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Abstract: Cardiovascular diseases (CVDs) are now the leading cause of death, as the quality of life
and human habits have changed significantly. CVDs are accompanied by various complications,
including all pathological changes involving the heart and/or blood vessels. The list of pathological
changes includes hypertension, coronary heart disease, heart failure, angina, myocardial infarction
and stroke. Hence, prevention and early diagnosis could limit the onset or progression of the disease.
Nowadays, machine learning (ML) techniques have gained a significant role in disease prediction
and are an essential tool in medicine. In this study, a supervised ML-based methodology is presented
through which we aim to design efficient prediction models for CVD manifestation, highlighting
the SMOTE technique’s superiority. Detailed analysis and understanding of risk factors are shown
to explore their importance and contribution to CVD prediction. These factors are fed as input
features to a plethora of ML models, which are trained and tested to identify the most appropriate
for our objective under a binary classification problem with a uniform class probability distribution.
Various ML models were evaluated after the use or non-use of Synthetic Minority Oversampling
Technique (SMOTE), and comparing them in terms of Accuracy, Recall, Precision and an Area Under
the Curve (AUC). The experiment results showed that the Stacking ensemble model after SMOTE
with 10-fold cross-validation prevailed over the other ones achieving an Accuracy of 87.8%, Recall of
88.3%, Precision of 88% and an AUC equal to 98.2%.

Keywords: healthcare; cardiovascular diseases; prediction; machine learning; data analysis

1. Introduction

Cardiovascular diseases (CVDs) have been the leading cause of death globally for the
past 15 years. It is estimated that 17.9 million people died of cardiovascular diseases in
2019, accounting for 32% of all deaths worldwide. Cardiovascular disease statistics are
appearing ominously around the world and it has been estimated that by 2030, casualties
will exceed 20 million per year [1].

Specifically, cardiovascular disease is a set of diseases that affect the heart and blood
vessels and they are mainly divided into coronary heart and arteries disease. The latter
supplies blood to the brain that is responsible for strokes [2], while a peripheral arterial
disease affects the arteries that supply blood to the extremities (legs, arms) [3]. Some other
categories include disease of the muscles and valves of the heart followed by infection
with a bacterium of the streptococcus family (rheumatic heart disease) [4], diseases that
are congenital and due to dysgenesis of the structures of the heart and blood vessels of
the circulatory system and, finally, diseases that are due to the formation of clots in the
veins of the lower extremities (thigh, tibia, legs) [5], which can then be split, detached and
transported to the heart and lungs (venous thrombosis and pulmonary embolism) [6,7].

Although cardiovascular diseases often occur suddenly with significant effects on a
patient’s health, they actually have a long sub-clinical course without symptoms until they
manifest clinically. This element is extremely important to prevent the occurrence of such
diseases in the population [8]. Cardiovascular disease does not have a definite cause, such
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as infections caused by specific germs or viruses. However, there are several risk factors
such as lifestyle and health profile promoting the disease manifestation. Given that people
at risk for cardiovascular disease are more likely to have a heart attack, the prevention of
its occurrence is mainly based on these factors’ modification in the population to reduce
the likelihood of cardiovascular disease occurrence [9,10].

The most common well-documented risk factors for CVDs are age, gender, aggravated
family history, lack of physical exercise (sedentary life), obesity, unhealthy diet and con-
sumption of large amounts of salt, excessive alcohol consumption, smoking, hypertension,
and high blood cholesterol levels [11,12]. Some other CVD-related factors are kidney dis-
ease that causes reduced kidney function, diabetes, and rheumatoid arthritis. Moreover,
CVD may occur due to premature menopause in women [13–15]. In addition, people who
sleep a lot or sometimes less than necessary and those who fall asleep at very different
times are at greater risk for cardiovascular disease. The more irregular the duration of their
sleep, the greater the risk of developing CVD due to a biological clock disorder that affects
metabolism, blood pressure and heart rate [16,17].

It is important to note that people who belong to a high-risk group for cardiovascular
occurrence (not necessarily diagnosed), and are thus at risk of having a heart attack or
stroke, have a significantly higher risk of being seriously ill with COVID-19. In addition,
these people are more likely to need hospitalization and intensive care unit (ICU) or even
die from COVID-19 compared to people with low cardiovascular risk which, nowadays,
constitutes a strong motivation for the underlying research [18,19].

According to previous studies, it is possible to estimate the likelihood of a person
developing CVD based on several risk factors, based on which a doctor can guide patients
with appropriate advice and interventions. Some preventative measures that could be taken
by people at high risk for developing cardiovascular disease include: (i) medication with
statins when the cholesterol level is higher than normal or to low blood pressure (in case it
is high or slightly high), (ii) smoking cessation in case of smokers, (iii) healthy eating (by
replacing saturated fats with unsaturated fatty acids and the intake of Ω6 polyunsaturated
fats), (iv) maintaining weight and waist circumference under control, (v) reduction of
alcohol consumption and (vi) systematic physical exercise [20–22].

Nowadays, ML contains a range of approaches and techniques that can be applied in a
variety of ways to help the diagnostic and prognostic challenges facing the field of medicine.
Moreover, ML techniques now enable medical researchers to detect significant diseases in a
more sophisticated and accurate way. In this direction, ML plays an essential role in the
early prediction of disease complications in diabetes (as classification [23,24] or regression
task for continuous glucose prediction [25,26]), cholesterol [27], hypertension [28,29], hyper-
cholesterolemia [30], chronic obstructive pulmonary disease (COPD) [31], COVID-19 [32],
stroke [33], chronic kidney disease (CKD) [34], liver disease [35], hepatitis-C [36], lung
cancer [37], sleep disorders [38], metabolic syndrome [39], etc.

In particular, the long-term risk prediction of CVDs will concern us in this research
work. The contribution of this manuscript is three-fold.

• An essential step of the elaborated methodology is data preprocessing, consisting of
data cleaning and class balancing. Data preprocessing is achieved with the SMOTE.
In this way, the dataset’s instances are distributed in a balanced way allowing us to
design efficient classification models and predict the occurrence of CVD.

• In the context of features analysis, three ranking methods, i.e., Gain Ratio, Random
Forest and Information Gain were applied to measure their importance in the CVD
class, and a statistical description of their prevalence is also presented.

• Experimental evaluation with several ML models after the use or not of SMOTE with
10-fold cross-validation evaluating and comparing them in terms of Accuracy, Recall,
Precision and AUC in order to identify the most efficient for predicting the risk of an
instance being diagnosed with CVD.

The rest of the paper is structured as follows. In Section 2, we describe the dataset we
relied on and analyse the methodology we followed. In addition, in Section 3, we capture
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the obtained experimental results and evaluate the ML models’ performance. In addition,
in Section 4, we briefly discuss works that aim to predict CVD using ML methods. Finally,
conclusions and future directions are mentioned in Section 5.

2. Materials and Methods

In this section, we will present an analysis of the data features, which constitute
important factors for measuring CVD risk. Furthermore, the main components of the
adopted methodology are analysed, including data preprocessing, features ranking and
prevalence, and ML model description, before the presentation of the evaluation results.

2.1. Dataset Description

Our experimental results were based on the dataset of research work [40]. In the given
dataset, data cleaning (namely, removing records with missing or invalid values for the
respective feature) [41] was performed and, finally, the number of participants we focused
on was 6311. Each record in the dataset is described by a set of 10 attributes, along with
their variables, which are given as input to machine learning models and one for the target
class. These attributes are analyzed as follows:

• Age (years) [42]: It is the attribute that keeps the participant’s age. The age range is 30
to 65 years.

