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Abstract: Research exploring CycleGAN-based synthetic image generation has recently accelerated
in the medical community due to its ability to leverage unpaired images effectively. However, a
commonly established drawback of the CycleGAN, the introduction of artifacts in generated images,
makes it unreliable for medical imaging use cases. In an attempt to address this, we explore the effect
of structure losses on the CycleGAN and propose a generalized frequency-based loss that aims at
preserving the content in the frequency domain. We apply this loss to the use-case of cone-beam
computed tomography (CBCT) translation to computed tomography (CT)-like quality. Synthetic
CT (sCT) images generated from our methods are compared against baseline CycleGAN along with
other existing structure losses proposed in the literature. Our methods (MAE: 85.5, MSE: 20433,
NMSE: 0.026, PSNR: 30.02, SSIM: 0.935) quantitatively and qualitatively improve over the baseline
CycleGAN (MAE: 88.8, MSE: 24244, NMSE: 0.03, PSNR: 29.37, SSIM: 0.935) across all investigated
metrics and are more robust than existing methods. Furthermore, no observable artifacts or loss in
image quality were observed. Finally, we demonstrated that sCTs generated using our methods have
superior performance compared to the original CBCT images on selected downstream tasks.

Keywords: medical image translation; unpaired image translation; structure loss; frequency loss;
CBCT enhancement; synthetic CT

1. Introduction

Radiotherapy is a method of cancer treatment where doses of radiation are targeted
at the tumor in order to stop its growth. While delivering radiation to the tumor, healthy
organs need to be spared in order to avoid causing damage to them, which makes the
design of a radiotherapy treatment a challenging task. Adaptive radiotherapy (ART) is a set
of emerging data-driven techniques that aim to improve treatment delivery and outcome
by, for instance, administering more accurate treatment plans that account for changes
observed during the treatment process. Using onboard imaging data such as cone-beam
computed tomography (CBCT) to adapt/re-plan treatment can possibly improve treatment
outcomes by better conforming the delivered dose to the tumor and giving a smaller dose
to healthy tissues.

However, CBCT images are acquired with about an order of magnitude lower ra-
diation than conventional fan-beam CTs [1] rendering them more susceptible to sources
of noise that already affect CT imaging [2]. In addition, the physics of CBCT acquisition
introduces sources of noise such as increased scatter because of the use of flat panel de-
tectors. Due to these factors, CBCT images often present lower quality than diagnostic
CT scans. Considerable research has been presented on the benefit of processing CBCT
images to improve their quality and reduce artifacts with traditional methods such as
scatter correction [3], density overrides [4], CT number calibration [4], deformable image
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registration [5], and certain model-based methods [6]. With the democratization of machine
learning (ML) and deep learning (DL), multiple studies have also presented ML/DL-based
methods to post-process CBCT images. These methods are often much quicker and less
cumbersome than traditional methods and have found wide acceptance in the medical
imaging research community. However, in terms of clinical implementation, the vulnerabil-
ity of ML/DL-based methods in dealing with out-of-distribution data has been a limiting
factor. In the section below, a short review of some deep learning approaches along with
their benefits and limitations is discussed.

Paired approaches using encoder–decoder networks, specifically UNets [7], have been
presented by multiple studies [8–11]. Kida et al. [8] trained their model with 20 patients in a
2D fashion using a 39-layer UNet architecture and showed that their methods improved the
image and dosimetric quality. Image similarity was evaluated through the structural simi-
larity index [12], power-to-signal-noise ratio, ROI mean values, and spatial non-uniformity.
Landry et al. [9] compared three UNets trained with different inputs—in projection and
image spaces—while using the L2 norm as a loss function in contrast to the MAE. Yuan
et al. [10] presented an approach using three cross-sectional slices as three-channel inputs
to a two-dimensional UNet. The authors extensively validated their approaches through
group-based cross-validation and showed large improvements in image quality across all
their test studies. Thummerer et al. [11] trained each 2D network considering different
planes—axial, sagittal, and coronal—of the 3D CBCT-CT scan pair followed by aggregation
during test time. Although they showed the efficacy of their methods compared to tradi-
tional approaches, they did not present comparisons of single plane vs. their multi-planar
approach.

Traditionally, the image-to-image translation community has focused on designing
handcrafted losses to preserve relevant features in the predicted image. With pix2pix
GAN [13], a discriminator was designed to replace complex loss design and preserve
high-frequency information. Zhang et al. [14] compared multiple deep learning approaches
from UNet encoder–decoders to CycleGANs for CBCT translation and showed that the
pix2pix GAN outperforms other methods. Another interesting work by Dahiya et al. [15]
showed how physics-based data augmentation can be used to create paired data which
can then be leveraged in a pix2pix framework. In addition to improved CBCT, they also
generated organ segmentation for the CBCT image. Several studies have incorporated
pix2pix GAN to improve the quality of CBCTs and demonstrated their value in clinical
downstream tasks [14,16]. A caveat of paired training approaches is the need to obtain
paired data in preprocessing, which might pose a hindrance in utilizing all available data
efficiently. During treatment, multiple CBCTs are acquired but, generally, only a single
pair is a strong candidate when matching with a planning CT. The process of pairing data
might also introduce biases such as dependence on the method/quality of registration
chosen. These impeding factors along with the emergence of unpaired approaches such as
CycleGAN have led the research community to lean toward unpaired approaches.

