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Abstract: In light of the problems of a single vibration feature containing limited information on
the degradation of rolling bearings, the redundant information in high-dimensional feature sets
inaccurately reflecting the reliability of rolling bearings in service, and assessments of the degradation
performance being disturbed by outliers and false fluctuations in the signal, this study proposes a
method of assessing rolling bearings’ performance in terms of degradation using adaptive sensitive
feature selection and multi-strategy optimized support vector data description (SVDD). First, a
high-dimensional feature set of vibration signals from rolling bearings was extracted. Second, a
method combining the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and
K-medoids was used to comprehensively evaluate the features with multiple evaluation indicators
and to adaptively select better degradation features to construct the sensitive feature set. Next,
multi-strategy optimization of the SVDD model was carried out by introducing the autocorrelation
kernel regression (AAKR) and a multi-kernel function to improve the ability of the evaluation model
to overcome outliers and false fluctuations. Through validation, it could be seen that the method
in this study uses samples of rolling bearings in the healthy early stage to establish the evaluation
model, which can adaptively determine the starting point of the bearing’s degradation. The stability
and accuracy of the model were effectively improved.

Keywords: performance degradation assessment; rolling bearing; SVDD; feature selection; multi-
strategy optimization

1. Introduction

The failure of rolling bearings, as one of the key components of rotating machinery,
leads to the breakdown of the whole mechanical system [1,2]. During the in-service period,
the performance of rolling bearings degrades irreversibly due to fatigue, wear, and other
reasons. Effective assessment in the performance degradation assessment (PDA) of rolling
bearings in the service phase can help organize maintenance in a targeted manner to prevent
failure from occurring and improve the operational reliability of the whole machine.

Assessment of the degradation in the performance of rolling bearings mainly includes
three steps: acquisition of the rolling bearings’ monitoring data, feature extraction, and
establishment of the model for assessing the degradation. The degradation mechanism of
rolling bearings is complex, and the vibration signals of rolling bearings are nonlinear and
nonstationary. A single feature contains less information about bearings degradation and
has poor anti-interference ability, so it cannot accurately characterize the whole process
of degradation during performance. Constructing a high-dimensional feature set can
comprehensively reflect the information on the bearings’ degradation and benefit from
the complementarity of the differences among features, but some features are unrelated to
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degradation. Irrelevant features can be eliminated using feature selection methods, which
can be classified into two categories based on whether the methods are independent of
subsequent learning algorithms, namely filters and wrappers [3]. The wrapper method
is computationally complex and less versatile because it requires several iterations in
combination with subsequent learning algorithms to find the best combination of features.
Feature evaluation [4,5] is one of the commonly used filtering methods and is independent
of the subsequent learning algorithm. It can quickly remove irrelevant features with high
generality and interpretability, so it is often used in engineering applications [6]. Although
feature ranking can be achieved using feature evaluation, the selection of the feature set
relies heavily on experts’ prior knowledge, which reduces the efficiency of the algorithm
and may introduce subjective errors.

In general, data-driven fault diagnosis techniques use machine learning algorithms to
identify fault status to train predictive models based on the condition data collected under
normal and different faulty states [7]. The training of the model is based on the condition
data collected in the health stage and the degradation stage. Most of these data-driven
approaches rely entirely on data at different stages [8,9]. For assessing the degradation in
the performance of rolling bearings, the process of bearing degradation usually consists of
the healthy phase and the degradation phase. In actual production, fewer data are available
on the degradation stage, and sometimes, only data from the healthy state are available.
Knowledge-based methods often need to capture a large number of samples in advance to
identify faults [10]. Rai et al. [11] performed K-medoids clustering to train a model using
the full-life feature set of bearings obtained with empirical modal decomposition (EMD)
and calculated the dissimilarity between the bearing samples to be tested and the clustering
centers used as health indicators. Pan et al. [12] used lifting wavelet packet decomposition
and fuzzy c-means combined with the affiliation function to characterize the severity of
bearings failure. Adaptive determination of the start time of the degradation phase (first
predicting time, FPT) can effectively trigger an early warning to carry out condition-based
maintenance. Heng et al. [13] used principal component analysis (PCA) to fuse the time
domain features to extract the life cycle health index of rolling bearings and then divided
the performance stages according to the amplitude of the change trends of vibration signals.
These methods are suitable for obtaining health indicators but ignore the difficulties of
obtaining data from the degradation stage and carrying out secondary determination
of FPT. Finally, the data monitoring process inevitably suffers from the interference of
noise and environmental changes, which lead to outliers and false fluctuations in the
data. Liu et al. [14] used the features extracted from the time domain combined with the
SVDD model to monitor the faults in rolling bearings and to overcome the interference of
random fluctuations by using a decision strategy. The authors of [15] used the method of
repairing the evaluation results, which created problems such as subjectivity and reduced
interpretability. The recognition ability and robustness of models in mechanical learning
are always required [16,17]. Therefore, there are still shortcomings in using sensitive feature
sets for a PDA of bearings, such as the models’ reliance on data for the full life cycle of
the bearings, FPT needing to be determined twice, and the evaluation model being easily
affected by outliers and false fluctuations. How to achieve efficient fault diagnosis using
only health data has attracted our attention.