• Gender [43]: This attribute indicates the participant’s gender. The number of men is
2184 (34.6%), while the number of women is 4127 (65.4%).

• BMI (Kg/m2) [44]: This attribute illustrates the participant’s body mass index.
• Systolic Blood Pressure (Sys BP) (mmHg) [45]: This attribute illustrates the partici-

pant’s systolic blood pressure.
• Diastolic Blood Pressure (Dias BP) (mmHg) [46]: This attribute illustrates the partic-

ipant’s diastolic blood pressure.
• Glucose [47]: This feature captures the participant’s glucose status. It has three

categories (85.6% normal, 7.4% above normal and 7% well above normal).
• Smoke [48]: This attribute refers to whether the participant smokes or not. The per-

centage of participants who are smoking is 9.2%.
• Alcohol Intake [49]: This attribute refers to whether the participant consumes alcohol

or not. Up to 5.4% of participants consume alcohol.
• Physical Activity [50]: This variable records whether the participant is physically

active or not. The percentage of participants who have physical activity is 80.1%.
• Total Cholesterol [51]: This variable captures the participant’s total cholesterol status. It

has three categories (78.1% normal, 12.7% above normal and 9.2% well above normal).
• Cardiovascular Disease (CVD): This attribute refers to whether the participant suffers

from cardiovascular disease or not. A total of 1944 (30.8%) of the participants suffer
from cardiovascular disease.

All features, including the target class, are nominal, except for the age, BMI, and
systolic and diastolic BP, which are numerical. In Table 1, we present the statistics of the
variables that represent the risk factors for CVD in the unbalanced dataset. These variables
capture the values of the related features, which are discriminated into numerical and
nominal. For the description of numerical data, we recorded mean values and standard
deviation, while for the nominal ones, we recorded the percentage prevalence of the
respective categorical data.
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Table 1. Numerical and nominal features’ description in the unbalanced dataset.

Numerical Attribute Description

Min Max Mean ± StdDev

Age 30 65 52.73 ± 6.86

BMI 15.36 58.59 27.12 ± 5.11

Sys BP 70 220 123.8 ± 15.3

Dias BP 40 150 80.25 ± 9.1

Nominal Attribute Description

Gender Men 2184 (34.6%)
Women 4127 (65.4%)

Glucose
(85.6%) normal

(7.4%) above normal
(7%) well above normal

Smoke Yes (9.2%)

Alcohol Intake Yes (5.4%)

Physical Activity Yes (80.1%)

Total Cholesterol
(78.1%) normal

(12.7%) above normal
(9.2%) well above normal

2.2. Proposed Methodology for CVD Risk Prediction

The proposed methodology for CVD risk prediction includes several steps, such as
data preprocessing, features ranking, feature prevalence in the balanced data, ML models’
configuration, training and evaluation.

2.2.1. Data Preprocessing

Since the efficiency of ML models and, thus, the accurate identification of CVD and
non-CVD instances may be impacted by the unbalanced distribution of the instances in the
two classes, an oversampling method is applied. In particular, SMOTE (Synthetic Minority
Oversampling Technique) [52] was applied, which, based on a 5-NN classifier, creates
synthetic data [53] on the minority class. The instances in the CVD class are oversampled
such that the subjects in the two classes are uniformly distributed. After the application of
SMOTE, the dataset becomes balanced, the number of participants is 8734 and the class
variable includes 4367 CVD and 4367 non-CVD instances.

2.2.2. Features Ranking

In Table 2, we present the dataset features’ importance concerning the CVD class.
Features ranking is made via the employment of three methods. The former exploits the
Random Forest classifier to assign a score, the latter is based on the Information Gain
method (InfoGain) and the third one is based on Gain Ratio.

As for the Random Forest, each tree calculates the importance of a feature according
to its ability to increase the pureness of the leaves. The higher the increment in leaf purity,
the higher the importance of the feature. This is applied for each tree, averaged among all
the trees and normalized such that the sum of the importance scores is equal to 1 [54].

The InfoGain [55] estimates the worth of an attribute F by measuring the information
gain with respect to the class variable C, according to the math equation In f oGain(C, F) =
H(C)− H(C|F). The first term defines the entropy of the class variable C which can be
determined as H(C) = −∑c∈VC

pclog2(pc), where pc is the probability c ∈ VC be equal to 0
(Non_CVD) and 1 (CVD), respectively. In a balanced dataset, p0 = p1 = 1/2 maximises
the entropy. In addition, the second term H(C|F) is the conditional entropy of the class
variable C given an attribute F. The feature with the highest InfoGain is appropriate to be
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selected for a split. The Gain Ratio [56] evaluates the worth of an attribute F according to
the formula GR(C, F) = In f oGain(C,F)

H(F) , where H(F) = −∑ f∈VF
p f log2(p f ) is the entropy of

the attribute F and p f the probability of the value f of F.
Before the class balancing, it is observed that all methods agree on the ranking of the

features (as shown in Table 2) except for the Random Forest that shows specific features
(namely age, cholesterol and gender, alcohol intake) in reverse order. Moreover, the scores
concerning alcohol intake and smoking are negative and very close to zero, which means
that the features may not contribute to the models’ performance enhancement. Moreover,
both InfoGain and GainRatio methods indicated systolic and diastolic blood pressure
features as the most important and relevant risk factors for the occurrence of CVD before
and after SMOTE. Focusing on the SMOTE case, we observe that each method has assigned
a different ranking order. Since all features are contributing factors to CVD, they were
considered for training and validation. Finally, the features’ importance will be reevaluated
and the models will be retrained in case new (training) instances with the same features are
available, thus all of them are kept.

Table 2. Features ranking before and after class balancing.

Random Forest Gain Ratio Information Gain

SMOTE No SMOTE SMOTE No SMOTE SMOTE No SMOTE

Attribute Rank Attribute Rank Attribute Rank Attribute Rank Attribute Rank Attribute Rank

Age 0.253 SysBP 0.23907 SysBP 0.07589 SysBP 0.07243 SysBP 0.16307 SysBP 0.14602

SysBP 0.2426 DiasBP 0.17963 DiasBP 0.06083 DiasBP 0.05732 DiasBP 0.10531 DiasBP 0.09216

BMI 0.1897 Age 0.12714 Age 0.03809 Cholesterol 0.03947 Age 0.08847 Cholesterol 0.03837

DiasBP 0.1893 Cholesterol 0.09492 Cholesterol 0.02763 Age 0.01894 BMI 0.03646 Age 0.03511

Cholesterol 0.0574 BMI 0.04311 Smoke 0.02654 BMI 0.01489 Cholesterol 0.02615 BMI 0.02709

Gender 0.0519 Glucose 0.02689 BMI 0.0177 Glucose 0.00806 Gender 0.01067 Glucose 0.00594

Physical
activity 0.03550 Physical

activity 0.00931 Alcohol
intake 0.01749 Physical

activity 0.00157 Smoke 0.00935 Physical
activity 0.00113

Smoke 0.0263 Smoke 0.00135 Physical
activity 0.0146 Smoke 0.00026 Physical

activity 0.00887 Smoke 0.00012

Alcohol
intake 0.0144 Alcohol

intake −0.00339 Gender 0.01231 Gender 0.00006 Alcohol
intake 0.00416 Gender 0.00006

Glucose 0.012 Gender −0.00467 Glucose 0.00293 Alcohol
intake 0.00002 Glucose 0.00178 Alcohol

intake 0.000006

2.2.3. Features Prevalence in the Balanced Data

In this subsection, our aim is to make a qualitative and quantitative description of the
data and explore the strength of association with the target CVD class. In the following,
we selected to further analyze the balanced data as they will be considered to construct
efficient models for CVD risk prediction.