The CycleGAN framework introduced by [17] is one of the most consistently used
unpaired approaches for image-to-image translation. Kurz et al. [18] presented an approach
using a 2D CycleGAN where co-registered slices are used as inputs showing strong corre-
spondence with existing CBCT correction methods, both image and dosimetry-wise, while
being much faster. Maspero et al. [19] used limited field-of-view CBCTs and rescanned
CTs in a purely unpaired fashion across three different anatomical sites. A single network
trained on all sites was compared with individually trained networks, both showing a large
improvement in image similarity. They additionally showed that the improved CBCT is of
sufficient dosimetric quality through dose differences and gamma analysis. Liu et al. [20]
demonstrated the use of attention gates in CycleGANs and showed that it improves
smoothness and reduces artifacts when compared with a UNet and a vanilla CycleGAN.
Various other studies [21–23] have also shown the benefit of CycleGAN approaches in
CBCT improvement for both visual and dosimetric tasks.
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Cycle consistency loss in the CycleGAN is required as infinitely many mappings G
can produce an output distribution that is identified as belonging to the target domain.
Mode collapse is also a common occurrence when solely adversarial mechanics are used
for training [17]. Additional structural losses may be added to the CycleGAN, which
can further constrain mappings between the source and the target domain. These losses
operate directly between the input and its translated image such as (1) the regularization
loss proposed by Shrivastava et al. [24], which computes L1 distance, and (2) MIND
loss [25], which is a dense descriptor-based loss that is crafted specifically for medical
image registration. While the L1 loss operates in the image domain, the MIND loss operates
in the descriptor domain.

In this work, we propose a loss operating in the frequency domain inspired by Jiang
et al. [26] and apply it to the use case of CBCT to CT translation. Our main contributions
can be summarized as follows:

1. Our proposed frequency structure loss operates in the frequency domain, enforcing
constraints where spatial correspondences between images are less sensitive, allowing
it to be used effectively on unpaired data.

2. The frequency structure loss improves performance over the baseline CycleGAN and
provides images that are more robust than existing methods.

3. The calculation of our loss is faster and less resource-intensive compared to similar
losses, such as in Yang et al. [25].

4. Our loss is generalized and does not need any data-dependent configuration, enabling
its use for a range of use cases.

We demonstrate the advantage of using our loss through various experiments and
show that improved results are obtained in terms of both image-similarity metrics, quali-
tative analysis, and downstream tasks. The remainder of the paper is organized into the
materials and methods (Section 2) where we present methods developed in our work,
experiments (Section 3) detailing our configuration and comparative experiments, the
results (Section 4) outlining our findings, a discussion (Section 5) of insights obtained from
our work, and finally a conclusion (Section 6).

2. Materials and Methods

This section describes the model architecture chosen in our work and the implemen-
tation details of the proposed loss function. Following this, the methodology used to
evaluate our approach and compare its performance with other state-of-the-art approaches
is described.

2.1. Model Architecture

Generative adversarial networks (GANs) are a category of generative models that are
trained in an adversarial fashion, lending it the name. The generative aspect of a GAN
is through a generative network called the generator (G) while the adversarial aspect is
through a discriminative network called the discriminator (D). In the original paper [27],
the authors define G as a function with parameters θg and construct a mapping G(z; θg)
where z is a sample from a noise distribution. The discriminator D has parameters θd and
applies the mapping D(x; θd) to an input x providing a scalar output. x comes from either
the data distribution or the generated distribution. The goal of a GAN is to train both D and
G simultaneously such that D learns to maximize the probability of identifying whether an
input x comes from data distribution or the generated distribution while G tries to minimize
this probability while generating representative samples. This is formally presented as,

Ladversarial(G, D) = Ex∼pdata [log(D(x))]

+ Ez∼p(z [log(1− D(G(z)))]
(1)
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Equation (1) shows the combined objective for the generator and discriminator where
pdata and pgenerated are the original (training data) and generated distributions, respectively.
The generator tries to minimize this objective while the discriminator tries to maximize it,
which is formulated as,

G∗ = argmin
G

argmax
D

Ladversarial(G, D) (2)

2.1.1. Image-to-Image Translation Using GANs

Generative adversarial methods have also been extended for conditional data—where
a generated distribution is conditioned on additional information [28]. Several modes of
information such as text, labels, and images have been used as conditional information.
Pix2pix [13] uses images as input in a conditional fashion to generate translations of those
images. Here the sampled noise z is conditioned with an input x. In addition to the
adversarial loss Ladversarial , an L1 loss between the generated and input conditional image
is proposed. The combined loss is presented as,

Lpix2pix(G, D) = Ladversarial(G, D)

+ λEx,y,z[||y− G(x, z)||1]
(3)

The authors interestingly show that the noise z does not affect the GAN and can be
completely eliminated, leading to providing only x sampled from the real data distribution
as input. The concept of conditional GANs for image-to-image translation is extended to
unpaired settings through the CycleGAN framework.

