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Abstract: To address the problem of the quantitative identification of glass panel surface defects, a
new method combining the chaotic simulated annealing particle swarm algorithm (CSAPSO) and
the BP neural network is proposed for the quantitative evaluation of microwave detection signals
of glass panel defects. First, the parameters of the particle swarm optimization (PSO) algorithm
are dynamically assigned using chaos theory to improve the global search capability of the PSO.
Then, the CSAPSO-BP neural network model is constructed, and the return loss and phase of the
microwave detection echo signal of glass panel defects are extracted as the input feature quantity
of the network, from which the intrinsic connection between input and output is found through
network training and testing to achieve the prediction of the depth and width of glass panel surface
defects. The results show that the CSAPSO-BP network model can more accurately characterize the
defect geometry of glass panels than the PSO-BP network model.

Keywords: glass panel; chaos; simulated annealing algorithm; particle swarm optimization algorithm;
microwave detection; quantitative identification

1. Introduction

The quality of a glass panel is a key factor in the touch performance and optical
performance of the panel. In the glass shape processing, tempering, polishing, screen
printing and other production processes, it is easy to cause panel scuffs, scratches, chipping,
bubbles and other defects, among which crack-like defects are the most common and
should be identified and eliminated in real time during the manufacturing and production
processes [1]. At present, the surface defects of glass panels are detected mainly by manual
inspection and machine vision inspection [2]. However, manual inspection is not only
costly and inefficient, but can also easily lead to false detection or a missed inspection due
to visual fatigue of the inspectors [3]; machine vision inspection requires different light
source systems designed for different types of defects [4], and the high real-time accuracy
of the defect recognition algorithm also needs to be improved. In contrast, microwave
inspection technology [5] has the advantages of low power consumption, noncontact, easy
operation, and no ionizing radiation, so it has a better detection effect for different types of
defects on glass panels, and it is easy to achieve automated detection [6].

At present, microwave inspection technology is mostly based on qualitative detection,
which can only determine the presence or absence of defects, and it is difficult to identify
the shape and geometry of defects and other information. The chaotic simulated annealing
particle swarm optimization algorithm takes advantage of the ability of simulated annealing
to make sudden jumps in local extremes, improving the prematureness of the particle
swarm optimization algorithm. Chaos theory is also introduced to improve the search
capability of the algorithm [7]. However, the algorithm is currently mostly applied to solve
problems such as shop scheduling, electric vehicle charging station planning, and Weibull
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distribution parameter estimation [8]. There are still few reports on defect detection and
quantitative identification.

To this end, a quantitative defect identification method combining the BP neural
network and the chaotic simulated annealing particle swarm optimization algorithm is
proposed for the quantitative identification of the microwave detection of glass panel
surface crack-like defects. This article is organized as follows. Section 2 introduces the
basic principles of microwave inspection and establishes a finite element analysis model
for the microwave inspection of a glass panel, and investigates the effect of defect size and
microwave signal. Section 3 reveals the shortcomings of the current BP neural network
and particle swarm optimization algorithms, and proposes a CSAPSO-BP neural network
algorithm. Section 4 verifies the effectiveness and superiority of the CSAPSO-BP neural
network algorithm for the microwave detection of glass panel defects and quantitative
identification of defects by training and testing the CSAPSO-BP neural network model.
Conclusions and future work are summarized in Section 5.

2. Finite Element Analysis Model for the Microwave Inspection of a Glass Panel
2.1. Detection Principle

The principle of microwave detection of surface defects on glass panels is shown in
Figure 1. The rectangular waveguide probe emits a certain frequency band of microwaves
to the surface defects of the glass panel; on one hand, the microwaves will scatter a lot at
the nonuniform interface, which weakens the energy received by the probe; on the other
hand, due to the increased distance between the microwave excitation source and the panel
surface caused by the defect, the phase of the echoes received by the probe will also change.
Therefore, by studying the return loss and phase change in the reflected wave, it is possible
to achieve glass panel surface defect detection.

Probe

Incident wave l T Reflected Wave

Surface crack

Glass Panel

Figure 1. Microwave detection principle.