In Table 3, we see the statistical characteristics of the numerical features in the balanced
data. The mean age of participants is 53.36 years, while the minimum and maximum ages
are 30 and 65 years. Moreover, the mean value of BMI is 27.48 which corresponds to
the overweight category. Finally, the mean systolic and diastolic BP is 126.46 and 81.44,
respectively, which relates to hypertension at stage I. It is important to mention that the
statistics of the numerical features in the balanced data maintained the minimum and
maximum values of the non-balanced one while an imperceptible difference was observed
in the mean value and standard deviation.
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Table 3. Statistical characteristics in the balanced data.

Features Min Max Mean ± Std

Age 30 65 53.36 ± 6.76

BMI 15.36 58.59 27.48 ± 5.17

Sys BP 70 220 126.46 ± 16.33

Dias BP 40 150 81.44 ± 9.39

In Table 4, we show the participants’ distribution in terms of the age group they belong
to and their gender. In the marginal age groups, 30–34, 35–39 and 65–69, either none or
only a small percentage of participants have been diagnosed with CVD (0.10% and 0.19%,
respectively). A considerable part of the participants having a CVD is distributed in the
age groups 50–54, 55–59 and 60–64 with proximal ratios of 12.06%, 13.57%, and 14.24%,
respectively. As for gender, we see that in each gender status, the instances in the CVD
class differ from the respective in the non-CVD class by absolute values 5.49% and 5.41%,
respectively (namely, they are not distributed in a balanced way). Moreover, women that
have been diagnosed with CVD are 38.33% prevalent in the dataset against the 11.67%
of men.

Table 4. Participants’ distribution per age group and gender type in the balanced dataset.

Age Groups Non-CVD CVD

30–34 0.01% 0.00%

35–39 0.53% 0.10%

40–44 9.53% 4.24%

45–49 7.05% 5.60%

50–54 15.14% 12.06%

55–59 10.03% 13.57%

60–64 7.51% 14.24%

65–69 0.21% 0.19%

Gender Non-CVD CVD

Female 32.84% 38.33%

Male 17.16% 11.67%

In Table 5 is captured the percentage distribution of participants in each BMI category and
the corresponding obesity subcategories, based on the rules of [25]. In the underweight class,
a negligible portion of the participants is noticed, while most of the participants are shown
in the healthy (i.e., the BMI values lie in the normal range), overweight and obese I classes.
Moreover, it is observed that even if a participant has a normal BMI, they can still be diagnosed
with CVD. In the current data, this is represented by a piece of 14.79%. At this point, we
should recall from the relevant literature that obesity may be characterized by either BMI
(also called overall weight-based) or waist circumference (WC), which denotes abdominal
obesity. The existence of CVD instances in the healthy class of BMI categorization may
relate to the aforementioned abdominal obesity which, however, in this study, cannot
be identified since the WC feature is not available. The development of CVD is highly
correlated with obesity risk factors, but WC availability could add critical information along
with BMI for the correct classification of the CVD instances [57]. Hence, a limitation of the
current data is the lack of the WC feature, which is a strong indicator of CVD occurrence.
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Table 5. Participants’ distribution per BMI class and physical activity in the balanced dataset.

BMI Classes Non-CVD CVD
Underweight
BMI < 18.5 0.70% 0.14%

Healthy
18.5 ≤ BMI < 25 21.71% 14.79%

Overweight
25 ≤ BMI < 30 17.99% 19.45%

Obese I
30 ≤ BMI < 35 6.90% 9.67%

Obese II
35 ≤ BMI < 40 2.06% 4.21%

Obese III
BMI ≥ 40 0.64% 1.73%

Physical Activity Non-CVD CVD

No 9.41% 5.48%

Yes 40.59% 44.52%

Moreover, Table 5 shows the distribution of non-physically- and physically-active
instances in the underlying classes. The portion of those who suffer from CVD in the two
states of physical activity is 5.48% and 44.52%, correspondingly. From the results, it is
observed that body exercise is not sufficient to avoid the manifestation of CVD. However,
further details (which are not available here) on the type and duration of physical activity
would help to interpret its role in CVD avoidance.

In Table 6, the total cholesterol and glucose levels are captured in terms of the class
labels. A total of 37.29% of participants suffer from cardiovascular disease while having
normal cholesterol levels at the same time. The coexistence of abnormal levels (both above
and well above) of cholesterol and cardiovascular disease occurs in a total of 12.71% of
participants. A similar trend is noticed in the distribution of the two classes’ instances
concerning glucose levels. Furthermore, Table 7 shows the relationship between the two
considered classes and alcohol consumption and smoking habits. A total of 45.65% of
participants with CVD are not smokers while 48.08% of those with CVD also stated that
they do not consume alcohol.

Table 6. Participants’ distribution per cholesterol and glucose level in the balanced dataset.

Cholesterol Non-CVD CVD

Normal 41.88% 37.29%

Above Normal 5.69% 4.59%

Well Above Normal 2.43% 8.12%

Glucose Non-CVD CVD

Normal 43.85% 45.20%

Above Normal 3.33% 2.24%

Well Above Normal 2.82% 2.55%

The proportion of hypertension categories with the CVD and non-CVD instances
is presented in Table 8. Of the total participants, a small percentage of 3.53% and 1.32%
has normal and elevated blood pressure, while they belong to the CVD class. In the
hypertensive classes, an essential portion of 45.16% occurs.
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Table 7. Participants’ distribution per smoking and alcohol status in the balanced dataset.

Smoke Non-CVD CVD

No 45.53% 45.65%

Yes 4.48% 4.36%

Alcohol Non-CVD CVD

No 45.28% 48.08%

Yes 4.72% 1.92%

Table 8. Participants’ distribution in terms of blood pressure category in the balanced dataset.

Sys/Dias Blood Pressure Categories [58] Non-CVD CVD

Normal
Sys BP < 120 and Dias BP < 80 10.37% 3.53%

Elevated
120 < Sys BP < 129 and Dias BP < 80 2.61% 1.32%

Hypertension I
130 < Sys BP < 139 or 80 < Dias BP < 89 32.24% 25.96%

Hypertension II
Sys BP ≥ 139 or Dias BP ≥ 90 4.77% 19.20%

Moreover, Figure 1 isolates the CVD class and presents the distribution of the relevant
instances concerning gender and blood pressure categories. Women with hypertension
prevail against men, meaning that the former are more prone to occurring hypertension
and CVD than the latter. Figure 2 demonstrates the distribution of participants per blood
pressure category [45,46] and age group only for those who have been diagnosed with
CVD. As we see, hypertension mainly concerns those older than 50 years, while a small
portion of participants, 6 to 10%, occurs in the 40–44 and 45–49 age groups.

Figure 1. CVD participants’ distribution in terms of gender and blood pressure category in the
balanced dataset.
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Figure 2. CVD participants’ distribution in terms of the age group and blood pressure category in the
balanced dataset.

Figure 3 shows the coexistence of hypertension and glucose levels in CVD participants.
From relevant studies [59], it is known that hypertension is more frequent in CVD patients
with diabetes in comparison with those who do not have diabetes. Moreover, CVD patients
with hypertension are at greater risk of developing diabetes. However, in the current data, a
small percentage of CVD patients has glucose levels well above normal and is hypertensive.

Figure 3. CVD participants’ distribution in terms of glucose level and hypertension classes in the
balanced dataset.