2.1.2. CycleGAN

The CycleGAN architecture consists of two sets of generator and discriminator net-
works. Given images belonging to two domains X and Y, the CycleGAN attempts to learn
a mapping from X→ Y through a network G. Discriminator DY learns to differentiate if
an image belongs to domain Y or not and drives the training of G. The concept of cycle
consistency is enforced by learning the inverse mapping from Y→ X through a network F.
Similar to DY, DX exists for the inverse mapping. After mapping X→ Y and Y→ X, the
generated image is compared with the original by means of a cycle-consistency loss that
ensures accurate reconstruction of the original image through the two mappings.

Figure 1 shows a diagram of the CycleGAN architecture for learning a mapping from
domain X → Y. The adversarial loss is similar to Equation (1) but with image x from
domain X as input instead of a noise vector z. The cycle-consistency loss in the standard
CycleGAN is an L1 loss between the input and reconstructed image. In the original paper,
the combined loss is formulated as,

LCycleGAN(G, F, DX , DY) = Ladversarial(G, DY) + Ladversarial(F, DX)

+ λAEx∼pdata(x) [||F(G(x))− x||1]

+ λBEy∼pdata(y) [||G(F(y))− y||1]
(4)
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Figure 1. Block diagram of a CycleGAN architecture for the mapping X→ Y.

2.2. Generalized Frequency Loss

Frequency spectrum representations of images can allow capturing patterns within the
image, that may not be easy to identify in their spatial domain representations. Converting
an image to its frequency spectrum representation involves a three-dimensional DFT
(discrete Fourier transform),

F(u, v, w) = I(x, y, z); x, y, z ∈ R (5)

Next, ortho-normalization of the DFT is done as,

F
′
(u, v, w) =

1√
LMN

F(u, v, w) (6)

where L, M, and N are dimensions of the CT and CBCT scans. F
′
(u, v, w) is then shifted such

that zero frequency lies at the center of the image. Following the shift, only the magnitude
component of the complex frequency spectrum is taken followed by the application of a
tanh non-linearity.

Fmag(u, v, w) = |F′(u, v, w)|; (7)

Frep(u, v, w) = tanh(Fmag(u, v, w)) (8)

The tanh non-linearity is applied in order to scale all values to the range of 0 to 1.
This was done to address the differences in the scale of frequency domain representations
across different image sets. Alternatively, a careful strategy to ensure that images in
the dataset are in similar scales while generating their frequency representations can be
designed. However, this becomes extremely data-specific and by no means is generalized.
The addition of the tanh makes several assumptions about the importance of different
intensities in the magnitude spectrum, as it leads to the following effects: (1) values greater
than 0.5 are subdued and (2) as values increase in intensity, their rate of change is also
dampened. However, the hypothesis is that the distribution of values, in the magnitude
spectrum and not the intensities itself, are of primary importance. Note that the intensity
of values is still captured but only higher intensities are dampened. In addition, due to the
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ortho-normalization of the DFT, the magnitude ranges are reduced. Upon obtaining the
generalized frequency representation, the generalized frequency loss is represented as

d(G(x), x) = ∑
u,v,w
||Frep(u, v, w)(x)− Frep(u, v, w)(G(x))||1 (9)

where G(x) is the predicted image by the generator, and x is the real image. The difference in
frequency representations is summed over all voxels in the images. The loss is incorporated
into the CycleGAN objective as,

LCycleGAN+ f req(G, F, DX , DY) = LCycleGAN(G, F, DX , DY) + λ fAEx∼pdata(x) [d(G(x), x)]

+ λ fBEy∼pdata(y) [d(F(y), y)]
(10)

where λ fA and λ fB are used to balance the contribution of the frequency loss to the overall
loss. We set λ fA = λ fB = 5 through initial experiments and use it across all configurations
unless mentioned otherwise.

2.3. Evaluation

Evaluation of unpaired translation methods is a non-trivial task and generally relies
on a combination of quantitative and qualitative criteria. Domain-specific evaluation can
also often be leveraged in order to determine if the generated images are suitable for
downstream tasks.

2.3.1. Image Similarity Metrics

Image similarity metrics common in image translation and quantitative image quality
assessment (IQA) [29], namely, mean absolute error (MAE), mean squared error (MSE),
normalized mean squared error (NMSE), peak-signal-to-noise ratio (PSNR), and the struc-
tural similarity index measure (SSIM) are used to quantitatively evaluate different methods.
These metrics are outlined below:

• Mean absolute error (MAE)

MAE(re f , pred) =
1
N

N

∑
i=1
|re f (i)− pred(i)| (11)

where N = total number of voxels in the image. re f , in our work, is the CT image
while pred, is the generated image.