2.2. Calculation Model

Based on the microwave detection principle, the interaction between the microwaves
and the defect on the glass panel surface is calculated numerically using CST electromag-
netic field simulation software. Firstly, a panel model with dimensions of 60 mm x 40 mm
x 5 mm was established with parameters set to a relative magnetic permeability of i, =1
and a complex dielectric constant of &, = 5.33 — j0.096. A slotted defect parallel to the
long direction (X-direction) of the panel was established in the center of the panel. To
improve detection sensitivity, a rectangular waveguide with a length of 15.8 mm and a
width of 7.9 mm was selected, and the lifting distance between the waveguide and the glass
panel was 0.5 mm. Through simulation calculations, parameters such as return loss and
reflection coefficient phase of the microwave signal are mainly obtained. The 3D simulation
calculation model for the microwave detection of defects on panel surfaces is shown in
Figure 2.
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Figure 2. A 3D simulation model for the microwave inspection of the panel.

2.3. Calculation Result

The surface defect size (3 mm x 0.1 mm x 0.1 mm) of the glass plate was swept in
the x-direction with a rectangular waveguide probe at 13.722 GHz. Figure 3a shows the
variation curve of the microwave return loss along the direction of the probe sweep. The
return loss first drops and then rises. When the probe center is 3 mm from the crack center,
the return loss decreases gradually. Until the center of the probe and the center of the defect
are completely coincident, the return loss stops decreasing. The whole curve has symmetry.
Figure 3b shows the phase change curve along the probe scanning direction. It is not
difficult to find that the whole curve has the same symmetry, and the phase first gradually
decreases, and when the probe center is 6 mm away from the crack center, i.e., when the
defect is completely inside the inside of waveguide port, the phase starts to increase until
the center of the rectangular probe coincides exactly with the geometric center of the crack,
and the phase reaches its highest value.
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Figure 3. Echo signal characteristics of crack defects: (a) return loss variation curve; (b) echo phase
variation curve.

Figures 4 and 5 show the echo signals of defects with different depths and widths,
respectively. From the figures, it can be seen that the echo loss and phase at the defect center
point show a certain monotonicity as the width increases. However, the effect of defect
depth variation on the echo loss and phase does not show a clear correlation. Therefore, it
is difficult to make an accurate quantitative evaluation of the defect geometry by simply
using the linear fitting method.
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Figure 4. Echo signals of different width defects: (a) return loss variation curve; (b) echo phase
variation curve.
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Figure 5. Echo signals of different depth defects: (a) return loss variation curve; (b) echo phase
variation curve.

3. CSAPSO-BP Neural Network Algorithm
3.1. BP Neural Network

The BP neural network [9-11] is a multilayer feedforward neural network, and its
topology is shown in Figure 6. The main feature of this network is that the signal is
transmitted forward and the error is propagated backward. In forward transmission, the
input signal is processed from the input layer through the implicit layer to the output layer.
The neuron state in each layer only affects the neuron state in the next layer, and if the
desired output is not obtained in the output layer, it is transferred to backpropagation, and
the weights and thresholds of the network are adjusted according to the prediction error so
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that the predicted output of the BP neural network continuously approximates the desired
output [12-14].

Input layer hidden layer = Output layer

Figure 6. Structure of the BP neural network.

In Figure 6, n, j and m are the number of nodes in the input layer, the number of nodes
in the hidden layer and the number of nodes in the output layer, respectively. T1, T, ...,
T, are the input samples, Py, ..., Py are the output samples, wjj and wjy are the weight
from the input layer to the hidden layer and the weight from the hidden layer to the output
layer, respectively.

3.2. PSO Algorithm

The particle swarm optimization algorithm [15-17] is a population optimization algo-
rithm derived from bird flock foraging, which focuses on guiding the optimization search
through mutual cooperation and mutual search among flocks of birds [18,19]. The particle
swarm algorithm is first initialized as a group of random particles that update themselves
in iterations by tracking individual and global extremes [20]. In this process, the current
velocity and position of each particle are mainly determined by Equations (1) and (2).

Via(t+1) = w x vig(t) +c1 x 11 % [xfy — xja(t)] + €2 X 12 % [xj;d - xid(t)} 1)

Xig(t+1) = xj9(t) +vig(t +1) 2)

In the formula, ¢1 and c; are acceleration constants to regulate the maximum learning
step; r1 and rp are random numbers of (0, 1) to increase the randomness of the particle
search; w is the inertia weight; and x;; 4 18 the best position that all of the particles in the
group have found so far.

Since the search performance of the PSO algorithm has a certain dependence on the
parameters, in many cases, the size of the parameter values directly affects whether the
algorithm converges and the accuracy of the solution results. At the same time, in the PSO
algorithm, when a particle finds a local optimal solution, other particles will be attracted by
the optimal solution and quickly gather in its vicinity, thus making the whole algorithm
converge prematurely and fall into a local optimum [21]. Therefore, there is a need to
improve the global search capability of the algorithm.

