
Citation: Maray N.; Ngu, A.H.; Ni, J.;

Debnath, M.; Wang, L. Transfer

Learning on Small Datasets for

Improved Fall Detection. Sensors

2023, 23, 1105. https://doi.org/

10.3390/s23031105

Academic Editor: Raffaele Gravina

Received: 15 December 2022

Revised: 6 January 2023

Accepted: 15 January 2023

Published: 18 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Transfer Learning on Small Datasets for Improved
Fall Detection
Nader Maray, Anne Hee Ngu *, Jianyuan Ni , Minakshi Debnath and Lu Wang

Department of Computer Science, Texas State University, San Marcos, TX 78666, USA
* Correspondence: angu@txstate.edu; Tel.: +1-512-245-3409

Abstract: Falls in the elderly are associated with significant morbidity and mortality. While numerous
fall detection devices incorporating AI and machine learning algorithms have been developed, no
known smartwatch-based system has been used successfully in real-time to detect falls for elderly
persons. We have developed and deployed a SmartFall system on a commodity-based smartwatch
which has been trialled by nine elderly participants. The system, while being usable and welcomed
by the participants in our trials, has two serious limitations. The first limitation is the inability to
collect a large amount of personalized data for training. When the fall detection model, which is
trained with insufficient data, is used in the real world, it generates a large amount of false positives.
The second limitation is the model drift problem. This means an accurate model trained using data
collected with a specific device performs sub-par when used in another device. Therefore, building
one model for each type of device/watch is not a scalable approach for developing smartwatch-based
fall detection system. To tackle those issues, we first collected three datasets including accelerometer
data for fall detection problem from different devices: the Microsoft watch (MSBAND), the Huawei
watch, and the meta-sensor device. After that, a transfer learning strategy was applied to first explore
the use of transfer learning to overcome the small dataset training problem for fall detection. We also
demonstrated the use of transfer learning to generalize the model across the heterogeneous devices.
Our preliminary experiments demonstrate the effectiveness of transfer learning for improving fall
detection, achieving an F1 score higher by over 10% on average, an AUC higher by over 0.15 on
average, and a smaller false positive prediction rate than the non-transfer learning approach across
various datasets collected using different devices with different hardware specifications.

Keywords: fall detection; transfer learning; small dataset

1. Introduction

Falls are one of the leading causes of death and injury among the elderly population [1].
According to the U.S. Center of Disease Control and Prevention, one in four Americans
aged 65 and older falls each year [2]. A recent CDC report also stated that around 28%
of people aged over 65 lived alone [3]. In addition, the Agency for Healthcare Research
and Quality reports that each year, somewhere between 700,000 and 1,000,000 people
in the United States fall in the hospital alone [4]. The resultant inactivity caused by a
fall in older adults often leads to social isolation and increased illnesses associated with
inactivity including infections and deep vein thrombosis. Consequently, a large variety
of wearable devices which incorporate fall detection systems have been developed [5–8].
Wearable devices have the promise of bringing personalized health monitoring closer to the
consumers. This phenomenon is evidenced in the articles entitled “Staying Connected is
Crucial to Staying Healthy” (WSJ, 25 June 2015) and “Digital Cures For Senior Loneliness”
(WSJ, 23 February 2019). The popularity of using a smartwatch, paired with a smartphone,
as a viable platform for deploying digital health applications is further supported by release
of the Apple Series brand of smartwatches [9] which has a built-in “hard fall” detection
application as well as an ECG monitoring App. Apple also added car crash detection in the

Sensors 2023, 23, 1105. https://doi.org/10.3390/s23031105 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031105
https://doi.org/10.3390/s23031105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6968-6536
https://doi.org/10.3390/s23031105
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031105?type=check_update&version=2


Sensors 2023, 23, 1105 2 of 24

most recently version of Apple watches. An Android-Wear based commercial fall detection
application called RightMinder [10] has been released on Google Play since 2018. One of the
major sensors used in fall detection on a smartwatch is an accelerometer, which measures
the acceleration of an object. Acceleration is the change in velocity with respect to time and
velocity represents the rate at which an object changes its position. Acceleration data is
commonly used in fall detection because accelerometer sensors are found in most smart
devices, and a distinct change in acceleration happens when a fall occurs. The clustered
spikes in Figure 1a show a unique pattern in the acceleration data during one second when
the fall occurs, which means that falls can be identified in acceleration data by that pattern.

Previously, we have developed a watch-based SmartFall App using long short-term
memory neural networks (LSTM), an artificial recurrent neural network (RNN) with feed-
back connections, to detect falls based on the above pattern, by training it on simulated
fall data collected using a Microsoft watch (MSBAND) [11,12]. We have deployed this
SmartFall system on a commodity-based smartwatch which has been trialled by nine senior
participants. Each participant was recruited under IRB 7846 at Texas State University to
use the SmartFall system to collect their ADLs (activity of daily living) data by just asking
them to wear the watch for three hours per day over a seven day period. The user only
needs to interact with the watch and provide feedback when false positives are generated
by the system. Despite the system was welcomed by the participants in our trials, it still
have several limitations: (1) fall detection models trained on simulated falls and ADLs
performed by young, healthy test subjects suffer from the fact that they do not exhibit the
same movement characteristics as the elderly population. For example, an elderly person
typically has comorbidities that affect their movements including the effects of multiple
medications, poor vision, stroke, arthritis, sensory neuropathies and neuro-degenerative
diseases such as Parkinson’s disease, all of which may contribute to their risk of falling [13];
(2) a sudden hand or wrist movement from some ADLs can interfere with the recognition
of this pattern. For example, Figure 1b is the signal generated from a person putting
on a jacket and has some cluster spikes which can be mistaken for a fall; (3) there is no
guarantee that accelerometer data collected from different smartwatch devices is exactly of
the same quality for fall detection since they have different hardware characteristics and
API libraries.

In addition, we find that a fall detection model trained with data collected using a
specific device usually does not generalize well to similar data collected using a different
device because of differences in hardware characteristics which result in the acceleration
data being sensed and recorded with varying G units, sampling rates, and X, Y and Z
orientations of the accelerometer data. For example, Huawei watch specified that data
can be collected in 32 ms, but in reality, the data is always collected in every 20 ms while
MSBAND collects data in 32 ms as specified. To tackle the aforementioned issues, we
propose to use transfer learning approach to solve the small dataset problem in smartwatch
based fall detection system. More specifically, while collecting a large amount of ADL or fall
data from the elderly population is an unrealistic task (i.e., the target domain), collecting a
small amount of everyday movement data from the elderly population is possible (i.e., the
source domain). Therefore, the obtained model in the source domain can be utilized and
retrained in the target domain. This will enable us to create a real-world smartwatch-based
fall detection model usable by older adult where we only need to collect a small amount of
data to train a model tailored to each of them.



Sensors 2023, 23, 1105 3 of 24

(a) (b)

Figure 1. Two different smartwatch accelerometer data. (a) Acceleration from a fall. (b) Acceleration
from putting on a jacket.

In this paper, we first demonstrate that transfer learning is an effective strategy for
overcoming the small data set problem in fall detection by using data collected from the
same type of device (meta-sensor) on both left and right wrists. After that, we leverage the
pretrained model on one device and generalize the model via transfer learning on another
device. For instance, we perform a set of experiments that transfer a LSTM fall detection
model that we published in [11] using data collected with the source MSBAND device to
a target meta-sensor device. We show that the fall detection model created via transfer
learning has a higher F1-score than the LSTM model created directly from the limited
meta-sensor data trained from scratch. We also demonstrate that another small fall data
set collected using a Huawei smartwatch performed better when trained using transfer
learning from a pretrained MSBAND model as well. Finally, we show that fall detection can
be improved by enabling a scablable way to add new sensors to improve our fall detection
system via training an ensemble of classifiers using transfer learning. For example, adding
accelerometer data sensed from a cell phone might resolve the false positives generated
from an ADL shown in Figure 1b. The main contributions of this paper are:

• Collecting three datasets including accelerometer data for fall detection problem from
different devices: the MSBAND watch, the Huawei watch, and the meta-sensor device.

• Conducting an in-depth study of the effectiveness of transfer learning for fall detection
using a small data set by creating effective left and right wrist fall detection models.

• Exploring the practicality of applying transfer learning on heterogeneous sensing
devices by transferring an existing fall detection model, trained on our MSBAND data
set, to a meta-sensor device (in one experiment), as well as a Huawei smartwatch (in
another separate experiment), both using a small amount of device specific data.

• Demonstrating the improvement of fall detection using transfer learning to create
an ensemble model of both left and right wrists or any additional heterogeneous
sensing device.

The remainder of this paper is organized as follows. Section 2 describes the related
work. In Section 3, we discuss the architecture of the SmartFall system and the App used
for running the fall detection model created by the transfer learning. In Section 4, we
provide the methodology used in establishing our hypothesis. This includes the detailed
descriptions of how to collect three datasets from three different devices, the proposed
LSTM model architecture, the tuning of hyperparameters of the LSTM model, and the trans-
fer learning framework that was used for our experiments. In Section 5, the experimental
procedures and results are described and shown. Finally, Section 6 concludes the paper.