• Mean squared error (MSE)

MSE(re f , pred) =
1
N

N

∑
i=1
|re f (i)− pred(i)|2 (12)

The MSE largely penalizes deviations from the reference image due to the difference
being squared.

• Normalized mean squared error (NMSE)

NMSE(re f , pred) =

√
∑N

i=1 |re f (i)− pred(i)|2

∑N
i=1 |re f (i)|2

(13)

The NMSE gives the mean squared error while also factoring in the signal power.
• Power-to-signal-noise ratio (PSNR)

PSNR(re f , pred) = 20× log10(re fmax)

− 10× log10MSE(re f , pred)
(14)

re fmax refers to the maximum value of the re f image. MSE(re f , pred) is computed as
described in Equation (12).
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• Structural similarity index metric (SSIM)
SSIM(re f , pred) is computed using the formula presented below, with re f denoted as
x, and pred as y.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(15)

where µ and σ represent the mean and variance respectively. c1 and c2 are variables
used to stabilize division.

2.3.2. Qualitative Inspection

Qualitative criteria are incorporated into the evaluation procedure, mainly due to
the limitations of existing quantitative criteria in capturing undesired effects of unpaired
translation. Effects such as checkerboard patterns, the addition of artifacts, or the modifi-
cation of anatomies are not directly captured by metrics. For example, consider a model
that translates images that offer good quantitative scores across all metrics. However, this
model adds small artifacts such as air pockets that were not present in the original image
and cannot be captured by the used metric. As a result, even though the metric score
is high, this model will not be accepted clinically. Therefore, qualitative evaluation and
analysis are inescapable.

Structured qualitative inspection can allow comparing models in a more systematic
manner. Through the analysis of translation from various experiments, a set of criteria for
qualitative inspection are formulated:

1. Presence of artifacts or undesirable elements: The induction of artifacts is an established
drawback of GAN-based generative models [30]. Such artifacts are hard to identify
using pixel-based quantitative metrics and, to the best of our knowledge, no other
metric that fully captures the range of possible artifacts in a CycleGAN is available.
To this end, we inspect images manually to check for artifacts or any undesirable
elements such as localized checkerboard artifacts that may appear randomly.

2. Quality of image in terms of clarity: This criterion aims to identify the reduction in
perceived image quality for translated images. Some very commonly seen phenomena
in CycleGAN translations are blurring, aliasing-like effects, and bright spots in parts
of the image. Ideally, a reader study would be performed to analyze these factors.
However, that is beyond the scope of this study.

Visualizing the entire 3D scan for 18 patients in the test set for multiple trained models
would be very time-consuming and impractical. For evaluation purposes, looking at three
cross-sectional planes allows us to make a good judgment on the overall quality of the
image. Therefore, all the criteria mentioned above are inspected using mid-axial, sagittal,
and coronal views.

2.3.3. Out-of-Distribution Analysis

Phantoms are used to test models on out-of-distribution data. Image-similarity metrics
are computed on the phantom with an available body mask to generate quantitative metrics.
Qualitative inspection of the phantom is done similarly to the patient data, as mentioned in
Section 2.3.2. Special attention is paid to the translation of the tumor in the phantom as it is
hypothesized to be a potential source of failure for the translation.

2.3.4. Domain-Specific Evaluation

Apart from the quantitative and qualitative evaluations highlighted above, we would
like to understand if the proposed methods benefit the use-case of adaptive radiotherapy,
for which we chose to design such methods. In order to establish this, we conduct a short
analysis of HU value distributions between the original, the target, and the improved CBCT
(translated scan). We also compare these scans based on line profiles that demonstrate HU



Sensors 2023, 23, 1089 8 of 20

values observed when a line passing through the heart, lung, skeletal muscles, and bones is
drawn in the axial plane.

Additionally, the improved CBCT can also be used to generate RT contours through
the incorporation of automated segmentation methods. To check if the CBCT improvement
benefits this task, we compare the difference in segmentation contours obtained between
original and generated images. An automated lung segmentation model [31], trained on a
large and diverse dataset, is used to segment the CT/CBCT scan into left and right lungs.
Since the test data contains ground truth contours, we generate automated contours for the
CT, original CBCT, and improved CBCT and compare each with the ground truth using the
Dice score.

3. Experiments

In this section, we first outline the datasets used for our work, followed by pre-
processing and stratification strategies. We then describe our experimental setup in evalu-
ating the proposed approach. All experiments were run using a configurable YAML-based
PyTorch framework called ganslate [32].