In summary, extracting effective feature sets is a prerequisite for accurately assessing
the performance of bearings, and improving the ability of the model to overcome outliers
and false fluctuations is one of the critical tasks in assessing degradation. Accordingly,
a rolling bearing performance degradation assessment method with the combination of
adaptive sensitive feature selection and multi-strategy optimized SVDD was proposed in
this paper. The specific contributions of this study are described below. TOPSIS-Kmedoids,
an adaptive sensitive feature selection method, was proposed, which could determine the
adaptive sensitive feature set without prior knowledge. In addition, SVDD was optimized
using a multi-strategy, in which AAKR was introduced to correct the errors in monitoring
data, and a multi-kernel function was constructed to improve the learning ability and
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generalization ability of the model. Lastly, the effectiveness of the proposed method
was verified using the XJTU-SY dataset for the full life cycle of rolling bearings from
Xi’an Jiaotong University, the PHM2012 Data Challenge dataset for the full life cycle of
rolling bearings, and a set of data from a self-made bench test of accelerated fatigue in
rolling bearing.

2. Determination of the Adaptive Sensitive Feature Set
2.1. Feature Extraction

In the field of prognostics and health management (PHM) of rolling bearings, the
vibration signal is one of the most commonly used means because it contains much infor-
mation on degradation. Feature extraction can reveal information on the performance of
sensor data. Twenty-four commonly used statistical features of vibration were extracted
from the time domain and the frequency domain of vibration signals, as shown in Table 1,
where F1–F7 are the frequency domain features, si is the amplitude of the vibration data,
ski is the spectral amplitude of the vibration data, and fi is the frequency of the vibration
data. For the data from two accelerometers, the features listed in Table 1 were extracted
separately to form the high-dimensional set, where n is the feature length and m is the
number of features.

Table 1. Time domain and frequency domain features.

Name Equation Name Equation

Mean value µs =
1
n (∑

n
i=1 si) Standard deviation σs =

√
1

n−1 ∑n
i=1 (si − µS)

2

Average amplitude µa = 1
n ∑n

i=1|si

∣∣∣ Variance σ2
s = 1

n−1 ∑n
i=1 (si − µS)

2

Maximum value Fmax = max(si) Kurtosis Fkurt =
1
n ∑n

i=1 (si − µS)
4

Minimum value Fmin = min(si) Skewness FSK = 1
n ∑n

i=1 (si − µS)
3

Peak value F|max| = max(
∣∣∣si

∣∣∣) Waveform index FWI = FRMS/µa

Peak to peak value FP2P = Fmax − Fmin Peak index FPI = F|max|/FRMS

Root mean square FRMS =
√

1
n ∑n

i=1 si
2 Impulse index FIF = F|max|/µa

Root amplitude FRA = ( 1
n ∑n

i=1
√
|si|)

2 Tolerance index FMF = F|max|/FRA

Kurtosis index FKI =
∑n

i=1 (si−µS)
4

(n−1)σs4
F1 µsk = 1

n ∑n
i=1 ski

F2 σsk =
√

1
n−1 ∑n

i=1 (ski − µSk)
2 F3 F3 =

√
∑n

i=1 (ski−µSk)
3

n
√

σsk
3

F4 F4 =

√
∑n

i=1 (ski−µSk)
4

nσsk
2

F5 F5 = 1
n ∑n

i=1 fi

F6 F6 =
√

1
n ∑n

i=1 ( fi − F22)
2ski F7 F7 =

√
∑n

i=1 fi
2ski

∑n
i=1 ski i

2.2. Feature Evaluation with Multiple Criteria

The quality of features significantly affects the results when assessing the degrada-
tion. Good features should correlate strongly with the bearings’ degradation process with
monotonic increasing or decreasing characteristics and robustness to outliers [3]. Most of
the existing methods for evaluating the quality of features use a single-indicator evalua-
tion scheme. To select excellent features, this study simultaneously considered the three
indicators of monotonicity, correlation, and robustness [18], which are described as follows:

(1) Monotonicity: The degradation of rolling bearings’ performance is an irreversible
process, so the features should be able to monotonically characterize the process of
rolling bearings from operation to failure. Because the time vector ti is strictly mono-
tonic, the correlation coefficient Mon(Ai) between the feature vector Ai and the time
vector ti is used to measure the monotonicity of the feature [19]. In practice, rolling
bearings often show a nonlinear degradation trend. The Spearman’s rank correlation
coefficient is widely applicable and is more sensitive to nonlinear correlation [1], so
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this study calculated the Spearman’s rank correlation coefficient as the monotonicity
index of the feature. The monotonicity score’s equation is shown in Equation (1) [3] as:

Mon(Ai) = 1− 6×∑n
i=1 [rank(Ai)− rank(ti)]

2

n(n2 − 1)
(1)

where rank(Ai) and rank(ti) indicate Ai and ti in ascending order, respectively, and n is the
feature length.