2. Related Work

We firstly review the traditional healthcare area where transfer learning is intensively
explored and then we conduct an overview of transfer learning methods with a focus on
time-series data. Finally, we compare our method to the existing works which related to
fall detection area, and clarify its novelties.



Sensors 2023, 23, 1105 4 of 24

2.1. Transfer Learning for General Healthcare

Despite deep learning (DL) has achieved extraordinary success in a variety of tasks re-
cently [14–16], one of the main drawbacks is DL usually relies on abundant labeled training
examples. In many scenarios, collecting sufficient training data is time-consuming or even
impossible. Semi-supervised learning method can address this problem by some extent
since it only requires a limited amount of labeled data [17]. However, it fails to produce
satisfactory models when unlabeled instances are difficult to obtain as well. Consequently,
transfer learning, which emphasizes transferring knowledge between various domains, is
a promising approach to address the aforementioned problem. More specifically, transfer
learning aims to transfer the prior knowledge from existing domains to a new domain [18].
Currently, transfer learning can be divided into two categories due to the discrepancy
between domains: homogeneous and heterogeneous transfer learning. In general, homoge-
neous transfer learning approaches try to deal with situations where the domains have the
same feature space. In contrast, heterogeneous transfer learning methods are proposed to
handle the situations where the domains have mismatched feature spaces [19].

Due to the fact that data collection is hard to conduct in the privacy-sensitive healthcare
area, extensive studies have been proposed to adopt homogeneous transfer learning to solve
the data scarcity issue [20–24]. For instance, Maqsood et al. [20] adopted and finetuned
the AlexNet [15] for the Alzheimer’s disease detection problem. Initially, the AlexNet
network is pretrained over an ImageNet [25] dataset (i.e., the source domain) first. After
that, the convolutional layers of AlexNet are fixed, and the last three fully connected layers
are replaced by one softmax layer, one fully connected layer, and one output layer. The
modified AlexNet is then finetuned on the the Alzheimer’s data set [26] (i.e., the target
domain). Results indicate that the proposed transfer learning approach retains the highest
accuracy for this multiclass classification problem. Similarly, Shin et al. [21] applied the
transfer learning method and fine-tuned the pre-trained convolutional neural networks
(CNN) to solve the computer-aided detection problems. Moreover, Donahue et al. [27]
proved that AlexNet [15] could improve the performances of various problems, including
object recognition and scene recognition.

In addition to the aforementioned homogeneous transfer learning methods, heteroge-
neous transfer learning methods have been explored in healthcare area as well [28–30]. For
example, Palanisam et al. demonstrated that by applying transfer learning method, model
pretrained on image data, such as ImageNet [25], can recognize features on non-image data
such as audio [28]. Specifically, the audio data was converted into spectrogram images
first, and the knowledge from model which pretrained on ImageNet data can transfer to
the spectrogram domain for audio classification problem. In addition, Koike et al. applied
transfer learning method on the heart disease prediction from heart sounds [29]. They
compared two transfer learning scenarios which pretrained on audio and image datasets,
respectively, and highlight how models pretrained on audio can outperform the one from
image models. In summary, it can be noted that all aforementioned works are based on the
pretrained models on a large-scale source domain, such as ImageNet [25] dataset.

2.2. Transfer Learning for Time-Series Data

Time-series data has received huge attention due to its robustness against various
viewpoints or illumination conditions [31,32]. In the healthcare domain, time-series data
is also one of the most common types of data. However, transfer learning techniques
for time-series data have been less evaluated [33–38] due to the absence of a large-scale
accurately labeled dataset such as ImageNet [25] and the scarcity of publicly available
time-series data in the healthcare domain. For instance, Li et al. [33] developed a novel
deep transfer learning technique for time-series data to use already-existing datasets to
overcome the target domain’s data shortage problem. Initially, they trained a deep neural
network (DNN) using a large number of time-series data collected from various application
fields so that the general properties of time-series data can be learned by this DNN model.
After that, they implemented the transfer learning process of this model to another DNN



Sensors 2023, 23, 1105 5 of 24

model which is designed to solve a specific target problem. More specifically, they used
single-channel data to train their single-channel DNN for sensor modality classification.
After that, they built a multichannel DNN [34] by fine-tuning the single-channel DNN for
each channel on the target domain, and thus the final multichannel DNN can recognize
the outputs from all channels on the target domain. They evaluated their approach for
human activity recognition (HAR) and emotion recognition (ER), and the results confirmed
that the transfer learning strategy performs better than the baseline for both HAR and ER
problems. Similarly, Gikunda et al. [35] adopted transfer learning as well as active learning
to address this same problem of insufficiency of labeled time-series data. Results indicated
that using only 20% of the training data, they achieved higher accuracy with hybrid transfer
active learning than with existing techniques. More recently, Zhou et al. [37] proposed a
novel dynamic transfer learning-based time-series prediction to address the issue of small
datasets in industrial production. The proposed dynamic transfer learning framework
was created using two features: feature mapping, and network structure. Results showed
that when compared to the approach without transfer learning, the application of source
domain knowledge can greatly improve target domain prediction performance in this
dynamic transfer learning method. There are very few works that have explored transfer
learning in a domain such as fall detection [38]. For example, Villar et al. [38] proposed a
supervised fall detection model using online learning and transfer learning. They found
that designing the fall detection specifically for each user rather than acquiring generalized
models can lead to higher performance.

In summary, one of the common challenges that all of these previous works have
faced is the scarcity of time series data and most of them implemented transfer learning
to overcome this issue. However, none of them demonstrated the feasibility of transfer
learning for overcoming the small data set problem in a real-world fall detection App. In
addition, our study also explores the practicality of applying transfer learning on heteroge-
neous sensing devices using the same type of data collected from three different devices.
This paves the way to overcome high false rates by placing other accelerometer sensors in
different locations of the human body.

3. SmartFall System Architecture

We implemented a three-layered architecture which has the smartwatch on the edge,
the smartphone in the middle layer, and the cloud server in the inner most layer. This
is one of the most flexible architectures for IoT applications as discussed in [39] and is
a practical choice for our prototype. Microservice is a particular implementation of the
service-oriented architecture (SOA) that enables an independent, flexible, and distributed
ways of deployment of services on the internet. Applications designed with microservices
contain small, modular, and independent services which communicate via well-defined
APIs. As compared to the three-layer architecture of our SmartFall, microservices are more
agile, flexible, and resilient. However, each microservice must be hosted in a container
and connected to a cloud framework. Moreover, the portability of an edge container is not
proven yet. Currently, there are no Docker-compatible containers that can run on an edge
device such as an Android phone. We have explored a microservice-based architecture
called Accessor-based Cordova host for edge devices in [40].

Figure 2a gives an overview of the SmartFall fall detection system. The major software
components developed on a smartphone are (a) the Config module which manages the
parameters, version of the deep learning model used by a particular user, the chosen per-
sonalization training strategy, and the chosen cloud server for data storage and re-training;
(b) the Database module which manages all the data sensed, the uploading of the collected
data to the cloud, and the downloading of the best re-trained model for a user; (c) the
Data Collector module which manages the transfer of sensed data on the smartwatch to the
smartphone using different communication protocols. Our smartwatch and smartphone
currently communicate using BLE. The smartwatch and the server communicate using
HTTP. Our system is designed to leverage multiple communication protocols; and (d)



Sensors 2023, 23, 1105 6 of 24

the Prediction module, which manages different machine learning models used for fall
detection. For example, the system can be configured to run an ensemble recurrent neural
network (RNN) or a single RNN model. On the cloud, additional software components for
analysis, re-training and validation of the re-trained models are implemented. Our system
is designed to be flexible for using different personalization strategies as and when they
become available.

Couchbase

WearOs
Watch

Android Phone

Data Collector
Prediction
Database
Config

Automated Training

Analyze

Retrain

Validate & Upload

PHP 
Tunnel

Labeled Data

Personalized Model

Raw Accelerometer Data
Labeled Data

Personalized Model
BLE Link

(a)

Yes

True Positive

Yes

False Positive

No

No

Timer Up

(b)

Figure 2. Architecture of SmartFall system. (a) An overview of the SmartFall system. (b) Watch’s
user interface display after a fall is detected.

The smartwatch’s UI is designed to start with just the “YES” and “NO” buttons so
as to overcome the constraint of small screen space (see Figure 2b). If the user answers
“NO” to the question “DID YOU FALL?”, the data is labeled as a false positive and stored
as “FP” in the Couchbase database in the cloud. If the user answers “YES”, the subsequent
screen will prompt “NEED HELP?”. If the user presses “YES” again, it implies that a true
fall is detected and that the user needs help. The collected data will be labeled and stored
as “TP” and “HELP IS ON THE WAY” screen will be displayed. If the user presses “NO”,
it suggests that no help is needed and the collected data is still labeled as “TP”. If the user
did not press either “YES” or “NO” after a specified period of time (seconds displayed in
the red circle) following the question “DID YOU FALL?”, an alert message will be sent out
automatically to the designated caregiver.