3.1. Datasets

A proton beam radiation therapy cohort from MAASTRO Clinic (The Netherlands)
comprised of 72 patients diagnosed with lung cancer was selected for our study. At the
start of treatment, planning CTs were captured for these patients. During the treatment,
CBCT scans were obtained at each fraction resulting in a total of 774 CBCT scans across all
patients. In addition to planning CTs, rescanned CTs were also collected to verify/adapt
treatment plans, leading to a total of 257 CT scans. Figure 2 shows the CBCT and CT scan
from a randomly selected patient. The CBCT images were acquired through Mevion CBCT
scanners, which were susceptible to a significant amount of noise while reconstructing the
images. These images are shown using a soft-tissue window that helps focus on values
within the heart, skeletal muscle, etc. Compared to the CT, the CBCT image has very
different intensity values, in terms of Hounsfield unit (HU) calibration along with streaks
in the image (due to scattering and motion artifacts). This difference is also highlighted in
Figure 2 (right).

Figure 2. CBCT (left) and CT (middle) scans for a randomly chosen patient. Differences between the
two scans with a HU range of [−300, 300] are also shown (right).

In addition to the patient cohort, we validate our results on an imaging phantom
which represents out-of-distribution data. Imaging phantoms are objects designed with
a known geometrical and physical composition which are used for quality assurance
and evaluation of CT machines [33]. Due to their known composition, phantoms can be
used while eliminating differences induced due to motion, set up, and biological changes.
Figure 3 shows the single anthropomorphic phantom that we use for validation.
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Figure 3. Anthropomorphic phantom shown with front (left) and tilted (middle) views. A bone-
window view is also shown (right) where intensities are windowed to expose only the bones. As can
be seen, the phantom replicates human-like anatomy.

3.2. Data Pre-Processing

The CT scans in the dataset are acquired with different field-of-view settings at the
discretion of the radiation therapist resulting in different image spacing grids. This gener-
ally needs to be handled to prevent misleading image representations and is done through
resampling the image grid. In order to minimize interpolation, the resampling is done as
follows,

1. Obtain frequency counts of spacing of all scans in the dataset.
2. Sort spacings in ascending order and rank all spacings based on their frequency

counts.
3. Select the smallest rank starting from the bottom of the list.

On following the procedure above, 1.2695 × 1.2695 × 3 (x × y × z) is determined as
the ideal spacing. The CBCT scans are also resampled to the resolution of the CT as we
expect the CBCT to be a replacement for the CT and hence, possess a similar resolution. All
of the above are performed using the SimpleITK library [34] in python.

Data Stratification for Modeling

The dataset is stratified at the patient level with 50 patients in the training set, 4 in
the validation set, and 18 in the test set. Note that due to the availability of more than a
single pair per patient, the instances available for training and validation are larger than
the number of patients. These are specifically mentioned in the pre-processing subsections.

In order to leverage the full benefits of unpaired data, training is done by selecting
a random CBCT and CT scan from the available set of scans and extracting 3D patches
of size 16× 320× 320. Due to this selection strategy, a CT scan from one patient can be
paired with a CBCT scan from the same patient or another patient. We hypothesize that
this allows for learning more generalized properties and also allows balancing training
instances in cases where a particular patient may have fewer CT or CBCT scans. A total
of 736 CBCT scans and 219 CT scans from the 50 patients are used during training. A set
of online pre-processing steps is followed during training starting with masking voxels
outside the patient body followed by truncating the field-of-view of the CT image to match
the field-of-view of the CBCT image. Finally, we extract patches from both the CBCT and
CT images.

For each of the patients in the validation and test set, multiple CBCTs and rescanned
CTs are available that are acquired through the treatment process. Rescanned CTs acquired
at a time point close to the CBCT generally have good anatomical correspondences although
there may be differences due to setup and random errors. These correspondences can be
leveraged in order to form weak pairs, which can then be used to evaluate translation
quantitatively. The process followed to generate these weak pairs is highlighted below,

1. Select the rescanned CT and the CBCT with the smallest time differences between
them (delta). The maximum time difference between the two is limited to one day so
that scans with potentially larger anatomical changes are ignored.

2. The rescanned CT is registered to the CBCT through deformable registration using pa-
rameters from the SimpleElastix library. Parameter files are available at https://github.

https://github.com/Maastro-CDS-Imaging-Group/clinical-evaluation/tree/master/configs
https://github.com/Maastro-CDS-Imaging-Group/clinical-evaluation/tree/master/configs
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com/Maastro-CDS-Imaging-Group/clinical-evaluation/tree/master/configs, accessed
on 13 May 2021 [35].

3. Apply the registration transform to the rescanned CT and available contours (only
available on the test set).

3.3. Network Configuration

The network configuration consists of a 3D VNet [36] (shown in Figure A1) as the
generator and a 3D PatchGAN as a discriminator. The 3D VNet structure consists of an
input block, four down-sampling blocks, four up-sampling blocks, and one out block. The
input block consists of a 3D convolutional block of kernel size five followed by instance
norm and PReLU. The four down-sampling blocks consist of one, two, three, and two
convolutional blocks, respectively, with varying kernel sizes and strides. The four up-
sampling blocks consist of two, two, one, and one convolutional blocks. The output block
contains two convolutional blocks, the first followed by an instance norm and PReLU and
the second followed by a tanh. This configuration is determined based on initial ablation
experiments conducted on other medical imaging data with promising performance. Skip
connections, similar to the UNet 2D, are also seen in the 3D VNet. The 3D PatchGAN is
a 3D version of the 2D PatchGAN, obtained by replacing the 2D convolutions with 3D
convolutions. Table 1 shows an overview of the network configuration.