(2) Robustness: During the use of rolling bearings, the signal acquisition process is
inevitably disturbed by the environment, changes in the working condition, and
noise. The robustness index Rob(Ai) is used to measure the tolerance of the features
to random noise and abnormal values [19]. Equation (2) is used for calculating the
robustness score of features, which is a widely used and interpretable equation for
calculating the robustness index of features [1], as follows:

Rob(Ai) =
∑n

i=1 exp(−|fr
i /Ai|)

n
(2)

where ft
i and fr

i are the trend and residual values of the ith feature Ai, respectively. These two
items can be obtained using smoothing methods and satisfying the equation Ai = ft

i + fr
i [3].

(3) Correlation: The correlation index Cor(Ai) is used to measure whether the feature
can capture the trend of the degradation in performance across the life cycle of
rolling bearings [20]. The equation for calculating the correlation score is shown in
Equation (3), which can measure the change trend of the features across the whole life
cycle [3], as:

Cor(Ai) =

∣∣∣∣n n
∑

i=1
(ift

i)−
n
∑

i=1
ft

i
n
∑

i=1
i
∣∣∣∣√

[n
n
∑

i=1
(ft

i)
2 − (

n
∑

i=1
ft

i)
2]− [n

n
∑

i=1
i2 − (

n
∑

i=1
i)

2
]

(3)

where ft
i is the trend values of the ith feature Ai.

All the indexes above are positive indicators; that is, the higher the evaluation score,
the better the feature’s quality.

2.3. Adaptive Sensitive Feature Selection

A single metric can barely make a comprehensive and accurate evaluation of the
degradation features. Sensitive features should be selected using integration of the evalua-
tion indicators mentioned in Section 2.2. Linear weighting is commonly used to construct
the comprehensive metrics when relying on multiple metrics to evaluate features, and
the allocation of weights will directly impact the results of evaluation. The Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS) method is a commonly used
comprehensive evaluation method that constructs comprehensive metrics without relying
on prior knowledge to subjectively determine weights [3]. Meanwhile, the selection of
sensitive feature sets has the disadvantage of relying on the prior knowledge of experts.
The K-medoids algorithm is a robust clustering algorithm, which can divide features into
clusters according to rules to realize adaptive classification of the features. Therefore, the
TOPSIS–K-medoids method was applied for a comprehensive evaluation of the features
with the evaluation indexes constructed using Equations (1)–(3) and for constructing the
adaptive sensitive feature set. The key steps are shown in Figure 1 and described below.
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Figure 1. Process for selecting the adaptive sensitive features.

Step 1: Construction and normalization of the evaluation matrix. The feature evalua-
tion matrix Q = [Mon(Ai); Cor(Ai); Rob(Ai)] is constructed using Equations (1)–(3), where
M× N is a matrix of Q dimensions, M is the number of features (M = 48 in this study),
and N is the number of evaluation metrics (N = 3 in this study). The evaluation matrix is
normalized using Equation (4):

yij = qij/
√

∑M
i=1 qij

2 (4)

where qij(1 ≤ i ≤M, 1 ≤ j ≤ N) represents the elements in the evaluation matrix Q and
denotes the standardized value of the jth evaluation metric for the ith feature.

Step 2: Calculation of the TOPSIS score. The maximum and minimum values of
each evaluation index are obtained and defined as the superior solutions Y+

j and infe-

rior solutions Y−j , then the TOPSIS scores Si of the features are calculated according to
Equation (5) [4]:

Si =

√
∑M

i=1 (Y
−
j − yij)

2/[
√

∑M
i=1 (Y

+
j − yij)

2
+

√
∑M

i=1 (Y
−
j − yij)

2
] (5)

where the TOPSIS score is positively correlated with the signal, such that the higher the
score Si, the richer the degradation information contained in the feature.