Our system is structured such that all user-identifying data is only stored locally on the
phone to preserve privacy. Real-time fall prediction is performed on the phone to reduce
the latency of having to send data to the cloud for prediction. The training/re-training
of the prediction model is done offline in the cloud server. The UI interface is designed
such that there is no need to interact with the App unless the system detects that a fall has
occurred, in that case, the watch will vibrate to alert the user that a prediction has occurred
and the UI in Figure 2b will appear. The ability to interact with the system when a false
prediction is generated allows the system to collect real-world ADL data and fine-tune the
fall detection model.

The ultimate goal is for the system to detect falls accurately, i.e., not missing any falls
and not generating too many false positive prompts. Collecting data and training a new
model from scratch is labor-intensive, hence, we aim to have one model that can generalize
well across different smart devices. When a new device is added, by using a small amount
of feedback data collected by the user wearing the device for a short period of time, a new
model can be trained with a transfer learning strategy and uploaded to the device to use in
real time. The following sections describe the transfer learning experiments we conducted
to support our vision in this SmartFall system.

4. Methodology
4.1. Dataset Collection

We first collected three datasets which can be used in the transfer learning experiments.
Those datasets are comprised of accelerometer data collected from the Microsoft watch
(MSBAND) watch, the Huawei watch, and the meta-sensor device. MSBAND and Huawei
data were collected in units of 1G on the left wrist only, while meta-sensor data was



Sensors 2023, 23, 1105 7 of 24

collected in units of 2G on both the left and right wrists. The sampling rate is 32 Hz for
MSBAND and Huawei watches while meta-sensor data is collected with the sampling rate
of 50 Hz. Figure 3 shows the three different devices we used for the data collection process.

Huawei Watch 2MSBand 2 Meta Sensors

Figure 3. The three different hardware used for data collection.

The MSBAND dataset was collected from 14 volunteers each wearing a MSBAND
watch. These 14 subjects were all of good health and were recruited to perform a mix of
simulated falls and ADLs (activity of daily living). Their ages ranged from 21–55, their
height ranged from 5 ft to 6.5 ft. and weights from 100 lbs to 230 lbs. Each subject was told
to wear the smartwatch on his/her left wrist and perform a predetermined set of ADLs
consisting of: walking, sitting down, picking up an object, and waving their hands. This
initial set of ADLs were chosen based on the fact there were common activities that involved
the movement of the wrists. Those data were all labeled as “NotFall”. We then asked the
same subjects to perform four types of falls onto a 12-inch-high mattress on the floor; front,
back, left, and right falls. Each subject repeated each type of fall 10 times. We implemented
a data collection service on an Android phone (Nexus 5X, 1.8 GHz, Hexa-core processors
with 2G of RAM from Google, USA) that paired with the MSBAND smartwatch to have a
button that, when pressed, labels data as “Fall” and otherwise “NotFall”. Data was thus
labelled in real-time as it was collected by the researcher holding the smartphone. This
means when the user was walking towards the mattress before falling down or getting up
from each fall, those duration of data will be labelled as “NotFall”. However, the pressing
of the button can introduce errors such as the button is being pressed too late, too early, or
too long for a fall activity. To mitigate these errors, we post-processed the collected data to
ensure that data points related to the critical phase of a fall were labeled as “Fall”. This is
done by implementing an R script that will automatically check that for each fall data file,
the highest peak of acceleration, and data points before and after that point, were always
labeled as “Fall”. After this post-processing of the collected data, we have a total of 528 falls
and 6573 ADLs. The MSBAND watch was decommissioned by the vendor in May 2019.
This dataset is available http://www.cs.txstate.edu/~hn12/data/SmartFallDataSet.zip,
accessed on 3 December 2022.

Huawei watch is compatible with Android WearOS and we designed and implemented
an activity labelling app on both the watch and the Android phone for data collection. This
activity labeler consists of two components: one on the phone and one on the watch. The
watch is paired with the phone using Bluetooth and collects, labels, and sends accelerometer
data to the phone in real-time. The phone is considered as a gateway device where labeled
data can be stored temporarily and then uploaded to a remote cloud server periodically.
The app records accelerometer data sensed from the Huawei watch with a start and stop
button, and a user can enter what kind of activity is being recorded before pressing the start
button so that the data comes out labeled with a specific activity name rather just “NotFall”
as compared with the MSBAND dataset. Twelve students including 7 males and 5 females
were asked to perform a prescribed list of ADL activities in triplicate and each type of fall
five times. Their ages range from 21 to 35 and their weight average from 100 to 150 lbs.
Each participant performed five different types of falls on an air mattress - front, back,
right, left, and rotate fall. They were also asked to perform 6 different types of ADL tasks -
walking, waving hands, drinking water, wearing a jacket, sitting down, and picking stuff
from the floor. Collected data were preprocessed to trim the initial and ending data segment

http://www.cs.txstate.edu/~hn12/data/SmartFallDataSet.zip


Sensors 2023, 23, 1105 8 of 24

to account for the human errors in pressing or releasing the buttons and to segment the
activities and falls into an individual trial for training (since each activity is performed 3
times and each type of fall is performed 5 times). The fall data is further processed into an
equal sequence of 100 data points for each fall data sample and a multiple of 100 data points
for each ADL data sample. Not all data collected were usable due to missing data points
in some falls and ADLs. The final dataset after preprocessing has 144 falls and 271 ADL
samples and is available at http://www.cs.txstate.edu/~hn12/data/Huawei_7030.zip,
accessed on 3 December 2022.

Meta-sensor was developed by MBIENTLAB in San Francisco (mbientlab.com, ac-
cessed on 3 December 2022). It is a wearable device that offers continuous sensing of motion
and environment data. It can sense gyroscopes, accelerometers and magnetometers, and it
provides easy-to-use open-source APIs for fast data acquisition. Data can be stored locally
on the phone or in a cloud server provided by MBIENLAB. The meta-sensor we used is the
MetaMotionRL. The sensor has a weight of 0.2 oz and can be recharged via a USB port. By
embedding the meta-sensor in an appropriate wristband, it can serve as a wristwatch for
easy collection of ADLs and simulated fall data. The collected data can be exported into
multiple file formats. We recruited 8 participants (3 male and 5 female) ages from 22 to 62
for data collection. Each participant was asked to perform four types of falls (front, back,
left, and right), five times each on an air mattress, and a prescribed list of ADLs as in the
Huawei watch data collection session. These are walking, waving a hand, drinking water,
wearing a jacket, sitting down, and picking stuff up from the floor.

The meta-sensor fall data was first programmatically labeled by a Python script that
identifies a set amount of peak magnitudes based on the number of trials per file and
a uniform width of 35 data points (1.12 s) per fall. Plotting programmatically labelled
meta-sensor data in Microsoft Excel showed that labels were often placed around peaks
caused by noise rather than actual falls and did not capture the distinct pre-fall, fall,
and post-fall activity that accompanied an actual fall. To ensure that we have a set of
accurately labeled meta-sensor data to experiment with, we decided to manually relabel
all meta-sensor data using Excel plots as a basis for fall window placement. We choose
fall windows with a width of 100 data points in an attempt to capture both pre-fall and
post-fall activities. To minimize noise, we trimmed non-fall data in between each fall. Since
an ADL activity could last much longer than a fall, we label the non-fall data in ADL files
to the smallest multiple of 100 data points per trial that could capture the entire activity
being performed. The collected meta-sensor data has 202 falls and 492 ADL samples and is
available at http://www.cs.txstate.edu/~hn12/data/Meta_sensor_7030.zip, accessed on
3 December 2022.

4.2. Experimental Settings

Transfer learning is a research subject in machine learning that is concerned with the
transfer of knowledge obtained while training a model for a specific task, and applying that
knowledge as a base model to a different but related task [18]. For ease of understanding,
we select one of our experiments to explain how the transfer learning strategy works in
this study. Initially, we use the MSBAND dataset, which we call the source dataset, to train
a model from scratch, in turn giving us our preliminary knowledge in the shape of a model
that is fully trained to solve the fall detection problem on data sensed by the MSBAND.
After that, we use that model as a base model for the meta-sensor dataset, which we call
the target dataset, by freezing all of its precursory layers, effectively keeping the weights
that resulted from the MSBAND dataset training process as is, and re-training only the
dense layers of the model on the meta-sensor dataset. The intuition behind it comes from
the small size of the retraining dataset, as the base model resulted from training on a bigger,
more complete dataset, making it more desirable in its complex, initial layers, while at the
same time transferring over the knowledge needed to normalize the data in the dense layers
with respect to the differences between the two datasets. The full transfer learning process
is described in Algorithm 1. In the algorithm, we have the source and target datasets as the

http://www.cs.txstate.edu/~hn12/data/Huawei_7030.zip
mbientlab.com
http://www.cs.txstate.edu/~hn12/data/Meta_sensor_7030.zip


Sensors 2023, 23, 1105 9 of 24

input. We start off by organizing the data into windows (data windows are explained in
Section 4.3) and initializing two models, one suffixed with TFS (Training From Scratch),
and the other is suffixed with TL (Transfer Learning). We train the TL model on the full
source dataset and freeze its precursory layers, and then evaluate the TL and TFS models
on the target dataset by conducting experiments described in Section 5, and compare the
performance of the two models in those experiments. All our experiments are conducted
on a Dell Precision 7820 Tower, 256 GB RAM from Dell, USA and one GeForce GTX 1080
GPU from Nividia, USA using TensorFlow.