3.3. CSAPSO-BP Neural Network Algorithm

In order to solve the problem of the poor global search ability of the PSO algorithm,
the chaos theory and simulated annealing algorithm are combined to optimize the PSO
algorithm, and the chaotic simulated annealing particle swarm optimization algorithm
(CSAPSO) is proposed. Chaos theory is used to dynamically assign the parameters r; and
1o of the particle swarm optimization algorithm to produce a population of excellence.
Combined with a simulated annealing algorithm, the algorithm is able to accept some
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poor solutions with a certain probability, which improves the global search ability of the
algorithm itself. The BP neural network has good adaptability in function approximation,
nonlinear function fitting and online prediction. However, it has the problem of slow
convergence and easily falls into local minima, so the CSAPSO algorithm is used to optimize
the BP neural network, the weights and thresholds of the BP neural network are used as
the optimal solutions of the optimization algorithm, and the mean square error is used as
the fitness function of the algorithm. The flow chart of the algorithm is shown in Figure 7.
The specific algorithm flow is as follows:

1
Input return loss Initialization of |—
and phase algorithm - Start
+ parameters

Data normalization v

Calculate the llll?lal fitness of Define the Network
the particles
Structure
Y Obtain the optimal
> eet the end condition > weights and
thresholds

A
Calculate errors

Update weights and
thresholds

Meet the end
conditions?

Compare the fitness values to determine the
individual optimal and global optimal

Update the velocity and position of the
particles
y
Calculate the fitness of
the new particle

Y
Calculate the change of

particle fitness value Af

Output defect
depths/widths

>y
| Gain new position and speed |

Adjust the temperature coefficient
according to T=Txalpha

Cooling operation

Part of chaotic simulated annealing particle swarm
| optimization

BP neural network section

Figure 7. The CSAPSO-BP neural network algorithm.

Step 1: Start. Determine the number of neurons in the input layer, hidden layer and
output layer of the BP neural network.

Step 2: Initialize the relevant parameters of the algorithm, i.e., the initial position,
velocity, inertia weight, acceleration constant of the particles, the size of the population,
initial temperature and the maximum number of iterations. Import the return loss and
phase training sets and normalize them.

Step 3: Calculate the initial fitness value of the particles.

Step 4: Termination condition judgment. If the individual fitness value of the optimal
solution meets the set error requirement or the number of iterations meets the requirement,
the optimal weights and thresholds are outputted to the BP neural network; if not, the next
step is executed.

Step 5: Compare the fitness values to determine the individual optimum and the
global optimum.
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Step 6: Follow Equations (1) and (2) to update the velocity and position of the particle
and recalculate the fitness value of the new particle.

Step 7: Calculate the change in the fitness value caused by the two positions.

Step 8: The judgment of fitness difference Af. If the Af < 0 or exp (—Af/T) > rand
requirement is met, the new position is accepted; otherwise, keep the old position, perform
the cool-down process and return to step 4.

Step 9: The weights and thresholds determined by the optimized CSAPSO algorithm
are used as the weights and thresholds of the BP neural network, and then the neural
network is used for training. If the maximum training time or minimum error are reached,
the depth and width of defects will be outputted. If not, keep training.

4. CSAPSO-BP Neural Network Training and Testing
4.1. Extraction of Feature Parameters

Based on the numerical calculation model shown in Figure 2, the defects with a length
of 3 mm, a width of 0.1 mm and a depth range of 0.05~2 mm, and the defects with a length
of 3 mm, a depth of 0.1 mm and a width range of 0.1~4 mm were numerically calculated,
respectively; forty sets of data were collected for each. The return loss and phase are
selected as the input of the BP neural network, and the depth and width of the cracks are
used as the network outputs.

4.2. Training and Testing

From the above 40 groups of simulation calculation data with different depths and
widths, 5 groups of data with depths of 0.05 mm, 0.5 mm, 1 mm, 1.5 mm and 2 mm and
5 groups of data with widths of 0.1 mm, 1 mm, 2 mm, 3 mm and 4 mm were selected as the
test set, and the other 35 groups of data were selected as the training set. The CSAPSO-BP
neural network model was established by using MATLAB. The input layer was defined
as two nodes, the output layer as one node and the hidden layer as eight nodes. The
learning rate of the neural network was 0.05 and the training target error was 107°. After
dozens of tests, the parameters of the chaotic simulated annealing particle swarm algorithm
were determined as follows: the population size was 10, the number of iterations was 100,
the learning factors c; and c; were 2, Wmpin and wmax were 0.4 and 0.9, respectively, the
initial temperature was 1000 and the temperature decay coefficient was taken as 0.98. After
normalizing the sample data, the PSO-BP neural network model and CSAPSO-BP neural
network model were trained and tested, and finally, the predicted results were treated with
reverse normalization.