Step 3: Feature clustering. The K-medoids algorithm was improved from the K-
means method. K-medoids is a clustering algorithm with good robustness. To achieve
adaptive classification of the features, K-medoids is used to divide the data into class
clusters according to certain rules, so that samples of the class cluster are similar. In order to
adaptively determine the sensitive features set, the feature selection process is transformed
into the K-medoids clustering problem with the TOPSIS score. The core idea of the K-
medoids algorithm is to divide the feature scores, as obtained in Step 2, into clusters under
the condition that the sum of dissimilarities between the cluster’s elements and the cluster’s
center is minimized [6]. The highest cluster is then extracted and determined to be the
sensitive feature set. The sum of algorithmic dissimilarities J is calculated as follows:

minJ =
k

∑
j=1

∑
xi=cj

D(Si, oj) (6)
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where cj is the jth cluster, oj is the jth medoid, and D(Si, oj) is the distance between Si and
oj. To overcome the problem that the K-medoids clustering algorithm can easily fall into
the local optimal state because of improper initial point selection, selecting samples with
the relative distance as the initial clustering center can effectively improve this situation.
A trade-off between similarity and the weighted Euclidean distance can improve the
classification’s accuracy [20]. Therefore, the improved K-medoids clustering algorithm
selects the initial clustering center with a more considerable distance and divides the
features into clusters according to the similarity of the weighted Euclidean distances. The
weight is the proportion of the feature’s score to the sum of all features’ scores, and the
weighted distance calculation equation is:

D(Si, oj) =‖ Si − oj ‖2
(

Si/∑n
i=1 Si

)
(7)

Step 4: Adaptive sensitive feature set. The medoid is adjusted using iteration according
to Equation (6) until the center point no longer changes. The cluster with a large TOPSIS
value of M in the center of the cluster is determined as the adaptive sensitive feature set
XL×m, where L is the length of the sensitive features, m is the number of selected features,
and xi is the ith sensitive feature.

3. Multi-Strategy Optimized Support Vector Data Description
3.1. Support Vector Data Description

SVDD is an effective one-class classification algorithm proposed by Tax et al. [21]
in 1999. The core idea of the SVDD algorithm is as follows: The target samples are first
mapped to the high-dimensional feature space using nonlinear transformation, then a
minimum hypersphere containing most, if not all, the training samples is established in the
feature space. In contrast, the nontarget values are distributed outside the hypersphere as
much as possible [13]. SVDD uses the hypersphere as its decision surface, and a schematic
diagram of this is shown in Figure 2. The center O and the radius R of the sphere are the
decision variables of the hypersphere, the samples on the boundary of the hypersphere are
the support vectors, and the samples outside the hypersphere are outliers.
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SVDD is a semi-supervised model in which only one type of target sample is required
for the model’s training, that is, the model can be trained with samples from normal stages.
The labeled samples are the training set of SVDD, which needs to construct the minimum
radius hypersphere. The objective function can be described using Equation (8):

F(R, O) = minR2 + C∑n
i=1 ξi (8)
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The objective function must also satisfy the constraints ‖ xi − o ‖≤ R2 + ξi, ξi ≥ 0,
where xi represents the labeled samples; ξi is the relaxation variable, which allows a small
number of labeled samples to be distributed outside the hypersphere to reduce the effect of
outliers on the radius of the hypersphere; and C is the penalty coefficient, which acts to
maintain the balance between the size of the radius R and the number of samples falling
outside the sphere.

Equation (8) is a quadratic convex optimization problem with univariate variables. By
introducing Lagrangian multipliers, constraints are fused into the objective functions to
form dual forms, and the following results can be obtained:

maxL = ∑n
i=1 αi(xi · xi)−∑n

i,j=1 αiαj
(
xi · xj

)
(9)

where xj represents the labeled samples, and
(
xi · xj

)
is the inner product of xi and xj.

To cope with the nonlinearity problem, the kernel function is introduced to replace
the inner product. The kernel function maps the data to the high-dimensional feature
space, which makes the nonlinear data easier to linearly separate in the high-dimensional
feature space. According to the Karush–Kuhn–Tucher condition [22], it is known that the
training samples satisfying αi = 0 will be wrapped inside the hypersphere; those satisfying
0 < αi < C will be the support vector; and those with αi = C are judged to be outliers. The
radius of hypersphere is obtained as follows:

R = [K(xi · xi)− 2
n

∑
i=1

αiK
(
xi · xj

)
+

n

∑
i,j=1

αiαjK
(
xi · xj

)
]
1/2

(10)

where K(xi · xi) is the kernel function.
The equation for calculating the distance between the new sample xn and the center R

of the hypersphere is:

D = [K(xn · xn)− 2
n

∑
i=1

αiK(xi · xn) +
n

∑
i,j=1

αiαjK
(
xi · xj

)
]

1
2

(11)

3.2. Construction of the Multi-Kernel Function

Single-kernel functions have limitations in dealing with outliers and false fluctuations.
Different kernel functions have different levels of efficacy, and multiple kernel functions
combine different types of kernel functions, which can combine good learning ability
and generalization. Using multi-kernel functions can make the results of SVDD more
robust [23,24]. The methods of constructing multi-kernel functions include multi-scale
kernels and synthetic kernel functions. The synthetic kernel approach has high learning
ability and generalization ability and low operational complexity. Therefore, this method
was used to construct multi-kernel functions as follows:

Km(xi, xj) = ωK1(xi, xj) + (1−ω)K2(xi, xj) (12)

where Km(xi, xj) represents the multi-kernel functions; ω represents the weights, 0 < ω < 1;
and K1(xi, xj) and K2(xi, xj) are single-kernel functions.