Algorithm 1 Our Transfer Learning Structure
Input: Source Domain Data Source_Data, Target Domain Data Target_Data
Organize Source_Data And Target_Data Into Data Windows
Initialize Models NN_TL And NN_TFS
Train NN_TL On Source_Data Data Windows
Freeze NN_TL’s Precursory Layers
Evaluate NN_TL And NN_TFS On Target_Data Data Windows
Compare The Evaluation Results Of NN_TL And NN_TFS On Target_Data

4.3. Model Training and Parameters Tuning

As mentioned before, we used a simple LSTM neural network structure for our model,
as not only does that fit the time-series task well, but it is also a viable option for real-time
classification that operates on the edge device without having the need to communicate
to the cloud. Our classifier had many different hyperparameters, as well as different
options for layer structuring, all of which needed extensive tuning in order to find which
permutation of these hyperparameters and structures gives the best result. The main
hyperparameters for our classifier are:

• Window_Size: The number of consecutive data entries that will be fed to the LSTM
classifier at once. For example, if the window size is 35 (meaning the length of a single
input block is 35 time-consecutive data entries), then the classifier will be fed a tensor
of the shape 35 × 3 (since we have 3 coordinates for acceleration for each entry) to
give a single classification for. This snapshot of a particular window size represents
one sample of time series data as shown in Figure 1a.

• Step_Size: The difference between two consecutive data blocks (each block comprised
of Window_Size data entries). For example, say we have 37 data entries, with a
Window_Size of 35 and a Step_Size of 1, then, we would have 3 different data blocks,
them being [1, 35], [2, 36] and [3, 37], which means we have an overlap of 34 entries
between each 2 consecutive data entries. If Step_Size was 2, then we would have
2 different data blocks, them being [1, 35] and [3, 37] (the middle block would be
skipped since our step is 2), with an overlap of 33 entries between every 2 consecutive
entries (Window_Size − Step_Size is the general number of overlapping entries).

• Smooth_Window: The way we have our model make a final prediction is by predict-
ing over the last Smooth_Window: data blocks, and then average (take the median
of) the predictions and use that average as the final fall probability. The motivation
behind the smooth window is to take into account a wider scope of predictions, bet-
ter covering pre-fall, and post-fall data points. This will also ensure that we do not
miss any clustered spikes related to fall and we do not just take a single spike as a
fall prediction.

• Fall Threshold: After having the averaged fall probability from the most recent
smooth window, if its value is greater than Fall Threshold:, then we classify the
window as a fall, otherwise we classify it as a non-fall.

As mentioned above, the hyperparameter tuning process needed an extensive amount
of experimentation, and for each hyperparameter, we tried a multitude of different numbers
from lower to higher values. In this part of the sub-section, we will be describing the



Sensors 2023, 23, 1105 10 of 24

experimentation process for each hyperparameter and mentioning what the optimal value
is with the reasoning behind it. The hyperparameter turning process was validated on the
MSBAND and meta-sensor datasets, for each dataset separately, by splitting that dataset
into a training set, which consisted of 70% of the data, and a test/validation set, which
consisted of 30% of the data. For each choice of hyperparameters, we would train our
classifier on the training set and then calculate the F1 score of the trained model on the test
set. In the results tables, we show the scores of 5 different values as the other values’ results
were similar to the value closest to them in the table.

• Window_Size: We tried a multitude of different values, and found that the optimal
value is the same as the number of data entries sensed within 1 second (the duration of
a fall), meaning that the optimal value for the MSBAND model was 32, as the MSBand
is at 32 Hz, and the optimal value for the meta-sensor model was 50, as the meta-sensor
is at 50 Hz. This seemed to be the sweet spot that captures enough data for accurate
classification, any value below that gave a worse classification accuracy, and any
value beyond that did not increase the classification accuracy by a noticeable amount.
F1-scores for the different Window_Size values can be found in Table 1, where the
optimal values are in bold.

Table 1. Window_Size tuning for MSBAND and meta-sensor datasets, respectively.

MSBAND Meta-Sensor

Value 15 20 32 40 50 Value 30 40 50 60 70

F1-Score 0.8 0.85 0.93 0.91 0.92 F1-Score 0.75 0.76 0.81 0.81 0.8

• Step_Size: Out of all the values, a step of 1 seemed to perform the best, which
indicates that high overlap and small increments between the consecutive data blocks
is important for a good performance, as all the higher values gave worse results.
F1-scores for the different Step_Size values can be found in Table 2, where the optimal
values are in bold.

Table 2. Step_Size tuning for MSBAND and meta-sensor datasets, respectively.

MSBAND Meta-Sensor

Value 1 3 5 7 9 Value 1 3 5 7 9

F1-Score 0.93 0.9 0.87 0.88 0.86 F1-Score 0.81 0.77 0.79 0.75 0.73

• Smooth_Window: As explained before, we want to capture the notion of both pre-
fall and post-fall occurrence in order to help us better classify falls and have less
false positives, and exactly matching that intuition, a broader smooth window of
about 2 seconds of sensed data entries (64 for MSBand and 100 for meta-sensor)
out-performed both shorter and longer smooth windows. F1-scores for the different
Smooth_Window values can be found in Table 3, where the optimal values are in bold.

Table 3. Smooth_Window tuning for MSBAND and meta-sensor datasets, respectively.

MSBAND Meta-Sensor

Value 20 40 64 80 100 Value 20 60 100 130 160

F1-Score 0.83 0.89 0.93 0.86 0.87 F1-Score 0.69 0.75 0.81 0.75 0.78

• Fall_Threshold: Different values in increments of 10% were tried, starting from 10%
and ending at 90%, and the fall threshold of 40% performed the best as it had the best
balance of accurate true-positive classification while avoiding as many false-positives



Sensors 2023, 23, 1105 11 of 24

as possible. This value wasn’t picked solely through experimentation, but also by
looking at the prediction probability of the classifier over the test set, we can see that
for the fall data, the classifier predicts values above 40%, and for non-fall data, it
predicts values below 40%. F1-scores for the different Fall_Threshold values can be
found in Table 4, where the optimal values are in bold.

Table 4. Fall_Threshold tuning for MSBAND and meta-sensor datasets, respectively.

MSBAND Meta-Sensor

Value 0.1 0.3 0.4 0.7 0.9 Value 0.1 0.3 0.4 0.7 0.9

F1-Score 0.68 0.85 0.93 0.81 0.67 F1-Score 0.6 0.76 0.81 0.73 0.65

As we have mentioned, not only did we tune the hyperparameters of the network, but
we also tried several structures for the network itself, mainly following the LSTM layer, as a
part of our model tuning. The previous work’s benchmark model is illustrated in Figure 4a.

(a)
(b)

Figure 4. (a) Overview of the old classifier’s architecture. (b) Overview of an improved LSTM
classifier.

As we can see, the model consisted of an LSTM layer, followed by a dense layer, batch
normalization and ended off with another dense layer. It worked well as is, however,
through examining the training accuracy during the training process, the accuracy value
seemed to plateau earlier than desired, which is what led to experimenting with the net-
work structure by adding more, but not too many, additional dense layers, up to a point
where it would not impact the classification time, and enough to be able to overcome the
training accuracy plateau as well as achieve better test accuracy. Indeed, after thorough
experimentation, a more optimal structure was achieved, one that had more parameters
(from 13,601 to 16,351 parameters), hence more potential for knowledge gain, while main-
taining relatively quick classification speed. The new structure simply had 2 additional
layers, a batch normalization layer followed by a dense layer. The structure of the new
model can be seen in Figure 4b. It is worth noting a few things that are consistent between
our model and the previous work’s model:

• All layers are fully connected; using drop-out/convolution layers made the perfor-
mance of the model slightly worse, hence, why we do not use any of those layers.

• The activation function of the dense layers is Relu, and the last layer uses sigmoid
which is commonly used for binary classification.

• The default Keras Library’s Binary Cross-Entropy loss function as well as the default
Adam optimizer were used as the loss function and optimizer of the network, as those
two worked well in our older version of classifier.



Sensors 2023, 23, 1105 12 of 24

• The number of neurons in the LSTM layer, as well as the output dimensions of the
dense layers were always set to the number of data entries sensed in one second,
similarly to Window_Size, as that generally gave the best result.

