27)

In this paper, a new transfer function was proposed to map continuous space to
discrete space. The transfer function characterizes the probability of changing the position
vector elements from 0 to 1 and vice versa. The transfer function compels chimpanzees to
move in discrete space. Therefore, it helps the algorithm to avoid being trapped in local
minimums. According to the results, the proposed MOBChOA-DCNN method was useful
for image classification. Figure 16 shows the convergence trends of the architectures. As
shown in this figure, the MOBChOA-DCNN and CapCA-DCNN architectures converged
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faster than the others. Moreover, MOBChOA-DCNN achieved high stability and a high
convergence speed in fewer epochs. The reason for MOBChOA’s superiority is the existence
of three operators: (a) exploration, which consists of blocking, driving, and chasing the
prey; (b) exploitation, which consists of attacking the prey; and (c) a new transfer function
to map the continuous space to discrete space.

Table 7. Comparison of the algorithms according to MSE.

Proposed Architectures MSE

Training Dataset Validation Dataset

MOBChOA-DCNN 0.00019 0.00093
CapSA-DCNN 0.00386 0.05856
BWO-DCNN 0.13201 0.29632
GWO-DCNN 0.29872 0.49632
BBO-DCNN 0.52361 0.97526
LSTM 0.59368 1.10395
RBFNN 0.68395 1.22368
MLPNN 0.70196 1.31856
RF 0.76589 1.38596
SVM 0.89652 1.42698
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Table 8 compares the results of this paper and previous research (that was prepared by
Salehi et al. [2]). As can be seen, MOBChOA-DCNN had better accuracy than the other algo-
rithms. The ranking of the algorithms was MOBChOA-DCNN, CapSA-DCNN, GASVM [3],
BWO-DCNN, GWO-DCNN, BBO-DCNN, SVM [2], GA-MLP [2], and Wishart [2], respec-
tively. In the research by Salehi et al. [2], the overall accuracy of Wishart [2] using nine
features was 75.33%. On the other hand, the overall accuracy of SVM [2] using 105 features
(all features) was 90.40%. By the comparison of classifiers, when using meta-heuristic algo-
rithms, classification accuracy was improved and redundant features were also removed. In
general, the proposed MOBChOA-DCNN provided fewer features and the highest overall
accuracy.
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Table 8. Comparison of the results of this paper and previous research [2].

Algorithm Overall Accuracy (%) Number of Features

Wishart [2] 75.32 9
SVM [2] 90.40 105
GA-MLP [2] 87.38 56
GA-SVM [2] 93.65 37
MOBChOA-DCNN (ours) 96.13 27
CapSA-DCNN (ours) 94.16 31
BWO-DCNN (ours) 92.43 33
GWO-DCNN (ours) 92.12 32
BBO-DCNN (ours) 91.29 35

4. Conclusions and Future Works

We proposed a hybrid approach of meta-heuristic algorithms and DL methods for land-
cover classification. To do so, we first performed the necessary preprocessing, including
speckle reduction, radiometric calibration, and feature extraction. After that, we proposed
a novel algorithm named MOBChOA to improve the exploitation and exploration of the
ChOA for optimal feature selection. Finally, we trained the fully connected DCNN to
classify POLSAR images from San Francisco, USA.

In this paper, the performance of the MOBChOA on two benchmark problems was
evaluated in comparison with four competitive algorithms, including CapSA, BWO, GWO,
and BBO. Moreover, to evaluate the performance of MOBChOA-DCNN for land-cover clas-
sification, five competitive architectures called LSTM, RBFNN, MLPNN, RF, and SVM were
utilized. The experimental results on the POLSAR image dataset showed that the proposed
model (MOBChOA-DCNN) could achieve better accuracy and a better convergence rate
while reducing the number of features. Furthermore, the performance compared to the
previous research showed that the proposed MOBChOA-DCNN model outperformed the
state-of-the-art algorithms. When using meta-heuristic algorithms, classification accuracy
was improved and redundant features were removed.

Like most meta-heuristics, there are many operators in the proposed MOBChOA.
Therefore, modeling these operators for real-world problems can be a challenge. The
accurate setting of the initial parameters of MOBChOA is a limitation, and special methods
should be used. Another challenge in real-world problems is the complexity of MOBChOA.
Calculating the fitness functions of all solutions and choosing the best solution causes
computational complexity.

Several research directions can be recommended for future works. Modified variants
of MOBChOA may be extended to tackle various multi-objective, discrete, and real-world
optimization problems. Moreover, a few selective parameters and thresholds in MOB-
ChOA’s equations have not been optimally fine-tuned, providing a path for further work.
Hybrid algorithms will improve the operators. In addition, tackling problems in different
fields (i.e., neural networks, image processing, scheduling, data mining, big data, smart
homes, industry, etc.) could be a valuable and beneficial contribution.
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