The single-kernel functions include Gaussian, Sigmoid, and Laplace kernel functions,
and the kernel functions are calculated using:

kGauss(xi, xj) = exp(− ‖ xi − xj ‖2 /σ2
1 )

kTanh(xi, xj) = tanh(σ2xi
Txj + σ3)

kLapl(xi, xj) = exp(− ‖ xi − xj ‖2 /σ4)
(13)

where σ1, σ2, σ3, and σ4 are the kernel parameters.
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3.3. Auto-Associative Kernel Regression

The monitoring data of rolling bearings cannot avoid outliers and false fluctuations
due to the interference of noise, working conditions, and environmental changes. These
may greatly impact the performance of the model [25]. Using auto-associative kernel
regression to reconstruct the signals can reduce the influence of outliers, so as to improve
the robustness and recognition accuracy of the model [26,27]. AAKR was computationally
efficient without relying on expert experience to adjust the parameters [3]. Therefore,
AAKR was introduced to correct errors in the monitoring data by reconstructing the current
feature matrix using the values of health history features to improve the evaluation ability
of the models of degradation.

The core idea of AAKR is to map the characteristic matrix at the current moment to
estimate the characteristic matrix of rolling bearings in the healthy state. AAKR maps the
characteristic matrix at the current moment Xt in the source space of degradation conditions

to the data of the expected state
∧
Xt in the target space of normal conditions using:

∧
Xt = ∑m

i=1(ωi · Xo)/∑m
i=1 ωi (14)

where m is the number of optimal degradation features selected, ωi represents the weights,
and ωi is determined by the similarity between Xo and Xt. AAKR uses a Gaussian radial
basis function as the kernel for mapping, and the values of ωi are calculated as follows:

ωi = e−di2/2h2
/
√

2πh2 (15)

where h is the kernel’s bandwidth and di2 is the distance between Xo and Xt. Both distance
similarity and spatial similarity were considered, and the equation is as follows:

di2 = 1 + (Xt − Xo)TS−1(Xt − Xo)− (Xt · Xo)/(
∣∣∣Xt

∣∣∣·∣∣∣Xo
∣∣∣) (16)

where S is the diagonal matrix. The value of the diagonal line is the variance of the historical
observation matrix.

3.4. Parameters of SVDD and Indicators of Degradation

The parameters C, σ, and ω of SVDD were determined using particle swarm opti-
mization. The fitness function of the minimum number of support vectors was used for
SVDD parameter optimization [14,28], and the calculation equation Fit of fitness function
is as follows:

Fit = NSV/Na (17)

where NSV is the number of support vectors; and Na is the total number of training samples.
In order to ensure the robustness of SVDD, the minimum number of support vectors is
set to 5% of the total number of training samples, and the optimization range of C is set
to [1/Na, 1/0.05Na]. The optimization range of another parameter σ is [0.01, 10] [28]. The
optimization range of another parameter ω is [0.01, 1].

To carry out a PDA of rolling bearings, the radius of the hypersphere was determined
by carrying out multi-strategy optimized SVDD training with some of the previous normal
samples. In the testing stage, the distance D between the test samples and the center of
the hypersphere was calculated as the health indicator (HI) according to Equation (11).
When D ≤ R, this indicated that the bearing was in the healthy stage; when D > R, this
indicated that the bearing had degraded, and a larger value indicated that the degradation
of the bearing was more serious. Moreover, when the HI exceeded the threshold value five
times in a row, the point where the threshold value was exceeded for the first time was
determined as the FPT.
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4. Steps of the Algorithm for Assessing Degradation

The process used for a PDA of rolling bearings with an adaptive sensitive feature set
and multi-strategy optimized SVDD is shown in Figure 3.
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The main steps are as follows:
Step 1: Data acquisition. Obtain vibration signals of the rolling bearing degradation

test platform.
Step 2: Construction of the adaptive sensitive feature set. The multi-domain high-

dimensional feature set A is constructed according to Table 1, and the adaptive sensitive
feature set X is determined with the TOPSIS–K-medoids method described in Section 2.3.
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Step 3: Optimize SVDD with multiple strategies. AAKR is introduced to correct the
errors in the monitoring data, and a multi-kernel function is constructed to improve the
learning ability and generalization ability of the model.

Step 4: Complete the training of the model. The samples in the early normal state of
the sensitive feature set are taken as the training data and are determined to be the historical
observation matrix. Training of the SVDD hypersphere using multi-strategy optimization
is completed to obtain the hypersphere’s radius R and center O.