5. Experiments and Results

In this section, we present our experimental results on transfer learning between the
several datasets we described above, the MSBAND dataset, the meta-sensor dataset, and
the Huawei dataset. We conduct two main experiments across each pair of datasets. In
one of the experiments, we have a source dataset and a target dataset. We start off by
building a model from scratch on the target’s training dataset and then testing out that
model’s performance on the target’s test dataset. We then build a model using the source’s
complete dataset, and then use that model as a base model for the target’s training dataset,
test it out on the target’s test dataset, and compare the performance of the two results.
In the second experiment, we split the target dataset such that each person’s data is in
one data fold, meaning that if we have n different people who volunteered to collect data
for a specific dataset, we would split that dataset into n different folds, and conduct a
cross-validation on those folds, the first cross-validation being from scratch, and the second
cross-validation having the source’s model as a base model for each iteration. This form
of leave-one-out cross-validation is more rigorous when the dataset is small. The models’
structures throughout our experiments will all be the exact optimal structure described in
the previous section in Figure 4b, as that structure, as explained, performed the best across
all three different datasets, while each dataset’s hyperparameters will be specific to that
dataset’s smart watch’s hardware specifications, as detailed in Section 4.3.

5.1. Left Wrist to Right Wrist Transfer Learning with Meta-Sensor

Our first set of experiments involved purely the meta-sensor dataset, as we wanted to
test out the effect of transfer learning when the sensing models share identical hardware
specifications, but are, however, applied to different wrists. We started off by building
a left-wrist fall detection model, training it from scratch using the left-wrist meta-sensor
dataset, using the optimal network structure and hyperparameters choice, which resulted
in a fall detection model tailored specifically for the left wrist. Then, using that model, we
conducted two different experiments in order to evaluate the effect of transfer learning in the
manner described at the beginning of Section 5, which we detail more thoroughly below.

1. Meta-sensor Experiment I: In the first of the two experiments, we split the right
wrist’s dataset into two sets, one of them being a training dataset comprised of 70% of
all the data, and the remaining 30% is the test dataset. The content of the two datasets
was such that for each of the 8 people in the full dataset, 70% of that person’s data was
in the training set, and the remaining 30% was in the test set, which means that this
experiment’s main goal is to try and evaluate how well does the model personalize to
these specific 8 people after seeing a portion of their data during the training process.
After splitting the data in the described manner, we built two different classifiers
using the right wrist training data, the first of which was built from scratch using
the right wrist training dataset only. The second classifier was built using transfer
learning by having the left wrist classifier as a base model and then training that base
model on the right wrist training dataset. Results are presented in Figure 5. We can
clearly see the effectiveness of transfer learning over building a model from scratch
throughout all 3 presented metrics. If we look at the PR curve, we can see that the
transfer learning model’s PR curve is more complete and covers more area resulting
in a higher AUC. We then evaluated both classifiers’ performance on the right wrist
test dataset.
If we look at the prediction probabilities plot, we can see similar true positive classi-
fications between the two models (keep in mind that the prediction threshold for a
fall is 0.4), however, we can also see that the transfer learning model has fewer false
positive classification instances, for example, if we look at the entries from 12k to 15k



Sensors 2023, 23, 1105 13 of 24

in the x-axis, we can see that the non-transfer learning model predicted them falsely as
falls (the real label is in blue, the predicted value is in red, a red value higher than 0.4
means a fall prediction), while the transfer learning model predicted them correctly
as non-falls.Finally, if we look at the F1 scores, we can see that the transfer learning
model achieved an F1 score that is higher by 8% than the non-transfer learning model
as shown in Table 5.

TL PR Curve AUC 0.84 TL Prediction Probabilities

Non TL PR Curve AUC 0.71 Non TL Prediction Probabilities

Figure 5. 70/30 Train/Test data split experiment for meta-sensor. Note that, TL stands for Transfer
Learning, for prediction probabilities, x axis is the time, y axis is the prediction threshold, blue data is
the real labels, red data is the prediction probabilities.

Table 5. Summarization results of F1 score for all experiments. Train/Test denotes the train/test
dataset split ratio. A check mark X represents the transfer learning strategy applied and a × denotes
the transfer learning is not applied.

Experiment Transfer Learning Dataset Split Strategy F1 Score (%)
X 0.92

meta-sensor Experiment I × Train/Test: 70/30 0.86

X 0.73
meta-sensor Experiment II × cross-validation 0.63

X 0.93
MSBAND to meta-sensor Experiment I × Train/Test: 70/30 0.81

X 0.79
MSBAND to meta-sensor Experiment II × cross-validation 0.65

X 0.82
MSBAND to Huawei Experiment I × Train/Test: 70/30 0.68

X 0.75
MSBAND to Huawei Experiment II × cross-validation 0.64

X 0.75
MSBAND to Huawei real-time

experiment × 100% Test 0.67

X 0.85
Combined Left and Right wrist

experiment × cross-validation 0.78

2. Meta-sensor Experiment II: In this experiment, we conducted what we call leave-
one-person-out cross-validation, which, as its name suggests, is a cross-validation



Sensors 2023, 23, 1105 14 of 24

method in which, for each person involved in the meta-sensor dataset, we train the
model either from scratch, or using the transfer learning methodology, on a dataset
that is comprised of all the people but the one specific person, and then test the
resulting model on the remaining person’s data. As mentioned, we do this process
for each of the 8 people involved in the full meta-sensor dataset. As opposed to the
first experiment, when testing a model in this experiment, the model would have not
trained on any data of the person it is being tested on.
The result of training and testing using a leave-one-out strategy is shown in Figure 6.
The PR Curve and Prediction plots are taken from a random iteration of the cross-
validation process and are representative of the average iteration. The evaluation
results of a single iteration are based on a dataset of one person only, hence the
number of data entries in the leave-one-person-out cross-evaluation results are always
significantly less than the prior 70/30 Train/Test experiment, as the evaluation results
in that experiment are on 30% of the entire dataset. Again, we can clearly see the
effectiveness of transfer learning over building a model from scratch throughout all
3 presented metrics. If we look at the PR curve, we can see that the transfer learning
model’s PR curve is more complete and covers more area resulting in a higher AUC,
even though both models do not achieve the best result, however, the improvement
from using transfer learning is substantial, as it made the PR curve over half of
the area, while in the non-transfer learning case, it covered less. If we look at the
prediction probabilities plot, we can see similar true positive classifications between
the two models with the transfer learning model being slightly better, and we can
see that the non-transfer learning model has many more prediction peaks and much
sharper spikes in the non-fall area, resulting in more false positive predictions. Finally,
if we look at the F1 Scores, we can see that the transfer learning model achieved an
averaged F1 score that is higher by almost 10% than the non-transfer learning model
as shown in Table 5.

TL PR Curve AUC 0.6 TL Prediction Probabilities

Non TL PR Curve AUC 0.41 Non TL Prediction Probabilities

Figure 6. Leave-one-person-out data split experiment for meta-sensor. For prediction probabilities, x
axis is the time, y axis is the prediction threshold, blue data is the real labels, red data is the prediction
probabilities. For the F1 Scores, the averaged F1 score of all the 8 iterations of the cross-validation is
shown in the top right corner of the PR curve.



Sensors 2023, 23, 1105 15 of 24

5.2. MSBAND to Meta-Sensor/Huawei Transfer Learning

Our second set of experiments involved two different inter-device transfer learning
experiments. As the main thing we want to test out in our experiments is the effect of
transfer learning on small dataset problems, the source of the transfer learning process,
aka the base model, is built from training on the Microsoft band dataset, as the MSBAND
dataset is the biggest and most complete dataset out of the three, while the meta-sensor
dataset, as well as the Huawei dataset, are both smaller in size and in fall samples.

5.2.1. MSBAND to Meta-Sensor

As described above, we started off by training a fall detection model from scratch,
using the optimal network structure and hyperparameters choice, on the MSBAND dataset,
which resulted in a fall detection model tailored specifically for the MSBAND device,
and then, using that model, we conducted two different experiments on the left wrist
meta-sensor dataset similarly to what we did in Section 5.1.

1. MSBAND to Meta-Sensor Experiment I: In this experiment, we conduct the ex-
act same 70/30 Train/Test split experiment as we did in the first experiment of
Section 5.1. The classifiers’ performance on the left wrist dataset is shown in Figure 7.
We can see the effectiveness of transfer learning over building a model from scratch
throughout all 3 presented metrics. If we look at the PR curve, we can see that the
transfer learning model’s PR curve is slightly more complete and covers more area
resulting in a higher AUC. If we look at the prediction probabilities plot, we can see
that the transfer learning model has fewer false positive classification instances, for
example, if we look at the entries from 13k all the way up to 23k in the x axis, we
can see that the non-transfer learning model predicted a lot of the non-fall entries as
falls, while the transfer learning model predicted them correctly as non-fall, resulting
in a much lower false positive rate. Finally, if we look at the F1 Scores, we can see
that the transfer learning model achieved an F1 score that is higher by 12% than the
non-transfer learning model, breaking into the 90% range as shown in Table 5.