4.3. Result Analysis

Figures 8 and 9 show the test set R-coefficients and MSE curves for the prediction of de-
fect width for the two algorithms CSAPSO-BP and PSO-BP, respectively. Figures 10 and 11
show the test set R-coefficients and MSE curves for the prediction of defect depth for both
the CSAPSO-BP and PSO-BP algorithms, respectively. It can be seen from the plots that
the R-coefficients of the CSAPSO-BP algorithm are somewhat higher than the PSO-BP
for both defect width prediction and depth prediction, and the algorithm of CSAPSO-BP
converges faster.

The prediction results of the two algorithms are shown in Tables 1 and 2. From the
table, it can be seen that the CSAPSO-BP neural network is significantly better than the
PSO-BP neural network in terms of the accuracy of the prediction results for defect depth
and width.
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Figure 10. Test set R-factor for defect depth prediction: (a) CSAPSO-BP algorithm; (b) PSO-
BP algorithm.
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Figure 11. MSE variation curve for defect depth prediction: (a) CSAPSO-BP algorithm; (b) PSO-
BP algorithm.

Table 1. Comparison of defect width prediction results.

Serial Number Actual Width PSO-BP CSAPSO-BP
Value/mm Prediction Prediction
1 0.1 0.071008 0.095222
2 1.0 1.027841 1.008076
3 2.0 1.954659 1.998593
4 3.0 2.992504 3.000193
5 4.0 4.059224 3.995448

Table 2. Comparison of defect depth prediction results.

Serial Number Actual Depth PSO-BP CSAPSO-BP
Value/mm Prediction Prediction
1 0.05 0.210828 0.019655
2 0.50 0.489987 0.497413
3 1.00 1.041800 1.023970
4 1.50 1.463427 1.470877
5 2.00 2.171102 2.053180

Figure 12a shows the error comparison between the two algorithms for the prediction
of the defect width. It can be seen that the average error percentage of the PSO-BP neural
network for predicting the defect width is 3.226%, while the average error percent-age of
the CSAPSO-BP neural network for predicting the defect width is 0.382%, which is smaller
than that of the PSO-BP neural network. Figure 12b shows the error percentage of defect
depth prediction for both algorithms. the average error of PSO-BP neural network is 8.406%,
while the average error of predicted depth of CSAPSO-BP neural network is 2.784%, which
is more accurate than that of PSO-BP neural network. The above results show that the
CSAPSO-BP neural network has less error and higher accuracy than the PSO-BP neural
network in the prediction of defect depth and width, which proves the feasibility of the
CSAPSO-BP neural network for quantitative identification of surface defects.
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Figure 12. Echo signal characteristics of crack defects: (a) comparison of the prediction error of defect
width; (b) comparison of the prediction error of defect depth.

5. Discussions and Conclusions

This paper combines the nondestructive microwave testing method and the CSAPSO-
BP neural network to construct a quantitative network model for identifying defects on the
surface of glass panels and to achieve a quantitative evaluation of the width and depth of
crack-like defects on the surface of panels. The CST microwave simulation software was
used to calculate the changes in microwave signals when the waveguide probe swept the
glass panel surface defects, and the loss and phase of the echo signal at the center of the
defect were extracted as the input feature parameters of the CSAPSO-BP neural network.
The network was trained and tested, and the recognition effect was compared with that
of the PSO-BP neural network. The results show that the defect geometry recognition
algorithm using CSAPSO-BP neural network has higher accuracy, which verifies the effec-
tiveness and superiority of the CSAPSO-BP neural network algorithm in the microwave
detection of glass panel defects and the quantitative recognition of defects. The method
overcomes the disadvantages of low efficiency, high labor cost and low detection accuracy
of the human eye visual inspection method, and also avoids the harsh requirements of
machine vision inspection on light source and camera shooting angle, which has certain
guiding significance for the quantitative microwave identification of surface defects of
non-metallic materials. However, due to the limited time and conditions of the study, the
current research mainly focused on simulation and lacks certain experimental validation.
Subsequently, it is necessary to build a microwave inspection test platform to verify the
feasibility of the method. At the same time, the defects simulated in the paper are regular,
while the defects detected on the actual production line are very complex, with different
shapes of defects, which have a more complex impact on the detection effect; the detection
of these natural defects needs to be focused upon in further research.
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