Step 5: Assessment of the degradation in performance. The test samples are inputted
into the completed model, and the performance is evaluated according to the distance
value D outputted by the model. Meanwhile, R is set as the adaptive alarm threshold.
When D > R occurs several times in a row, the first occurrence point is determined as the
FPT, and an early warning is given regarding the degraded state of the rolling bearings.

5. Experimental Verification
5.1. Case 1: XJTU-SY Bearing Datasets
5.1.1. Experimental Description of Case 1

The XJTU-SY rolling bearing dataset was used for verification. Figure 4 shows the plat-
form used for the accelerated bearing degradation test in the experiment, which consisted
of the test bearings, an AC motor, a controller of the motor’s speed, a hydraulic loading
system, and other components [29]. Two accelerometers (model PCB352C33) were used
to collect the horizontal and vertical vibration signals of the bearing across the entire life
cycle, with a sampling frequency of 25.6 kHz. The signals were sampled for 1.28 s every
1 min during the experiment. The Illustration of sampling parameters is shown in Figure 5.
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The subset Bearing 1–3 was used for the experiment and analysis, which collected
158 samples. Figure 6 shows the time domain waveform of the data for the bearings’
complete life cycle.
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The PDA of rolling bearings was carried out according to the technical scheme in
Figure 3. First, the time domain and frequency domain features of the vibration signal
were extracted to construct a high-dimensional feature matrix and normalize it. Next, in
order to remove the invalid features, the evaluation index of each feature was calculated,
and the adaptive sensitive feature set was constructed according to Equations (4)–(7). The
adaptive sensitive features thus determined are shown in Figure 7 (the notation VX-FX
represents the corresponding features in Table 1 extracted from the vibration signal in the
horizontal direction, and VY-FX represents the corresponding features from the vibration
signal in the vertical direction). As the performance of the rolling bearing deteriorates,
the sensitive features change according to different patterns. Each characteristic contains
different information about the degradation of the rolling bearing. Finally, the samples
from the early part of the healthy stage (i.e., the first 25% of all the samples) were selected
as the training samples to complete the training of the SVDD model after multi-strategy
optimization. Next, the test samples were fed into the model obtained using training,
and the variation trend of the distance D from each sample to the center of the sphere
was recorded.
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5.1.2. Experimental Result of Case 1

To verify the effectiveness of the proposed method, commonly used degradation
assessment methods were selected for comparison, including (a) constructing performance
metrics by fusing the sensitive features with a PCA, (b) using root mean square (RMS)
feature metrics, (c) combining a continuous hidden Markov model (CHMM) with the
sensitivity to build assessment metrics, and (d) using the original SVDD combined with
sensitive features to build assessment metrics. Method (d) and the proposed method could
determine the warning threshold of degradation adaptively, and the rest of the methods
determined the threshold using the three principles of the international engineering stan-
dard ISO-10816 [30]. When the degradation index exceeded the threshold five consecutive
times, the first point where the threshold was exceeded was determined to be the FPT [31].

Figure 8a–e shows the health indicators of each method. In Figure 8e, in the first
58 samples, the HI values were lower than the warning threshold, indicating that the
bearing was in a healthy state. From the 59th sample onwards, the HI values exceeded
the threshold and gradually increased, indicating that the rolling bearing’s performance
had started to deteriorate. Envelope spectrum analysis was carried out on Samples 58 and
59, and the analytical results are shown in Figure 9. Compared to Figure 9a, the envelope
spectrum in Figure 9b shows the rotation frequency of 32.0 Hz and the outer ring fault
has the characteristic frequency of 109.4 Hz and its multiplier, indicating that the rolling
bearing was in the healthy state before Sample 58. This shows that the proposed method
accurately determined the FPT, while Method (c) determined a wrong FPT, and Method (a)
determined the FPT obviously later.
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Figure 8. Comparison of the health indicators of different methods. (a) PDA results of PCA; (b) PDA
results of RMS; (c) PDA results of CHMM; (d) PDA results of SVDD; (e) PDA results of the proposed
methodology.
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Figure 9. Results of envelope spectrum analysis. (a) Envelope spectrum of sample No. 58; (b) Enve-
lope spectrum of sample No. 59.

In order to quantitatively evaluate the pros and cons of HIs constructed using different
methods, multiple evaluation indicators are used to evaluate the results in this study. In
addition to the monotonicity index (Mon), the robustness index (Rob), and the correlation
index (Cor) constructed according to Equations (1)–(3), this paper also introduces the
separability index (Sep) to quantitatively evaluate the HIs. The Sep was used to measure
the ability of the assessment results to discriminate the degradation stage and the ability
to warn of the early failure of rolling bearings [1,30]. TOPSIS was used to combine the
evaluation indicators to comprehensively measure the results of the evaluation.