It should be noted that high blood pressure (BP), smoking habits, high abnormalities
in glucose (which is associated with diabetes mellitus) and lipid levels (high cholesterol)
are major risk factors for CVD, but they may be modified by proper interventions. Among
these, high BP is the strongest causation and, in this study, it has a high prevalence of
exposure in older than 50 years, and females [2].
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2.3. Machine Learning Models for the CVD Risk Prediction

In this research article, we experimented with various ML models to uncover which one
outperforms the others by evaluating their prediction performance. Specifically, we focused
on Naive Bayes (NB) [60] and Logistic Regression (LR) [61], which are probabilistic classifiers.
From Ensemble ML algorithms, Bagging [62], Rotation Forest (RotF) [63], AdaBoostM1 [64],
Random Forest (RF) [65], Voting [66] and Stacking [67] were exploited. Moreover, a fully con-
nected class of feedforward Artificial Neural Networks, i.e., Multilayer Perceptron (MLP) [68]
and k-Nearest Neighbors (kNN) [69], a distance-based classifier, were evaluated. Finally, in
Table 9, we illustrate the optimal parameters’ settings of the ML models that we experimented
with.

Table 9. Machine Learning Models’ Settings.

Models Parameters

NB useKernelEstimator: False
useSupervisedDiscretization: True

LR ridge = 10−8

useConjugateGradientDescent: True

MLP
learning rate = 0.1
momentum = 0.2

training time = 200

kNN

k = 3
Search Algorithm: LinearNNSearch

with Euclidean
cross-validate = True

RF
breakTiesRadomly: True

numIterations = 500
storeOutOfBagPredictions: True

RotF
classifier: Random Forest
numberOfGroups: True

projectionFilter: PrincipalComponents

AdaBoostM1
classifier: Random Forest

resume: True
useResampling: True

Stacking classifiers: Random Forest and Naive Bayes
metaClassifier: Logistic Regression

Voting
classifiers: Random Forest and Naive Bayes

combinationRule: average
of probabilities

Bagging
classifiers: Random Forest

printClassifiers: True
storeOutOfBagPredictions: True

2.4. Evaluation Metrics

In the context of ML models’ evaluation, we will consider Accuracy, Precision, Re-
call and Area Under Curve (AUC), which are the most frequently used in the relevant
literature [70].

Accuracy indicates the overall classification performance by measuring the number of
correctly predicted instances (CVD and non-CVD) in the whole data. Precision (or Positive
Predicted Value) shows the ratio of positive subjects in relation to true and false positive
subjects. In addition, Recall or sensitivity captures the ratio of subjects who had a CVD
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and are correctly classified (predicted) as positive, with respect to all positive subjects. The
aforementioned metrics are defined as follows

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, Accuracy =
TN + TP

TN + TP + FN + FP
(1)

where TP, TN, FP and FN stand for the True Positive, True Negative, False Positive and
False Negative, respectively. Finally, AUC values will be recorded in order to evaluate
the models’ efficiency. It varies between zero and one and is leveraged to identify the ML
model with the highest probability of distinguishing CVD from non-CVD instances. When
AUC attains one, this entails perfect discrimination among the instances of two classes.
On the other hand, if all CVD instances are classified as non-CVD and vice versa the AUC
equals 0.

3. Results

For the evaluation of our ML models, we relied on the Waikato Environment for
Knowledge Analysis (Weka) [71]. In addition, the experiments were performed on a
computer system with the following specifications: 11th generation Intel(R) Core(TM)
i7-1165G7 @ 2.80GHz, RAM 16GB, Windows 11 Home, 64-bit OS and x64 processor. We
applied 10-fold cross-validation to measure the models’ efficiency in the balanced dataset
of 8734 instances after SMOTE.

In this research work, various ML models, such as NB, LR, MLP, kNN, RF, RotF,
AdaBoostM1, Stacking, Voting and Bagging were evaluated by exploiting all of the above
metrics. In Table 10, we illustrate the performance of the models under consideration before
and after SMOTE with 10-fold cross-validation. As the results witness, class balancing
(using SMOTE) favoured the models’ Precision and Recall performance metrics by at
least 10% and a maximum of 36% depending on the classifier. From the results of our
experiments, it is shown that the Stacking model, which has as base classifiers the Random
Forest and Naive Bayes, and as a meta-classifier, the Logistic Regression indicated the best
performance in both cases (No SMOTE and SMOTE) in comparison to the other models. In
the SMOTE case, the Accuracy, Precision and Recall of Stacking were 87.8%, 88.3%, 88%
and an AUC of 92.8%. In addition, the Rotation Forest, Bagging and Stacking models noted
very proximal Accuracy of 87.2%, 87.6% and 87.8%, correspondingly. From the rest models,
RF, Voting and AdaBoostM1 behaved similarly with an Accuracy equal to 86.6%, 86.7%
and 86.8%. Moreover, neighbouring values in terms of Accuracy presented NB with 3NN
and LR with MLP.

Table 10. Performance Evaluation of ML models before and after SMOTE.

Accuracy Precision Recall AUC

No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE

NB 0.771 0.836 0.648 0.849 0.560 0.791 0.787 0.866

LR 0.772 0.846 0.706 0.855 0.444 0.799 0.789 0.880

MLP 0.768 0.840 0.656 0.858 0.519 0.806 0.771 0.894

3NN 0.714 0.833 0.544 0.801 0.446 0.807 0.695 0.811

RF 0.740 0.866 0.588 0.877 0.522 0.874 0.749 0.977

RotF 0.752 0.872 0.614 0.875 0.527 0.860 0.759 0.940

AdaBoostM1 0.738 0.868 0.584 0.876 0.521 0.871 0.724 0.976

Stacking 0.776 0.878 0.676 0.883 0.560 0.880 0.786 0.982

Bagging 0.753 0.876 0.619 0.878 0.520 0.876 0.763 0.975

Voting 0.775 0.867 0.660 0.834 0.557 0.838 0.781 0.946

Regarding the AUC, percentages equal to or greater than 94% were achieved by RotF
with 91.9%, Stacking with 92.1%, Voting with 91.7% and Bagging with 90.9%. Finally, for
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further validation of the models’ evaluation, in Figures 4 and 5 we plot the AUC ROC curve
of the proposed machine learning models without and with SMOTE, where the Stacking
technique’s superiority is confirmed.

Figure 4. ML models AUC ROC Curve without SMOTE.

Figure 5. ML models AUC ROC Curve after SMOTE.

In concluding the evaluation of the proposed models, we have to point out some limita-
tions concerning the dataset we relied on. First, it has not been acquired from a hospital, which
could give us a more detailed profile of the subjects under consideration. In addition, in the
current dataset, the amount of salt, alcohol and cigarette consumption is not available A diet
with salt usage higher than the healthy limits is an important risk factor for hypertension
development and, in turn, can lead to CVD [72]. Finally, as we have mentioned above,
waist circumference is another feature lacking from the dataset under consideration. Let us
recall that it is a strong indicator of abdominal obesity and may cause CVD.
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4. Discussion

This section aims to provide a brief discussion of the most recent works on the predic-
tion of CVDs using ML techniques and a variety of models.

The research community has applied various classifiers for CVDs prediction such as
Logistic Regression [40,73,74], Support Vector Machine [40,73–77], Naive Bayes [40,73,75,76],
Neural Networks (NN) [75], k-Nearest Neighbours [75,76], Decision trees (DT) [75], Ad-
aBoost [77], Random Forests [40,73–75], Language Model (LM) [75] and Gradient Boosting
(GB) [73,77,78]. In Table 11, we demonstrate a brief description of recent studies. The ap-
proaches listed in this table are compared, focusing on some key traits, i.e., the dataset,
proposed model and performance metrics.