Table 1. Base configurations used for the experiments performed across the two datasets.

Generator VNet 3D

Discriminator PatchGAN 3D

Learning rate D: 0.0002, G: 0.0004

Batch size 1

LR schedule Fixed for 50%, Linear decay for 50%

Optimizer Adam (β1 = 0.5, β2 = 0.999)

Lambda (λA, λB) 5

Input size (z, x, y) (16, 320, 320)

Normalization Instance normalization

Training iterations 30,000

3.4. Experimental Setup

We compared our generalized frequency loss against baseline models and previous
work in the form of MIND loss [25]. Several configurations of our generalized frequency
loss were also evaluated. The experimental configurations are described below:

1. Baseline CycleGAN: The original CycleGAN implementation [17] without any addi-
tional structural constraints added.

2. MIND loss: The MIND loss [25] was added as a structural constraint consistent with
the authors’ proposed implementation. However, two changes were introduced in the
experiment configuration for the MIND loss. In the original work, authors propose
a weight of λ fA = λ fB = 5. In our experiments, this is changed to λ fA = λ fB = 50
through scale-matching with other losses. Additionally, a patch size of (16, 192, 192)
is used for the MIND loss due to memory restrictions.

3. Generalized frequency loss: Our proposed loss was added as a structural constraint to
the CycleGAN as outlined in Section 2.2. Two different distance metrics were tested
for generalized frequency loss, shown in Equation (9),

(a) L1 distance between the frequency representations;
(b) L2 distance between the frequency representations.

https://github.com/Maastro-CDS-Imaging-Group/clinical-evaluation/tree/master/configs
https://github.com/Maastro-CDS-Imaging-Group/clinical-evaluation/tree/master/configs


Sensors 2023, 23, 1089 11 of 20

Other distance metrics such as Lp distances may also offer interesting properties but
they are not considered in this study.

4. Combined Loss: A combination of Frequency L1 loss and the MIND loss is inves-
tigated as well. The losses have λ fA , λ fB values consistent with their individual
experiments, and are summed to obtain the combined loss. This is trained with a
patch size of (16, 320, 320).

Thus, a total of five different experimental configurations are analyzed.

4. Results

We present the quantitative and qualitative results from the experiments in this section.
Table 2 and Figure 4 present the different image similarity metrics and visuals of a patient
scan from different experiments.

Table 2. Quantitative metrics obtained on the test set for experiments with various structure losses run
on the CBCT-CT dataset. All metrics were computed between images with their intensities expressed
on the HU scale and clipped into the range [0, 3000]. The best value per metric is highlighted in bold
letters and the second best value per metric is italicized.

Model MAE MSE NMSE PSNR SSIM

Baseline 88.85 24,244 0.031 29.37 0.935
MIND 85.91 25,604 0.032 29.27 0.944
Frequency loss L1 85.50 20,433 0.026 30.02 0.935
Frequency loss L2 85.97 20,247 0.027 30.12 0.938
MIND + Frequency loss 86.63 21,125 0.027 29.88 0.935

The lowest deviation from target voxel intensities, in terms of MAE, is provided
by the frequency loss L1 model. It outperforms the baseline by 4% and improves over
other experimental setups on this metric. Squared deviations from the target intensities
are measured by MSE, NMSE, and PSNR metrics. The frequency loss L2 shows the best
performance on these metrics with a 19.7% decrease in MSE and NMSE and a 2.5% increase
in PSNR. The second-best performance was shown by the frequency loss L1 with a decrease
of 18.6% in MSE and NMSE and a 2.2% increase in PSNR. Comparing structural similarity
puts the MIND loss model as the strongest one with a 0.009 increase in SSIM over the
baseline. The frequency loss L2 shows the next best performance with a 0.004 increase in
SSIM. The baseline model consistently stands amongst the lowest performed across each of
the metrics.

After a visual inspection of the original and generated scans, we make the following
observations based on criteria highlighted in Section 2.3.2.

1. Air pockets that are present in the original scan are closed by the baseline model.
2. For the baseline model, a decrease in the quality of the translated image is observed

through the addition of checkerboard-like patterns.
3. MIND loss adds unexplained artifacts in the form of black density reduction fields.
4. Frequency L2 also closes air pockets similar to the baseline model.
5. Frequency L2 provides a shift in density as we move down to the diaphragm, as

observed on the sagittal view.
6. MIND + Frequency L1 causes a random drop in density across a particular region.

The above observations are made across multiple patients from the test dataset. For
the convenience of the reader, only features from a single patient are shown in Figure 4
where several observations can be easily identified. In this figure, the observations are
indicated using red dotted ellipses and the numbering scheme utilized in the list above
corresponds with the numbers in the figure. It is worth mentioning that although the
MIND loss seems to be, visually, the closest to the CT, it adds significant artifacts. The next



Sensors 2023, 23, 1089 12 of 20

closest candidate, where no artifacts or image quality drops are observed, is the proposed
Frequency L1.