2. MSBAND to Meta-Sensor Experiment II: We conduct the exact same leave-one-
person-out cross-validation experiment as we did in the second experiment of
Section 5.1 with the MSBAND and left meta-sensor datasets.
We compare the results of the two models as shown in Figure 8. The results we
obtained show an even higher gap between the transfer learning model and the non-
transfer learning model than the experiment we reported in Section 5.1. Again, we can
clearly see the effectiveness of transfer learning over building a model from scratch
throughout all 3 presented metrics. If we look at the prediction probabilities plot, we
can see that the non-transfer learning model has many more prediction peaks and
much sharper spikes in the non-fall area, resulting in more false positive predictions
in the non-transfer learning case. The F1 Scores with the transfer learning are higher
by over 14% than the non-transfer learning model in this experiment as shown in
Table 5.



Sensors 2023, 23, 1105 16 of 24

TL PR Curve AUC 0.85 TL Prediction Probabilities

Non TL PR Curve AUC 0.81 Non TL Prediction Probabilities

Figure 7. 70/30 Train/Test data split experiment for MSBAND to meta-sensor. For prediction
probabilities, x axis is the time, y axis is the prediction threshold, blue data is the real labels, and red
data is the prediction probabilities.

TL PR Curve AUC 0.78 TL Prediction Probabilities

Non TL PR Curve AUC 0.56 Non TL Prediction Probabilities

Figure 8. Leave-one-person-out data split experiment for MSBAND to meta-sensor. For prediction
probabilities, the x axis is the time, the y axis is the prediction threshold, the blue data is the real
labels, and the red data is the prediction probabilities. For the F1 Scores, the averaged F1 score of all 8
iterations of the cross-validation is shown in the top right corner of the PR curve.



Sensors 2023, 23, 1105 17 of 24

5.2.2. MSBAND to Huawei

We conducted three experiments on the Huawei dataset, the first two experiments
being the 70/30 Train/Test split and the leave-one-person-out experiments described in
Section 5.1, and the third experiment is a real-time test of the transfer-learning model by one
lab volunteer. The real-time test involves wearing the Huawei watch running the SmartFall
App describes in Section 3 using a model trained with and without transfer learning.

1. MSBAND to Huawei Experiment I: the results of the 70/30 Train/Test experiment
are presented in Figure 9. We can see the effectiveness of transfer learning over
building a model from scratch throughout all three presented metrics.
If we look at the prediction probabilities plot, we can see that the transfer learning
model has fewer false positive classification instances, for example, if we look at the
entries from 12k to 15k on the x axis, we can see that the transfer learning model has
much less false positive predictions. The transfer learning model achieved an F1 score
that is higher by 14% than the non-transfer learning model as shown in Table 5. Note
that in the transfer learning case, the F1 score is not as high as the AUC might imply,
and that is because the F1 score is a metric that is focused on the false positive rate
and not on the general accuracy, which is an important metric for our evaluation since
false positives are a big limitation for our problem.

2. MSBAND to Huawei Experiment II: the results of the leave-one-person-out cross
validation experiment are presented in Figure 10. If we look at the prediction prob-
abilities plot, we can see that the transfer learning model has fewer false positive
classification instances, for example, from 8k onwards, we can see that the transfer
learning model has no false positive predictions, while the non-transfer learning
model has two false positives, and even though on the entries from 2k to 4k on the
x axis, both classifiers have two false positive classifications, the transfer learning
classifier’s prediction threshold value (the red line) only starts spiking prior to the fall
close to entry 4000, in a sense capturing the pre-fall concept, while the non-transfer
learning model spikes all through the non-fall range. Finally, if we look at the F1
Scores, we can see that the transfer learning model achieved an F1 score that is higher
by 10% than the non-transfer learning model as shown in Table 5.

TL PR Curve AUC 0.8 TL Prediction Probabilities

Figure 9. Cont.



Sensors 2023, 23, 1105 18 of 24

Non TL PR Curve AUC 0.73 Non TL Prediction Probabilities

Figure 9. 70/30 Train/Test Data Split Experiment for MSBAND to Huawei. For prediction proba-
bilities, the x axis is the time, the y axis is the prediction threshold, blue data is the real labels, and
red data is the prediction probabilities. The green box highlights the areas which contribute to the
greatest differences between the two models.

TL PR Curve AUC 0.81 TL Prediction Probabilities

Non TL PR Curve AUC 0.76 Non TL Prediction Probabilities

Figure 10. Leave-one-person-out data split experiment for MSBAND to Huawei. The averaged F1
score of all 11 iterations of the cross-validation is shown in the top right corner of the PR curve.

3. MSBAND to Huawei real-time experiment: in this experiment, we present the re-
sults of real-time predictions of the transfer learning model against the trained-from-
scratch model on a dataset collected via user feedback by a lab volunteer. The dataset
contains 25 falls and a series of ADL tasks. The results of the experiment are presented
in Figure 11. The transfer learning model achieves a slightly better PR Curve with a
slightly higher AUC. If we look at the prediction probabilities plot, we can see that the
transfer learning predictions overall are less aggressive, which results in predicting
much fewer false positives as seen in entries 13k onwards; however, we can also see
that the non-transfer learning model’s aggressiveness actually makes it cover true
positives (specifically in ranges 5k–7k and 9k–12k) slightly better than the transfer
learning model, resulting in an F1 score gap of 8% in favor of the transfer learning
model as shown in Table 5.



Sensors 2023, 23, 1105 19 of 24

TL PR Curve AUC 0.68 TL Prediction Probabilities

Non TL PR Curve AUC 0.63 Non TL Prediction Probabilities

Figure 11. Real-life test experiment. For prediction probabilities, the x axis is the time, the y axis is the
prediction threshold, the blue data is the real labels, and the red data is the prediction probabilities.

5.3. Combined Left and Right Wrist Transfer Learning

In our third set of experiments, we wanted to test out the effect of using both left
wrist and right wrist fall detection models at the same time (meaning that a user would be
wearing a wearable device on both wrists), as well as the effect of transfer learning has on
that experiment. For our base model, once again, we use the model created by training on
the MSBAND dataset, for the same reasons described above. The experiment we conducted
in this was was only the leave-one-person-out experiment. We did so because for the 70/30
Train/Test data split experiment, we already managed to obtain a very good F1 score (as
well as good performance in the other metrics) using only one of the wrists, up to 93% in
the best case as shown in Table 5.

As before, we split the data such that for each cross-validation iteration, we train two
ensemble classifiers, one of them being the ensemble comprised from the left and right
wrist meta-sensor models which train from scratch on seven people’s data, and the second
model being the ensemble comprised from the left and right wrist meta-sensor models
which train on seven people’s data while having the MSBAND classifier as the base model
for both members of the ensemble, and then, we evaluate both ensembles’ performance on
the eighth person’s dataset. It is important to note that each member of the ensemble for
both classifiers trains only on data specific to its wrist, and that both the training and test
dataset are synchronized in time between the left and right wrist, as if a person is wearing
two meta-sensor devices, one on each wrist, and testing the ensemble’s fall detection (data
was indeed collected by subjects who wore the meta-sensor devices on both wrists at the
same time).

We compare the results of the two ensembles as shown in Figure 12. The PR Curve and
Prediction plots are taken from a random iteration of the cross validation process, and are
representative of the average iteration. We can see the effectiveness of using an ensemble
left and right wrist model over a single wrist model, as well as seeing the effectiveness of
transfer learning over building a model from scratch throughout all three presented metrics.
If we look at the PR curve, we can see that the transfer learning model’s PR curve is more
complete and covers more area resulting in a higher AUC than the normal model. If we
also compare both models’ PR curves to the leave-one-person-out experiments detailed in
Sections 5.1 and 5.2, we can see the both models perform better than either of their single



Sensors 2023, 23, 1105 20 of 24

wrist counterparts, by having a more complete AUC that covers more area. If we look
at the prediction probabilities plot, we can see that the transfer learning ensemble covers
more true positives than the ensemble built from scratch (keep in mind that the prediction
threshold for a fall is 0.4) while also classifying one less false positive instance. Finally, if
we look at the F1 scores, we can see that the transfer learning model achieved an averaged
F1 score that is higher by over 7% than the non-transfer learning model, and both of them
achieved a higher F1 score than either of their one wrist counterparts, as shown in Table 5.
All those experiments results demonstrated the effectiveness of ensemble models using
both left and right wrist wearable accelerometers, achieving the best results out of all the
models. Such improvements indicated that we can enhance the fall detection prediction by
adding more sensors in a scalable way instead of recollecting and re-training a new set of
dataset with all the existing sensors.

TL PR Curve AUC 0.87 TL Prediction Probabilities

Non TL PR Curve AUC 0.63 Non TL Prediction Probabilities

Figure 12. Leave-one-person-out data split experiment for ensemble models. For prediction proba-
bilities, the x axis is the time, the y axis is the prediction threshold, the blue data is the real labels,
and the red data is the prediction probabilities. For the F1 Scores, the averaged F1 score of all the 8
iterations of the cross-validation is shown in the top right corner of the PR curve.