A CVD risk prediction model was developed in [73] using several classification meth-
ods such as SVM, Gradient Boosting, RF, NB and LR. The proposed approach aimed to
provide awareness or diagnosis of CVD. The LR model achieved an accuracy of 86.5%.
Moreover, a prospective study of 423,604 UK Biobank participants without CVD was made
in [77]. The authors suggested an ML-based tool, called AutoPrognosis, for predicting
CVD risk by experimenting with all or subsets of variables (from 473 available) to identify
those that improve the accuracy of CVD risk prediction in the UK Biobank population. In
addition, they validated their model by comparing its performance with the Framingham
Risk Score, Cox proportional hazards model, and some standard ML models (linear SVM,
AdaBoost, and Gradient Boosting Machines).

Another interesting and recent approach is presented in [79]. More specifically, a
neuro-fuzzy (NF) decision support system (namely, a combination of neural networks with
fuzzy logic [80]) is proposed for learning predictive models in form of fuzzy rules, to assess
cardiovascular risk. The level of cardiovascular risk is identified by selecting important
signs for CVD patients, such as the heart rate (HR), breathing rate (BR), blood oxygen
saturation (SpO2) and lips colour. Among the investigated fuzzy models, the NF after data
oversampling achieved the maximum accuracy of 91%. The NF system has also prevailed
in comparison with the standard models (RF, MLP, DT, XGBoost).

Table 11. An overview of recent studies for CVD risk prediction.

Reference Dataset Proposed Model Performance

[40] [81] Logistic
Regression

AUC 78.4%
Accuracy 72.1%

[73] Long Beach VA
heart disease database

Logistic
Regression Accuracy 86.5%

[74] [81] SVM AUC 78.84%

[75] [81]
Hybrid Random Forest

with a linear model
(HRFLM)

Accuracy 88.7%

[76] [81] SVM (linear kernel) Accuracy 86.8%

[77] UK Biobank AutoPrognosis model AUC 77.4%

[78] [81] Gradient Boosting
algorithm

AUC 84%
Accuracy 89.7%

[79] Not Publicy Available Neuro-Fuzzy model Accuracy 91%

From now on, we will focus on studies that exploited the same dataset [81] as the
current study. More specifically, in [74], the authors used the correlation coefficient for
feature extraction before applying ML in order to develop prediction models for CVD. The
results showed that the SVM achieved an AUC of 78.84% under 5-fold cross-validation,
which indicated better performance in comparison to the other models (namely, LR and RF).

Furthermore, on [75], the authors proposed a new method that aimed to find significant
features by applying ML techniques resulting in improvement of the CVD predictive
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accuracy. The prediction model was developed assuming different combinations of features
and several known classification models (SVM, RF, NB, ANN, kNN, LM). The experiment
was repeated with the aforementioned ML techniques using 13 attributes. They produced
an enhanced performance accuracy level of 88.7% through the hybrid random forest using
a linear model (HRFLM) for CVDs prediction.

In [76], the authors’ purpose was to enhance the performance of ML models by
applying data preprocessing through normalization that fills up missing data with the
mean value of each feature instead of ignoring them. For the evaluation, kNN, NB and
SVM models were compared. The linear kernel SVM prevailed with an accuracy of 86.8%
assuming an 80:20 training and testing ratio, respectively. Moreover, the article [78],
proposed a recursive feature elimination-based gradient boosting algorithm to achieve an
accurate heart disease prediction. The proposed model achieved an accuracy of 89.7% and
an AUC equal to 84%.

In addition, in the recently published research work [40] that exploited the same
dataset as the four previous studies, the selected ML models were trained and tested
without data preprocessing to tackle empty and invalid data. Comparing the current
outcomes with the respective ones in [40], we observed that NB noted an essential increase
concerning all performance metrics, remaining the model with the highest performance
improvement. More specifically, NB Accuracy and Recall boosted from 59.6% to 72.2%
while AUC noted an increase from 69.4% to 78.1%. Moreover, the LR model performed
better, but the increase was small: (i) Accuracy and Recall raised from 72.1% to 72.7% and
(ii) AUC increased from 78.4% to 79.1%. As for the RF model, we see that the Accuracy,
Recall (from 70.9% to 86.2% ) and AUC (from 76.6% to 91.9%) were enhanced by 15.3%.
Isolating AUC has revealed the high inherent ability of the tree model to discriminate
between the diseased and healthy participants.

Here, we applied 10-fold cross-validation to the dataset that resulted after cleaning
and then class balancing (using SMOTE) to tackle the non-uniform distribution of the
subjects in the two states (CVD, non-CVD). Note that in the current study, we resorted
to more efficient schemes to design the desired classification models, with an emphasis
on ensemble techniques. In addition, we further validated the expected performance
of ensemble models with a graphical illustration of the AUC ROC curves. To sum up,
comparing the performance of the suggested models in previous works with the ones
applied here, the newly trained and tested stacking ensemble classifier prevailed, achieving
the highest AUC of 98.2%, although the Accuracy was 87.8%.

5. Conclusions

Recent developments in artificial intelligence (AI) and ML have facilitated the identifi-
cation of individuals at high risk for a disease manifestation, and they are exploited in the
present study to design a methodology for the risk prediction of cardiovascular disease
occurrence based on several risk factors. The suggested approach could support healthcare
professionals and clinical experts in their efforts to prevent the severe compilations of CVD
in both individual patients and at a population level. Through data analysis, we tried to
understand and explore the association of features with CVD and discover hidden patterns
concerning the signs related to CVD.

Moreover, through risk factors monitoring and analysis, personalized guidelines and
interventions can be suggested to prevent CVD occurrence. Medical experts can benefit
from ML models to regularly reassess the underlying risk. In addition, even if CVD occurs,
they can provide patients with novel guidelines and treatments based on individual patient
characteristics that may enhance their daily life, increase life expectancy and restrict mortality.

In this research work, plenty of ML models were evaluated considering a mixture of
anthropometric and biochemical data acquired by a non-invasive process. Actually, it is a
dataset that captures the most relevant factors (systolic and diastolic blood pressure) and
human habits that feed the occurrence of CVD. From the analysis, we demonstrated that
the application of data preprocessing through cleaning and class balancing is an essential
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step for the design of efficient and accurate models to quantify the CVD risk and, thus,
achieve a performance boost. Moreover, the experiments’ results showed that the Stacking
model outperformed the other models, reaching an Accuracy of 87.8%, Precision of 88.3%,
Recall of 88% and AUC of 98.2% after SMOTE with 10-fold cross-validation.