Figure 4. Mid−axial, sagittal, and coronal views for CBCT, CT, and generated images from models
with different data-driven constraints for a patient chosen randomly from the test set. Qualitative
observations discussed in the text are numbered and marked with red dotted ellipses.

4.1. Out-of-Distribution Evaluation

Table 3 and Figure 5 show metric scores and visuals of phantoms as outlined in
Section 2.3.3.

Table 3. Image similarity metrics on the phantom for experiments with various structure losses. All
metrics were computed between images with their intensities expressed on the HU scale and clipped
into the range [0, 3000]. The best value per metric is highlighted in bold letters.

Model MAE MSE NMSE PSNR SSIM

Baseline 72.16 16207 0.024 34.55 0.976
MIND 62.74 11,303 0.017 36.12 0.985
Frequency loss L1 71.39 16,878 0.025 34.38 0.976
Frequency loss L2 63.65 12,046 0.018 35.84 0.983
MIND + Frequency loss L1 75.34 17,723 0.027 34.16 0.975
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Figure 5. Mid-axial views of the CBCT and CT scans of the phantom shown along with generated
images from models with different structure losses. Red dotted circles are used to highlight qualitative
observations that are discussed in the text.

MIND loss shows the best scores across all metrics. However, when looking at the
visuals for the phantom mid-axial slice, MIND loss does not correct values very accurately
as can be seen with the black region in the center of the simulated heart. On the other
hand, Frequency L2 and baseline models do not correct tumor values properly (as indicated
by the red circles in the CT, Baseline, and Frequency L2 generated samples). Moreover,
they also add checkerboard patterns, which can be observed by zooming in on the image.
The MIND + Frequency shows regions that are much darker than the CT, as shown by
the red circle. Frequency L1, similar to observations on the patient data, provides robust
translations on the phantom with neither GAN-induced artifacts nor loss of quality. It
is interesting to note that the Frequency L1 metric values are among the worst across all
models.

4.2. Domain-Specific Evaluation

In this section, we present the results of domain-specific evaluation criteria as described
in Section 2.3.4. The frequency loss with L1, which is chosen as the best-performing model,
due to its robust performance across both patient and phantom data, is used for subsequent
evaluation. The translated scan generated using this model is termed sCT (synthetic CT)
and will be used to refer to it henceforth.

Histogram and line profiles: Figure 6 shows the histogram of HU intensity values
between (−500, 500) on the full scan for CT, CBCT, and sCT. In addition, it also shows the
line profiles for the same set of scans. The line chosen for the profile is drawn in red over
the scans. For both patients, the sCT calibrates well with the CT in terms of the distribution
of HU values in the soft-tissue region, made easily observable through the windowing. The
sCT also matches the CT line profiles better compared to the CBCT. This behavior extends
across all the patients in the test set.

Automated Segmentation: The sCT is also evaluated on a downstream task of lung
segmentation as described in Section 2.3.4. The CT, CBCT, and sCT are contoured for left
and right lungs and compared with their ground truth contours, available in the dataset.
Figure 7 shows the box plot of Dice scores obtained across all patients along with ground
truth and automated contours generated on a randomly selected patient. Table 4 shows the
mean Dice scores.
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Figure 6. Histogram of HU intensities and line profiles shown for CT, CBCT, and sCT on two patients
chosen randomly from the test set. The line chosen for profiling is highlighted by a red line passing
the axial view of the images.
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Figure 7. Box plot showing Dice scores for segmentation of left and right lungs using CT, CBCT,
and sCT images as input (a). Visuals of the segmentation generated by using different inputs to the
automated segmentation pipeline along with the ground truth segmentation are also shown (b). Note
that all segmentations are shown on the CT as the original segmentations were drawn on the CT.
The red indication points out a discontuinity in the contour generated on the CBCT image which is
rectified when the sCT is used.

Table 4. Mean Dice scores for left and right lung segmentations for the CT, CBCT, and sCT images as
input to the automated segmentation model.

Left Lung Right Lung

CT 0.910 0.913
CBCT 0.898 0.902
sCT 0.900 0.915

We observed that the sCT, on average, provided improved Dice scores when compared
to the CBCT, with an increase of 0.23% and 1.17% on the left and right lung segmentations,
respectively (see Table 4). The mean Dice on the sCT even improves slightly over the
CT for the right lung. The visualization of segmentation contours in Figure 7 shows a
sample case where the CBCT is worse than the sCT (highlighted in red). Note that similar
behavior, where CBCT misses/adds parts of the contour, is seen in contours generated
across multiple patients in the test set.

5. Discussion

In this section, we discuss the results obtained from various experiments conducted in
an attempt to provide insights for future studies and applications.