6. Conclusions and Future Work

We presented an approach for fall detection based only on the acceleration data coming
from an off-the-shelf wearable edge device on the wrist of the subject. Fall detection using
acceleration data coming strictly from a wearable on the wrist is challenging for the reason
that there is a lot of room for false positives, as many activities of daily living (ADL) produce
acceleration spikes similar to those of a fall. We collected and presented three different
types of wearable wrist accelerometers, i.e., the MSBAND smartwatch, the meta-sensor
device, and the Huawei smartwatch. Each device has its own hardware specifications,
hence making acceleration datasets produced from these three devices differ in many
aspects, such as sampling frequency, acceleration unit, axis orientation, etc. Not only are
the differences in data between devices a problem, but also, fall data, in general, is very
scarce, as it is very time-consuming to collect, leaving us with small datasets across different
hardware accelerometers.



Sensors 2023, 23, 1105 21 of 24

In order to overcome the problems detailed above and build a model that is robust to
dataset size as well as changes in hardware specifications, we experimented with a transfer
learning approach, where we would train a base model from scratch using one device’s
dataset, and then use the trained model as a basis for training a new model on a different
device’s dataset. Specifically, to solve the target dataset’s task, we would not start training
from scratch on the target dataset, but use a model which had already been trained on a
source dataset of a similar (but not identical) feature space to the target data set, and then,
by training that model on the target dataset and having its weights adapt to the target
dataset, we would have effectively transferred the source dataset’s knowledge to the target
dataset’s model. We summarized the F-1 score of all the experiments in Table 5.

Indeed, we found out through our experiments, that building a model using trans-
fer learning between different wearable devices produces better results than collecting a
new set of data using the device and training a model from scratch, as the former model
out-performed the latter in all of the experiments we conducted in the paper. We also
experimented with building an ensemble fall detection model using both left and right
wrist wearable accelerometers, both from scratch and through transfer learning, and found
that both ensemble models out-performed their single-wrist counterparts, with the transfer
learning ensemble model achieving the best results out of all the models. This is encourag-
ing as we can improve fall detection by adding more sensors in a scalable way. There is
no need to re-collect a new set of datasets with all the existing sensors and re-train every-
thing from scratch when a new sensor is added. We just need to collect a small amount
of data using the new sensor and leverage a pre-trained model with transfer learning to
generalize to the newly sensed data. We can then combine the final prediction using an
ensemble approach.

We have not validated our approach with a target population of different ages, heights,
weights, and health conditions. This is a limitation of our current experiment. It is our
long-term goal to use part of our funding to recruit older adults for the collection of a small
amount of ADL data and use transfer learning for the personalization of fall detection to
each person.

One immediate direction for future work is the use of the data augmentation method,
for further solving the small training dataset problem. The data augmentation method is a
process of artificially increasing the amount of data by generating new data points from
existing data that does not require substantial training data, including synthetic minority
oversampling technique (SMOTE) [41], transformers [42], auto-Encoder [43], generative
adversarial network (GAN) [44]. We have started experimentation with GAN for time
series data in [45]. Recently, we have also used a GAN product from Gretel (Gretel.ai,
accessed on 25 December 2022) to generate synthetic data. Much more research is needed
in this area.

Our second direction is the use of the transfer learning framework for the purpose of
personalization for new edge users, as the transfer learning model personalized very well in
the 70%/30% Train/Test split experiments. The personalization process can be performed
by having a pretrained global model that constantly keeps getting re-trained with newly
collected data, and whenever a new user is introduced, we collect a small dataset for that
user and train a personalized model specifically for that user through transfer learning
from the global model onto the newly collected small dataset.

Finally, we also intend to explore other models, for further improving the accuracy
performance of fall detection. Currently, there are many time-series prediction models,
such as neural ODEs [46], CT-RNN [47], phased LSTM [48] and transformer [49]. We have
just started exploring the transformer model.

Author Contributions: Conceptualization, A.H.N. and L.W.; Methodology, N.M. and J.N.; Soft-
ware, N.M.; Validation, M.D.; Formal analysis, N.M.; Data curation, J.N.; Writing—original draft,
N.M. and A.H.N.; Writing—review & editing, A.H.N., J.N., M.D. and L.W.; Project administration,
A.H.N.; Funding acquisition, A.H.N. All authors have read and agreed to the published version of
the manuscript.

Gretel.ai


Sensors 2023, 23, 1105 22 of 24

Funding: This research was funded by National Science Foundation under the NSF-SCH grant
(2123749) and the NSF Research Experiences for Undergraduates Program (2149950).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of Texas State University, chaired by
Denise Gobert. The project number is 7846 and it was approved on 4 June 2021.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Data related to all the transfer learning can be found under Data
Collection section of the paper.

Acknowledgments: We thank Colin Campbell for the implementation of the activity labeling app
on both watches and phones for data collection process. We thank Ian Martinez Roquebert and
Allison Anson for the initial implementation of the LSTM model and transfer learning. We want
to thank Awatif Yasmin for conducting the real-time test of the SmartFall system. We also want
to thank 2022 REU students Jessica Wang and Elizabeth Kam for labeling the meta-sensor data
and testing the LSTM model. Finally, we thank Metsis for giving us constructive feedback on our
LSTM implementation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Falls Are the Leading Cause of Death in Older Americans. Available online: https://www.cdc.gov/media/releases/2016/p0922-

older-adult-falls.html (accessed on 17 June 2019).
2. Facts About Falls. Available online: https://www.cdc.gov/falls/facts.html (accessed on 17 June 2019).
3. 2017 Profile of Older Americans. Available online: https://acl.gov/sites/default/files/AgingandDisabilityinAmerica/2017

OlderAmericansProfile.pdf (accessed on 17 June 2019).
4. Preventing Falls in Hospitals. Available online: https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/index.

html (accessed on 18 November 2019).
5. Tacconi, C.; Mellone, S.; Chiari, L. Smartphone-based applications for investigating falls and mobility. In Proceedings of the 2011

5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, Dublin,
Ireland, 23–26 May 2011; pp. 258–261. [CrossRef]

6. Chen, L.; Li, R.; Zhang, H.; Tian, L.; Chen, N. Intelligent fall detection method based on accelerometer data from a wrist-worn
smart watch. Measurement 2019, 140, 215–226. [CrossRef]

7. Medical Life Alert Systems. Available online: http://www.lifealert.com (accessed on 20 December 2022).
8. Mobilehelp Smart. Available online: https://www.mobilehelp.com/pages/smart (accessed on 18 November 2019).
9. Apple Watch Series 4. Available online: http://www.apple.com/apple-watch-series-4/activity/ (accessed on 18 April 2019).
10. RightMinder—Fall Detection for Android Smartwatches and Android Phones. Available online: https://mhealthspot.com/2017

/03/rightminder-android-wear-app-seniors/ (accessed on 14 December 2022).
11. Mauldin, T.R.; Ngu, A.H.; Metsis, V.; Canby, M.E. Ensemble Deep Learning on Wearables Using Small Datasets. ACM Trans.

Comput. Healthcare 2021, 2, 1–30. [CrossRef]
12. Mauldin, T.R.; Canby, M.E.; Metsis, V.; Ngu, A.H.; Rivera, C.C. SmartFall: A Smartwatch-Based Fall Detection System Using

Deep Learning. Sensors 2018, 18, 3363. [CrossRef] [PubMed]
13. Seraji-Bzorgzad, N.; Paulson, H.; Heidebrink, J. Neurologic examination in the elderly. Handb. Clin. Neurol. 2019, 167, 73–88.

[PubMed]
14. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30.
15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
16. Bahdanau, D.; Chorowski, J.; Serdyuk, D.; Brakel, P.; Bengio, Y. End-to-end attention-based large vocabulary speech recognition.

In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China,
20–25 March 2016; pp. 4945–4949.

17. Zhu, X.J. Semi-Supervised Learning Literature Survey. 2005. Available online : https://pages.cs.wisc.edu/~jerryzhu/pub/ssl_
survey.pdf (accessed on 1 December 2022).

18. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE
2020, 109, 43–76. [CrossRef]

19. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [CrossRef]
20. Maqsood, M.; Nazir, F.; Khan, U.; Aadil, F.; Jamal, H.; Mehmood, I.; Song, O.y. Transfer learning assisted classification and

detection of Alzheimer’s disease stages using 3D MRI scans. Sensors 2019, 19, 2645. [CrossRef]

https://www.cdc.gov/media/releases/2016/p0922-older-adult-falls.html
https://www.cdc.gov/media/releases/2016/p0922-older-adult-falls.html
https://www.cdc.gov/falls/facts.html
https://acl.gov/sites/default/files/Aging and Disability in America/2017OlderAmericansProfile.pdf
https://acl.gov/sites/default/files/Aging and Disability in America/2017OlderAmericansProfile.pdf
https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/index.html 
https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/index.html 
http://doi.org/10.4108/icst.pervasivehealth.2011.246060
http://dx.doi.org/10.1016/j.measurement.2019.03.079
http://www.lifealert.com
https://www.mobilehelp.com/pages/smart
http://www.apple.com/apple-watch-series-4/activity/
https://mhealthspot.com/2017/03/rightminder-android-wear-app-seniors/
https://mhealthspot.com/2017/03/rightminder-android-wear-app-seniors/
http://dx.doi.org/10.1145/3428666
http://dx.doi.org/10.3390/s18103363
http://www.ncbi.nlm.nih.gov/pubmed/30304768
http://www.ncbi.nlm.nih.gov/pubmed/31753158
http://dx.doi.org/10.1145/3065386
https://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
https://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.3390/s19112645


Sensors 2023, 23, 1105 23 of 24

21. Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep convolutional neural
networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med Imaging
2016, 35, 1285–1298. [CrossRef]

22. Byra, M.; Wu, M.; Zhang, X.; Jang, H.; Ma, Y.J.; Chang, E.Y.; Shah, S.; Du, J. Knee menisci segmentation and relaxometry of 3D
ultrashort echo time cones MR imaging using attention U-Net with transfer learning. Magn. Reson. Med. 2020, 83, 1109–1122.
[CrossRef]

23. Tang, X.; Du, B.; Huang, J.; Wang, Z.; Zhang, L. On combining active and transfer learning for medical data classification. IET
Comput. Vis. 2019, 13, 194–205. [CrossRef]

24. Zeng, M.; Li, M.; Fei, Z.; Yu, Y.; Pan, Y.; Wang, J. Automatic ICD-9 coding via deep transfer learning. Neurocomputing 2019,
324, 43–50. [CrossRef]

25. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

26. Marcus, D.S.; Fotenos, A.F.; Csernansky, J.G.; Morris, J.C.; Buckner, R.L. Open access series of imaging studies: longitudinal MRI
data in nondemented and demented older adults. J. Cogn. Neurosci. 2010, 22, 2677–2684. [CrossRef]

27. Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. Decaf: A deep convolutional activation feature for
generic visual recognition. In Proceedings of the INTERNATIONAL Conference on Machine Learning. PMLR, Bejing, China,
22–24 June 2014; pp. 647–655.

28. Palanisamy, K.; Singhania, D.; Yao, A. Rethinking CNN models for audio classification. arXiv 2020, arXiv:2007.11154.
29. Koike, T.; Qian, K.; Kong, Q.; Plumbley, M.D.; Schuller, B.W.; Yamamoto, Y. Audio for audio is better? An investigation on

transfer learning models for heart sound classification. In Proceedings of the 2020 42nd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 74–77.

30. Gemmeke, J.F.; Ellis, D.P.; Freedman, D.; Jansen, A.; Lawrence, W.; Moore, R.C.; Plakal, M.; Ritter, M. Audio set: An ontology and
human-labeled dataset for audio events. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 776–780.

31. Ni, J.; Sarbajna, R.; Liu, Y.; Ngu, A.H.; Yan, Y. Cross-modal knowledge distillation for Vision-to-Sensor action recognition. In
Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Singapore, 22–27 May 2022; pp. 4448–4452.

32. Ni, J.; Ngu, A.H.; Yan, Y. Progressive Cross-modal Knowledge Distillation for Human Action Recognition. In Proceedings of the
30th ACM International Conference on Multimedia, Lisbon, Portugal, 10 October 2022; pp. 5903–5912.

33. Li, F.; Shirahama, K.; Nisar, M.A.; Huang, X.; Grzegorzek, M. Deep Transfer Learning for Time Series Data Based on Sensor
Modality Classification. Sensors 2020, 20, 4271. [CrossRef]

34. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min.
Knowl. Discov. 2019, 33, 917–963. [CrossRef]

35. Gikunda, P.; Jouandeau, N. Homogeneous Transfer Active Learning for Time Series Classification. In Proceedings of the 2021
20th IEEE International Conference on Machine Learning and Applications (ICMLA), Virtually Online, 13–15 December 2021;
pp. 778–784. [CrossRef]

36. Morales, F.J.O.n.; Roggen, D. Deep Convolutional Feature Transfer across Mobile Activity Recognition Domains, Sensor Modalities and
Locations; Association for Computing Machinery: New York, NY, USA, 2016. [CrossRef]

37. Zhou, X.; Zhai, N.; Li, S.; Shi, H. Time Series Prediction Method of Industrial Process with Limited Data Based on Transfer
Learning. IEEE Trans. Ind. Informatics 2022, 1–10. [CrossRef]

38. Villar, J.R.; de la Cal, E.; Fañez, M.; González, V.M.; Sedano, J. User-centered fall detection using supervised, on-line learning and
transfer learning. Prog. Artif. Intell. 2019, 8, 453–474. [CrossRef]

39. Ngu, A.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q.Z. IoT Middleware: A Survey on Issues and Enabling Technologies.
IEEE Internet Things J. 2017, 4, 1–20. [CrossRef]

40. Ngu, A.H.H.; Eyitayo, J.S.; Yang, G.; Campbell, C.; Sheng, Q.Z.; Ni, J. An IoT Edge Computing Framework Using Cordova
Accessor Host. IEEE Internet Things J. 2022, 9, 671–683. [CrossRef]

41. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

42. Kumar, V.; Choudhary, A.; Cho, E. Data augmentation using pre-trained transformer models. arXiv 2020, arXiv:2003.02245.
43. Kuroyanagi, I.; Hayashi, T.; Adachi, Y.; Yoshimura, T.; Takeda, K.; Toda, T. Anomalous Sound Detection with Ensemble

of Autoencoder and Binary Classification Approaches. Technical Report. DCASE2021 Challenge. 2021. Available on-
line: https://dcase.community/documents/challenge2021/technical_reports/DCASE2021_Kuroyanagi_96_t2.pdf (accessed on
1 December 2022).

44. Mariani, G.; Scheidegger, F.; Istrate, R.; Bekas, C.; Malossi, C. Bagan: Data augmentation with balancing gan. arXiv 2018,
arXiv:1803.09655.

45. Li, X.; Metsis, V.; Wang, H.; Ngu, A. TTS-GAN: A Transformer-Based Time-Series Generative Adversarial Network; Lecture Notes in
Computer Science; Springer Science and Business Media Deutschland GmbH, Texas State University: San Marcos, TX, USA, 2022;
Volume 13263.

http://dx.doi.org/10.1109/TMI.2016.2528162
http://dx.doi.org/10.1002/mrm.27969
http://dx.doi.org/10.1049/iet-cvi.2017.0524
http://dx.doi.org/10.1016/j.neucom.2018.04.081
http://dx.doi.org/10.1162/jocn.2009.21407
http://dx.doi.org/10.3390/s20154271
http://dx.doi.org/10.1007/s10618-019-00619-1
http://dx.doi.org/10.1109/ICMLA52953.2021.00129
http://dx.doi.org/10.1145/2971763.2971764
http://dx.doi.org/10.1109/TII.2022.3191980
http://dx.doi.org/10.1007/s13748-019-00190-2
http://dx.doi.org/10.1109/JIOT.2016.2615180
http://dx.doi.org/10.1109/JIOT.2021.3086043
http://dx.doi.org/10.1613/jair.953
https://dcase.community/documents/challenge2021/technical_reports/DCASE2021_Kuroyanagi_96_t2.pdf


Sensors 2023, 23, 1105 24 of 24

46. Kidger, P.; Morrill, J.; Foster, J.; Lyons, T. Neural controlled differential equations for irregular time series. Adv. Neural Inf. Process.
Syst. 2020, 33, 6696–6707.

47. Hasani, R.; Lechner, M.; Amini, A.; Rus, D.; Grosu, R. Liquid time-constant networks. In Proceedings of the Proceedings of the
AAAI Conference on Artificial Intelligence, virtually, 22 February–1 March 2021; Volume 35, pp. 7657–7666.

48. Liu, Y.; Gong, C.; Yang, L.; Chen, Y. DSTP-RNN: A dual-stage two-phase attention-based recurrent neural network for long-term
and multivariate time series prediction. Expert Syst. Appl. 2020, 143, 113082. [CrossRef]

49. Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.X.; Yan, X. Enhancing the locality and breaking the memory bottleneck of
transformer on time series forecasting. Adv. Neural Inf. Process. Syst. 2019, 32.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.eswa.2019.113082

	Introduction
	Related Work
	Transfer Learning for General Healthcare
	Transfer Learning for Time-Series Data

	SmartFall System Architecture
	Methodology
	Dataset Collection
	Experimental Settings
	Model Training and Parameters Tuning

	Experiments and Results
	Left Wrist to Right Wrist Transfer Learning with Meta-Sensor
	MSBAND to Meta-Sensor/Huawei Transfer Learning
	MSBAND to Meta-Sensor
	MSBAND to Huawei

	Combined Left and Right Wrist Transfer Learning

	Conclusions and Future Work
	References