In future work, we aim to experiment with data that, except for the current features,
also assume waist circumference, amount of salt, alcohol and tobacco and reevaluate the
predictive ability of the current models. A challenging extension is the adoption of the
Shapley Additive exPlanations (SHAP) [82] method for measuring feature importance
and interpreting the machine learning models’ performance. SHAP is a game-theoretic
technique for explaining the output of any machine-learning model [83]. Finally, deep
learning models will be investigated and tested in CVD occurrence.
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Şenol, E.; Demircan, E.; et al. Diet, lifestyle and cardiovascular diseases: Linking pathophysiology to cardioprotective effects of
natural bioactive compounds. Int. J. Environ. Res. Public Health 2020, 17, 2326. [CrossRef]

10. Kaminsky, L.A.; German, C.; Imboden, M.; Ozemek, C.; Peterman, J.E.; Brubaker, P.H. The importance of healthy lifestyle
behaviors in the prevention of cardiovascular disease. Prog. Cardiovasc. Dis. 2021, 70, 8–15. [CrossRef]

11. Bays, H.E.; Taub, P.R.; Epstein, E.; Michos, E.D.; Ferraro, R.A.; Bailey, A.L.; Kelli, H.M.; Ferdinand, K.C.; Echols, M.R.; Weintraub,
H.; et al. Ten things to know about ten cardiovascular disease risk factors. Am. J. Prev. Cardiol. 2021, 5, 100149. [CrossRef]

12. Francula-Zaninovic, S.; Nola, I.A. Management of measurable variable cardiovascular disease’risk factors. Curr. Cardiol. Rev.
2018, 14, 153–163. [CrossRef]

13. Mensah, G.A.; Roth, G.A.; Fuster, V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J. Am. Coll.
Cardiol. 2019, 74, 2529–2532. [CrossRef] [PubMed]

14. Flora, G.D.; Nayak, M.K. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr.
Pharm. Des. 2019, 25, 4063–4084. [CrossRef] [PubMed]

15. Jagpal, A.; Navarro-Millán, I. Cardiovascular co-morbidity in patients with rheumatoid arthritis: A narrative review of risk
factors, cardiovascular risk assessment and treatment. BMC Rheumatol. 2018, 2, 10. [CrossRef]

16. Silvani, A. Sleep disorders, nocturnal blood pressure, and cardiovascular risk: A translational perspective. Auton. Neurosci. 2019,
218, 31–42. [CrossRef]

17. Konstantoulas, I.; Kocsis, O.; Dritsas, E.; Fakotakis, N.; Moustakas, K. Sleep Quality Monitoring with Human Assisted Corrections.
In Proceedings of the International Joint Conference on Computational Intelligence (IJCCI) (SCIPTRESS 2021), Online Streaming,
25–27 October 2021; pp. 435–444.

https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
http://doi.org/10.1161/HYPERTENSIONAHA.119.14240
http://www.ncbi.nlm.nih.gov/pubmed/31865786
http://dx.doi.org/10.1152/ajpheart.00087.2018
http://dx.doi.org/10.1016/j.jacc.2018.06.063
http://www.ncbi.nlm.nih.gov/pubmed/30213333
http://dx.doi.org/10.1055/s-0040-1708035
http://www.ncbi.nlm.nih.gov/pubmed/32289858
http://dx.doi.org/10.3389/fphar.2020.00422
http://dx.doi.org/10.1007/s11892-019-1161-2
http://dx.doi.org/10.3390/ijerph17072326
http://dx.doi.org/10.1016/j.pcad.2021.12.001
http://dx.doi.org/10.1016/j.ajpc.2021.100149
http://dx.doi.org/10.2174/1573403X14666180222102312
http://dx.doi.org/10.1016/j.jacc.2019.10.009
http://www.ncbi.nlm.nih.gov/pubmed/31727292
http://dx.doi.org/10.2174/1381612825666190925163827
http://www.ncbi.nlm.nih.gov/pubmed/31553287
http://dx.doi.org/10.1186/s41927-018-0014-y
http://dx.doi.org/10.1016/j.autneu.2019.02.006


Sensors 2023, 23, 1161 16 of 18

18. Tadic, M.; Cuspidi, C.; Mancia, G.; Dell’Oro, R.; Grassi, G. COVID-19, hypertension and cardiovascular diseases: Should we
change the therapy? Pharmacol. Res. 2020, 158, 104906. [CrossRef]

19. Shamshirian, A.; Heydari, K.; Alizadeh-Navaei, R.; Moosazadeh, M.; Abrotan, S.; Hessami, A. Cardiovascular diseases and
COVID-19 mortality and intensive care unit admission: A systematic review and meta-analysis. medRxiv 2020. [CrossRef]

20. Winzer, E.B.; Woitek, F.; Linke, A. Physical activity in the prevention and treatment of coronary artery disease. J. Am. Heart Assoc.
2018, 7, e007725. [CrossRef]

21. Rippe, J.M.; Angelopoulos, T.J. Lifestyle strategies for risk factor reduction, prevention and treatment of cardiovascular disease.
In Lifestyle Medicine, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 19–36.

22. Karunathilake, S.P.; Ganegoda, G.U. Secondary prevention of cardiovascular diseases and application of technology for early
diagnosis. BioMed Res. Int. 2018, 2018, 5767864. [CrossRef]

23. Dritsas, E.; Trigka, M. Data-Driven Machine-Learning Methods for Diabetes Risk Prediction. Sensors 2022, 22, 5304. [CrossRef]
24. Fazakis, N.; Kocsis, O.; Dritsas, E.; Alexiou, S.; Fakotakis, N.; Moustakas, K. Machine learning tools for long-term type 2 diabetes

risk prediction. IEEE Access 2021, 9, 103737–103757. [CrossRef]
25. Alexiou, S.; Dritsas, E.; Kocsis, O.; Moustakas, K.; Fakotakis, N. An approach for Personalized Continuous Glucose Prediction

with Regression Trees. In Proceedings of the 2021 6th South-East Europe Design Automation, Computer Engineering, Computer
Networks and Social Media Conference (SEEDA-CECNSM), Preveza, Greece, 24–26 September 2021; pp. 1–6.

26. Dritsas, E.; Alexiou, S.; Konstantoulas, I.; Moustakas, K. Short-term Glucose Prediction based on Oral Glucose Tolerance Test
Values. In Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies—HEALTHINF,
Online, 9–11 February 2022; Volume 5, pp. 249–255.

27. Fazakis, N.; Dritsas, E.; Kocsis, O.; Fakotakis, N.; Moustakas, K. Long-Term Cholesterol Risk Prediction with Machine Learning
Techniques in ELSA Database. In Proceedings of the 13th International Joint Conference on Computational Intelligence (IJCCI)
(SCIPTRESS 2021), Online Streaming, 25–27 October 2021; pp. 445–450.

28. Dritsas, E.; Fazakis, N.; Kocsis, O.; Fakotakis, N.; Moustakas, K. Long-Term Hypertension Risk Prediction with ML Techniques in
ELSA Database. In Learning and Intelligent Optimization; Springer: Berlin/Heidelberg, Germany, 2021; pp. 113–120.

29. Dritsas, E.; Alexiou, S.; Moustakas, K. Efficient Data-driven Machine Learning Models for Hypertension Risk Prediction. In
Proceedings of the 2022 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Biarritz,
France, 8–10 August 2022; pp. 1–6.

30. Dritsas, E.; Trigka, M. Machine Learning Methods for Hypercholesterolemia Long-Term Risk Prediction. Sensors 2022, 22, 5365.
[CrossRef] [PubMed]

31. Dritsas, E.; Alexiou, S.; Moustakas, K. COPD Severity Prediction in Elderly with ML Techniques. In Proceedings of the 15th
International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 29 June–1 July 2022;
pp. 185–189.

32. Dritsas, E.; Trigka, M. Supervised Machine Learning Models to Identify Early-Stage Symptoms of SARS-CoV-2. Sensors 2023,
23, 40. [CrossRef] [PubMed]

33. Dritsas, E.; Trigka, M. Stroke Risk Prediction with Machine Learning Techniques. Sensors 2022, 22, 4670. [CrossRef]
34. Dritsas, E.; Trigka, M. Machine learning techniques for chronic kidney disease risk prediction. Big Data Cogn. Comput. 2022, 6, 98.