The evaluation index and FPT determined using each method are displayed in Table 2.
From Table 2, it can be seen that for the HI constructed using the proposed method on this
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dataset, only the Cor was slightly lower than the score of the CHMM method. However,
the Sep, Mon, and Rob indexes had the highest score, and our proposed model had the best
comprehensive score.

Table 2. Evaluation results of the different health indicators.

Index
Method FPT Sep Mon Cor Rob TOPSIS Score

PCA 64 0.703 0.981 0.828 0.989 0.621
RMS 59 0.370 0.974 0.801 0.773 0.325

CHMM 56 0.563 0.912 0.953 0.898 0.532
SVDD 59 0.523 0.967 0.824 0.881 0.477

Proposed method 59 0.900 0.986 0.927 0.922 0.914

The local magnification of each evaluation method showed that the HI of the proposed
method was the smoothest in the healthy phase, while the HI of other methods fluctuates
greatly. In addition, the HI of the proposed method had the highest robustness and compre-
hensive score. Moreover, the envelope spectrum analysis shows that the proposed method
accurately determines the FPT, which provides an adequate warning for equipment main-
tenance. Therefore, it can be seen that the proposed method is sensitive to the performance
degradation of rolling bearings in the whole life cycle and can better tolerate outliers and
false fluctuations.

5.2. Case 2: IEEE PHM2012 Data Challenge Dataset
5.2.1. Experimental Description of Case 2

The IEEE PHM2012 Data Challenge dataset provides the full-life vibration signals of
rolling bearings in both the horizontal and vertical directions [32]. Figure 10 shows the
experimental system. The sampling frequency of the vibration signal was 25.6 kHz, the
sampling interval was 10 s, and the sampling time was 0.1 s.
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Figure 10. PRONOSTIA platform was used for the PHM2012 datasets.

Verification was carried out using the “Bearing 1.1” subset of the data, which contained
2803 samples. Figure 11 shows the waveform diagram across the time domain for the
life cycle of the bearing’s data in this test. Then, feature selection and the degradation
assessment were carried out using the proposed methods.
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Figure 11. Bidirectional acceleration waveforms of rolling bearings in the time domainof Case 2.
(a) Horizontal vibration signals; (b) Vertical vibration signals.

5.2.2. Experimental Result of Case 2

The results obtained with the methods used for comparison and the proposed methods
are shown in Figure 12. In Figure 12a–e, the FPT determined using the proposed method is
190 min, which is earlier than that of the other methods. In Figure 12e, in the first 190 min
of operation, the HI value of most samples was below the warning threshold, indicating
that the bearing was in a healthy state. After 190 min, the HI value exceeded the threshold
value and increased steadily, indicating that the performance of the rolling bearings had
begun to deteriorate. Since this dataset does not provide a description of the form of failure,
envelope spectrum analysis was not conducted on the samples at the FPT nodes. Local
magnification of each evaluation method showed that the HI of the proposed method was
the most stable in the healthy phase, and the overall degradation trend was more obvious
in the unhealthy state.
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Figure 12. Health indicators of different methods. (a) PDA results of PCA; (b) PDA results of RMS;
(c) PDA results of CHMM; (d) PDA results of SVDD; (e) PDA results of the proposed methodology.
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The indexes used for evaluating the health indicators of the previous methods for
this subset of data are shown in Table 3. The comparison shows that the health indicators
constructed using the proposed method in this study were optimal for all indicators and
had the best overall score.

Table 3. Evaluation of the different health indicators.

Index
Method FPT Sep Mon Cor Rob TOPSIS Score

PCA 194 0.406 0.965 0.608 0.830 0.097
RMS 194 0.318 0.962 0.608 0.890 0.201

CHMM 228 0.671 0.981 0.955 0.951 0.821
SVDD 215 0.518 0.969 0.866 0.958 0.567

Proposed method 190 0.812 0.987 0.959 0.962 0.998

Furthermore, the local magnification of each evaluation method shows that the HIs of
this study’s method were the smoothest in the healthy phase, and the HIs of this study’s
method had the highest robustness score, which shows that this method could better
overcome the outliers. In addition, the HIs constructed using the proposed method had
the highest comprehensive score, and it determines the FPT earlier, which shows that the
proposed method could appropriately reflect the degradation of rolling bearings across
their entire life cycle.