[CrossRef]
35. Dritsas, E.; Trigka, M. Supervised Machine Learning Models for Liver Disease Risk Prediction. Computers 2023, 12, 19. [CrossRef]
36. Butt, M.B.; Alfayad, M.; Saqib, S.; Khan, M.; Ahmad, M.; Khan, M.A.; Elmitwally, N.S. Diagnosing the stage of hepatitis C using

machine learning. J. Healthc. Eng. 2021, 2021, 8062410. [CrossRef]
37. Dritsas, E.; Trigka, M. Lung Cancer Risk Prediction with Machine Learning Models. Big Data Cogn. Comput. 2022, 6, 139.

[CrossRef]
38. Konstantoulas, I.; Dritsas, E.; Moustakas, K. Sleep Quality Evaluation in Rich Information Data. In Proceedings of the 2022 13th

International Conference on Information, Intelligence, Systems & Applications (IISA), Corfu, Greece, 18–20 July 2022; pp. 1–4.
39. Dritsas, E.; Alexiou, S.; Moustakas, K. Metabolic Syndrome Risk Forecasting on Elderly with ML Techniques. In Learning and

Intelligent Optimization; Springer: Berlin/Heidelberg, Germany, 2022.
40. Dritsas, E.; Alexiou, S.; Moustakas, K. Cardiovascular Disease Risk Prediction with Supervised Machine Learning Techniques. In

Proceedings of the ICT4AWE, Online, 23–25 April 2022; pp. 315–321.
41. Ilyas, I.F.; Chu, X. Data Cleaning; Morgan & Claypool: San Rafael, CA, USA, 2019.
42. Zhang, Y.; Chen, Y.; Ma, L. Depression and cardiovascular disease in elderly: Current understanding. J. Clin. Neurosci. 2018,

47, 1–5. [CrossRef]
43. Gao, Z.; Chen, Z.; Sun, A.; Deng, X. Gender differences in cardiovascular disease. Med. Nov. Technol. Devices 2019, 4, 100025.

[CrossRef]
44. Elagizi, A.; Kachur, S.; Lavie, C.J.; Carbone, S.; Pandey, A.; Ortega, F.B.; Milani, R.V. An overview and update on obesity and the

obesity paradox in cardiovascular diseases. Prog. Cardiovasc. Dis. 2018, 61, 142–150. [CrossRef]
45. Whelton, S.P.; McEvoy, J.W.; Shaw, L.; Psaty, B.M.; Lima, J.A.; Budoff, M.; Nasir, K.; Szklo, M.; Blumenthal, R.S.; Blaha, M.J.

Association of normal systolic blood pressure level with cardiovascular disease in the absence of risk factors. JAMA Cardiol. 2020,
5, 1011–1018. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.phrs.2020.104906
http://dx.doi.org/10.1101/2020.04.12.20062869
http://dx.doi.org/10.1161/JAHA.117.007725
http://dx.doi.org/10.1155/2018/5767864
http://dx.doi.org/10.3390/s22145304
http://dx.doi.org/10.1109/ACCESS.2021.3098691
http://dx.doi.org/10.3390/s22145365
http://www.ncbi.nlm.nih.gov/pubmed/35891045
http://dx.doi.org/10.3390/s23010040
http://www.ncbi.nlm.nih.gov/pubmed/36616638
http://dx.doi.org/10.3390/s22134670
http://dx.doi.org/10.3390/bdcc6030098
http://dx.doi.org/10.3390/computers12010019
http://dx.doi.org/10.1155/2021/8062410
http://dx.doi.org/10.3390/bdcc6040139
http://dx.doi.org/10.1016/j.jocn.2017.09.022
http://dx.doi.org/10.1016/j.medntd.2019.100025
http://dx.doi.org/10.1016/j.pcad.2018.07.003
http://dx.doi.org/10.1001/jamacardio.2020.1731
http://www.ncbi.nlm.nih.gov/pubmed/32936272


Sensors 2023, 23, 1161 17 of 18

46. Choi, Y.J.; Kim, S.H.; Kang, S.H.; Yoon, C.H.; Lee, H.Y.; Youn, T.J.; Chae, I.H.; Kim, C.H. Reconsidering the cut-off diastolic blood
pressure for predicting cardiovascular events: A nationwide population-based study from Korea. Eur. Heart J. 2019, 40, 724–731.
[CrossRef]

47. Kabootari, M.; Hasheminia, M.; Azizi, F.; Mirbolouk, M.; Hadaegh, F. Change in glucose intolerance status and risk of incident
cardiovascular disease: Tehran Lipid and Glucose Study. Cardiovasc. Diabetol. 2020, 19, 41. [CrossRef] [PubMed]

48. Kondo, T.; Nakano, Y.; Adachi, S.; Murohara, T. Effects of tobacco smoking on cardiovascular disease. Circ. J. 2019, 83, 1980–1985.
[CrossRef] [PubMed]

49. Larsson, S.C.; Burgess, S.; Mason, A.M.; Michaëlsson, K. Alcohol consumption and cardiovascular disease: A Mendelian
randomization study. Circ. Genom. Precis. Med. 2020, 13, e002814. [CrossRef] [PubMed]

50. Kraus, W.E.; Powell, K.E.; Haskell, W.L.; Janz, K.F.; Campbell, W.W.; Jakicic, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L.;
et al. Physical activity, all-cause and cardiovascular mortality, and cardiovascular disease. Med. Sci. Sport. Exerc. 2019, 51, 1270.
[CrossRef]

51. Soliman, G.A. Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients 2018, 10, 780. [CrossRef]
52. Rattan, V.; Mittal, R.; Singh, J.; Malik, V. Analyzing the Application of SMOTE on Machine Learning Classifiers. In Proceedings

of the 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 5–7 March 2021;
pp. 692–695.

53. Dritsas, E.; Fazakis, N.; Kocsis, O.; Moustakas, K.; Fakotakis, N. Optimal Team Pairing of Elder Office Employees with Machine
Learning on Synthetic Data. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems &
Applications (IISA), Chania Crete, Greece, 12–14 July 2021; pp. 1–4.

54. Darst, B.F.; Malecki, K.C.; Engelman, C.D. Using recursive feature elimination in random forest to account for correlated variables
in high dimensional data. BMC Genet. 2018, 19, 65. [CrossRef]

55. Tangirala, S. Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm.
Int. J. Adv. Comput. Sci. Appl. 2020, 11, 612–619. [CrossRef]

56. Mohammad, A.H. Comparing two feature selections methods (information gain and gain ratio) on three different classification
algorithms using arabic dataset. J. Theor. Appl. Inf. Technol. 2018, 96, 1561–1569.

57. Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.;
Sanders, P.; et al. Obesity and cardiovascular disease: A scientific statement from the American Heart Association. Circulation
2021, 143, e984–e1010. [CrossRef]

58. Luo, D.; Cheng, Y.; Zhang, H.; Ba, M.; Chen, P.; Li, H.; Chen, K.; Sha, W.; Zhang, C.; Chen, H. Association between high blood
pressure and long term cardiovascular events in young adults: Systematic review and meta-analysis. BMJ 2020, 370, m3222.
[CrossRef] [PubMed]

59. Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms.
Can. J. Cardiol. 2018, 34, 575–584. [CrossRef]

60. Berrar, D. Bayes’ theorem and naive Bayes classifier. In Encyclopedia of Bioinformatics and Computational Biology: ABC of
Bioinformatics; Elsevier: Amsterdam, The Netherlands, 2018; Volume 403.

61. Nusinovici, S.; Tham, Y.C.; Yan, M.Y.C.; Ting, D.S.W.; Li, J.; Sabanayagam, C.; Wong, T.Y.; Cheng, C.Y. Logistic regression was as
good as machine learning for predicting major chronic diseases. J. Clin. Epidemiol. 2020, 122, 56–69. [CrossRef] [PubMed]

62. González, S.; García, S.; Del Ser, J.; Rokach, L.; Herrera, F. A practical tutorial on bagging and boosting based ensembles for
machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities. Inf. Fusion 2020,
64, 205–237. [CrossRef]

63. Rodríguez, J.J.; Juez-Gil, M.; López-Nozal, C.; Arnaiz-González, Á. Rotation Forest for multi-target regression. Int. J. Mach. Learn.
Cybern. 2022, 13, 523–548. [CrossRef]

64. Kang, K.; Michalak, J. Enhanced version of AdaBoostM1 with J48 Tree learning method. arXiv 2018, arXiv:1802.03522.
65. Palimkar, P.; Shaw, R.N.; Ghosh, A. Machine learning technique to prognosis diabetes disease: Random forest classifier approach.

In Advanced Computing and Intelligent Technologies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 219–244.
66. Dogan, A.; Birant, D. A weighted majority voting ensemble approach for classification. In Proceedings of the 2019 4th

International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, 11–15 September 2019; pp. 1–6.
67. Pavlyshenko, B. Using stacking approaches for machine learning models. In Proceedings of the 2018 IEEE Second International

Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018; pp. 255–258.
68. Masih, N.; Naz, H.; Ahuja, S. Multilayer perceptron based deep neural network for early detection of coronary heart disease.

Health Technol. 2021, 11, 127–138. [CrossRef]
69. Cunningham, P.; Delany, S.J. k-Nearest neighbour classifiers-A Tutorial. ACM Comput. Surv. (CSUR) 2021, 54, 1–25. [CrossRef]
70. Moccia, S.; De Momi, E.; El Hadji, S.; Mattos, L.S. Blood vessel segmentation algorithms—Review of methods, datasets and

evaluation metrics. Comput. Methods Programs Biomed. 2018, 158, 71–91. [CrossRef]
71. WEKA Tool. Available online: https://www.weka.io/ (accessed on 26 December 2022).
72. Hunter, R.W.; Dhaun, N.; Bailey, M.A. The impact of excessive salt intake on human health. Nat. Rev. Nephrol. 2022, 18, 321–335.

[CrossRef] [PubMed]

http://dx.doi.org/10.1093/eurheartj/ehy801
http://dx.doi.org/10.1186/s12933-020-01017-4
http://www.ncbi.nlm.nih.gov/pubmed/32228577
http://dx.doi.org/10.1253/circj.CJ-19-0323
http://www.ncbi.nlm.nih.gov/pubmed/31462607
http://dx.doi.org/10.1161/CIRCGEN.119.002814
http://www.ncbi.nlm.nih.gov/pubmed/32367730
http://dx.doi.org/10.1249/MSS.0000000000001939
http://dx.doi.org/10.3390/nu10060780
http://dx.doi.org/10.1186/s12863-018-0633-8
http://dx.doi.org/10.14569/IJACSA.2020.0110277
http://dx.doi.org/10.1161/CIR.0000000000000973
http://dx.doi.org/10.1136/bmj.m3222
http://www.ncbi.nlm.nih.gov/pubmed/32907799
http://dx.doi.org/10.1016/j.cjca.2017.12.005
http://dx.doi.org/10.1016/j.jclinepi.2020.03.002
http://www.ncbi.nlm.nih.gov/pubmed/32169597
http://dx.doi.org/10.1016/j.inffus.2020.07.007
http://dx.doi.org/10.1007/s13042-021-01329-1
http://dx.doi.org/10.1007/s12553-020-00509-3
http://dx.doi.org/10.1145/3459665
http://dx.doi.org/10.1016/j.cmpb.2018.02.001
https://www.weka.io/
http://dx.doi.org/10.1038/s41581-021-00533-0
http://www.ncbi.nlm.nih.gov/pubmed/35058650


Sensors 2023, 23, 1161 18 of 18

73. Dinesh, K.G.; Arumugaraj, K.; Santhosh, K.D.; Mareeswari, V. Prediction of cardiovascular disease using machine learning
algorithms. In Proceedings of the 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT),
Coimbatore, India, 1–3 March 2018; pp. 1–7.

74. Sun, W.; Zhang, P.; Wang, Z.; Li, D. Prediction of cardiovascular diseases based on machine learning. ASP Trans. Internet Things
2021, 1, 30–35. [CrossRef]

75. Mohan, S.; Thirumalai, C.; Srivastava, G. Effective heart disease prediction using hybrid machine learning techniques. IEEE
Access 2019, 7, 81542–81554. [CrossRef]

76. Louridi, N.; Amar, M.; El Ouahidi, B. Identification of cardiovascular diseases using machine learning. In Proceedings of the 2019
7th mediterranean congress of telecommunications (CMT), Fez, Morocco, 24–25 October 2019; pp. 1–6.

77. Alaa, A.M.; Bolton, T.; Di Angelantonio, E.; Rudd, J.H.; Van der Schaar, M. Cardiovascular disease risk prediction using automated
machine learning: A prospective study of 423,604 UK Biobank participants. PLoS ONE 2019, 14, e0213653. [CrossRef]

78. Theerthagiri, P.; Vidya, J. Cardiovascular disease prediction using recursive feature elimination and gradient boosting classification
techniques. Expert Syst. 2022, 39, e13064. [CrossRef]

79. Casalino, G.; Castellano, G.; Kaymak, U.; Zaza, G. Balancing accuracy and interpretability through neuro-fuzzy models for
cardiovascular risk assessment. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI),
Orlando, FL, USA, 5–7 December 2021; pp. 1–8.

80. Karaboga, D.; Kaya, E. Adaptive network based fuzzy inference system (ANFIS) training approaches: A comprehensive survey.
Artif. Intell. Rev. 2019, 52, 2263–2293. [CrossRef]

81. Cardiovascular Disease Dataset. Available online: https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
(accessed on 14 January 2023).

82. Nohara, Y.; Matsumoto, K.; Soejima, H.; Nakashima, N. Explanation of machine learning models using Shapley additive
explanation and application for real data in hospital. Comput. Methods Programs Biomed. 2022, 214, 106584. [CrossRef]

83. Chowdhury, S.U.; Sayeed, S.; Rashid, I.; Alam, M.G.R.; Masum, A.K.M.; Dewan, M.A.A. Shapley-Additive-Explanations-Based
Factor Analysis for Dengue Severity Prediction using Machine Learning. J. Imaging 2022, 8, 229. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.52810/TIOT.2021.100035
http://dx.doi.org/10.1109/ACCESS.2019.2923707
http://dx.doi.org/10.1371/journal.pone.0213653
http://dx.doi.org/10.1111/exsy.13064
http://dx.doi.org/10.1007/s10462-017-9610-2
https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
http://dx.doi.org/10.1016/j.cmpb.2021.106584
http://dx.doi.org/10.3390/jimaging8090229
http://www.ncbi.nlm.nih.gov/pubmed/36135395

	Introduction
	Materials and Methods
	Dataset Description
	Proposed Methodology for CVD Risk Prediction
	Data Preprocessing
	Features Ranking
	Features Prevalence in the Balanced Data

	Machine Learning Models for the CVD Risk Prediction
	Evaluation Metrics

	Results
	Discussion
	Conclusions
	References