5.3. Case 3: Bearing Data from a Home-Made Test Bench
5.3.1. Experimental Description of Case 3

In order to further verify the effectiveness of the method, experimental verification
was carried out with a home-made experimental rig for testing accelerated fatigue in
rolling bearings. The test bench is displayed in Figure 13. It consisted of an AC motor, a
frequency converter, the coupling, the test bearing, the support bearing, a hydraulic loading
system, and other components [33]. An SKF-7406 angular contact bearing was used in
the experiment. During the experiment, two IMI 603C01 accelerometers were utilized to
collect the vertical and horizontal vibration signals of the bearing throughout its life cycle.
The sampling frequency of the vibration signal was 25.6 kHz, and the vibration signal was
recorded for 1 s every 10 min. The collection was stopped when the maximum amplitude
of the collected vibration signal samples exceeded 10 times the maximum amplitude of the
initial sample [29].
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To maintain the consistency of the experimental conditions, the test bearings were
run to failure under a constant load and constant speed. The vibration acceleration data
collected for the bearings’ entire life cycle from the healthy state to severe degradation are
shown in Figure 14. In addition, the proposed method was also used for feature selection
and assessing the degradation with the data obtained from the experiments.
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Figure 14. Bidirectional acceleration waveforms of rolling bearings in the time domainof Case 3.
(a) Horizontal vibration signals; (b) Vertical vibration signals.

5.3.2. Experimental Result of Case 3

The results obtained using the proposed method and the methods used for comparison
are presented in Figure 15, and the index values and FPT determined using each method are
shown in Table 4. As can be observed in Figure 15e, during the first 145 sample periods of
operation, the HI values were all below the warning threshold, indicating that the bearing
was in a healthy state. After the 145th sample, the HI value continuously exceeded the
threshold and gradually increased, indicating that the performance of rolling bearings had
begun to deteriorate. Local magnification of each evaluation method showed that the HI of
the other methods had false alarm values in the healthy phase. In contrast, the HI of this
method had no false alarm values and had minimal fluctuations.
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Sensors 2023, 23, 1110 18 of 20

Table 4. Evaluation of the different health indicators.

Index
Method FPT Sep Mon Cor Rob TOPSIS Score

PCA 150 0.660 0.964 0.898 0.892 0.626
RMS 208 0.535 0.962 0.859 0.812 0.407

CHMM 208 0.582 0.917 0.933 0.864 0.500
SVDD 149 0.602 0.927 0.863 0.884 0.519

Proposed method 144 0.671 0.965 0.884 0.892 0.835

For these data, the evaluation indicators of the results of the methods mentioned
above are listed in Table 4. Table 4 shows that the Cor index of the HI constructed using the
proposed method was slightly lower than that of the CHMM method, but the Sep, Mon,
and Rob index scores were the best, and our method had the best comprehensive score.

The proposed method had the best comprehensive score, and the FPT was determined
earlier than other methods. Meanwhile, local magnification showed that the HI of this
method had no false alarm values and had minimal fluctuations, and the HI had the highest
robustness score, indicating that the model could better overcome the influence of outliers.
Therefore, this showed a good agreement between the results of the degradation assessment
and the degree of failure, accurately reflecting the health status of the bearing.

6. Conclusions

Determining the sensitive features set relies heavily on the prior knowledge of experts
and degradation models having low-tolerance outliers and false fluctuations, and a method
for evaluating the degradation of rolling bearings using adaptive sensitive feature selection
and multi-strategy optimized SVDD was proposed. The effectiveness of the method was
proved using experiments, leading to the following conclusions:

(1) The TOPSIS–K-medoids method was proposed for adaptive determination of the
sensitive feature set. This method determines the adaptive sensitive feature set
by using the monotonicity, correlation, and robustness indexes for evaluation, and
the process does not need to rely on a priori knowledge to subjectively determine
parameters such as the weights and thresholds, which improves the quality of the
input data used for the PDA model.

(2) The multi-strategy optimized SVDD strategy trained the model using only the early
samples of the healthy phase, adaptively determined the FPT, overcame the interfer-
ence of outliers and false fluctuations, and better characterized the bearings’ degree
of failure. The HI showed better consistency with the development trend of faults.

(3) After verification with the XJTU-SY bearing data, the IEEE PHM2012 Data Challenge
dataset for bearings, and data obtained with a self-made test bench of accelerated
fatigue in rolling bearings, the multi-strategy optimized SVDD model proposed in this
paper demonstrated better performance compared to multiple mainstream methods
according to a comparison of multiple evaluation indexes, such as monotonicity,
correlation, robustness, and separability.

In summary, a rolling bearing performance degradation assessment method with the
combination of adaptive sensitive feature selection and multi-strategy optimized SVDD
was proposed in this paper. The proposed feature selection method determines the adaptive
sensitive feature set with multiple feature evaluation indexes instead of prior knowledge;
the multi-strategy optimized SVDD only uses the early samples in the healthy stage to train
the model and adaptively determines the FPT while better overcoming the interference of
outliers and false fluctuations. The proposed model could accurately reflect the degradation
status of rolling bearings verified using experiments, which has a positive effect on the
early detection of potential failure of rolling bearings and their maintenance.
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