The addition of constraints in the form of structure losses significantly outperformed
the baseline CycleGAN as seen through all our experiments. Both quantitative and qualita-
tive results showed improved performance upon the addition of structure losses. This was
also seen for out-of-distribution data with the use of phantoms. However, incorporating
structure losses with unpaired training data can be challenging as direct image-to-image
losses might mislead the training objective. We address this issue by converting image
representations to a different domain, namely the frequency domain, where image-to-image
spatial correspondences are less sensitive. While we show that the frequency domain loss
is a generalized loss as it does not contain any parameters that are data-specific, we only
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demonstrate its efficacy in the use case of CBCT translation. Follow-up studies investigating
its performance across a range of datasets and use cases will allow for a comprehensive
determination of its robustness.

We demonstrated that losses built for other medical imaging tasks may not work
properly when introduced into the CycleGAN framework. Although MIND loss performed
satisfactorily on quantitative scores, it rendered the images unusable due to the large modi-
fications resulting from patient anatomy. In contrast, simple frequency-based losses seem to
combine reliably with existing constraints in the CycleGAN and provide translations with
desirable qualitative and quantitative scores. Using the L1 distance metric while training
with the frequency loss provided the lowest mean absolute error on the held-out test set.
Similarly, using the L2 loss provided the lowest MSE, NMSE, and PSNR metrics, all of
which are dependent on squared deviations. This shows that the frequency-based losses
translate adequately from their optimization objective on training data to performance on
test data. The combination of MIND with frequency-based losses seemed to get rid of the
GAN-induced artifacts but the combination performed poorly on quantitative scores and
showed other qualitative issues. We note that the MIND implementation we used was dif-
ferent from the authors’ original implementation mainly to allow its balanced contribution
of the loss to the overall CycleGAN losses. However, this might be a considerable limitation
of this study as we were not able to benchmark against the original implementation.

Another important observation is the insufficiency of solely relying on quantitative
analysis in choosing the best model. This is observed even with out-of-distribution data,
where strong pairs were formed. For instance, Frequency L1 provides one of the worst
scores on the phantom but it is superior to the other models as it does not induce artifacts
or result in a reduction in quality that all other models were susceptible to. This puts
forward the question of whether existing image similarity metrics can be relied on fully
to evaluate such methods. Research into evaluation methods that can sufficiently capture
these properties in generated images would push the field closer toward general and clinical
acceptance. Gragnaniello et al. [37] present a review of existing methods for synthetic image
detection and propose potential research areas for the future. These methods could also
help in quantitatively determining undesirable additions such as artifacts in the generated
images.

Domain-specific methods of evaluation can provide good insight into the clinical
usability of a particular set of methods. As seen in Section 4.1, synthetic CT generated
from the best-performing model provided HU intensity distribution and line profiles in
line with real CTs. Automated segmentation on the synthetic CT showed performance
on par with real CT (even better for the right lung) and improvements from the original
CBCT. Given the simplicity of the translation process, it can be integrated into existing
clinical workflows to improve the quality of the CBCT. The improved CBCT can be useful
for multiple downstream tasks, from improving auto-contouring to adapting treatment
plans.

6. Conclusions

In this study, we investigated structure losses for CycleGAN-based CBCT enhance-
ment comparing several different types of structure losses. We proposed a frequency
domain structure loss that is generalized and does not depend on specific datasets for
parametrization. The addition of this loss improved MAE, MSE, NMSE, and PSNR, by 4%,
20%, 18%, and 3%, respectively, compared to the baseline. The generalized frequency loss,
implemented as a part of this study, proved to not only improve over the baseline but also
outperform existing methods, such as the MIND loss [25]. This was done at a much lesser
memory and computing cost. More importantly, in terms of qualitative comparison, it
provided the best performance, with no drops in image quality or any addition of artifacts.

We also used out-of-distribution data in the form of imaging phantoms to demonstrate
the robustness of methods compared in this study. The generalized frequency loss showed
the best qualitative performance but fell short in terms of quantitative performance when
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compared to the MIND loss. One of the core goals of this study was to develop a reliable and
robust method for CBCT translation. This improved CBCT can benefit various adaptive
radiotherapy workflows in the clinic such as auto-contouring, image registration, and
dosimetry. Improvements in these workflows can save clinicians valuable time and effort
along with a reduction of costs associated with repeated imagery. Improved CBCT can not
only benefit clinics but also patients as improved quality CBCTs can mean fewer CT scans
and, therefore, lesser radiation exposure. We implemented clinically motivated evaluations
such as HU intensity distribution comparisons and line profiles, where we demonstrated
that the improved CBCT matches the fan-beam CT accurately. Furthermore, the value
of improved CBCTs in downstream tasks was shown through a comparison of contours
generated through lung auto-segmentation. The mean Dice scores of contours on the
improved CBCT were comparable to the fan-beam CT and surpassed the CBCT.

We recommend several potential directions for extending our work in the future.
First, a full dosimetric evaluation of our methods would better establish the applicability
of our methods in the clinic. However, designing clinically acceptable treatment plans
can be quite complex, and, therefore, we exclude them from this study and propose it as
future work. As we provide our models and code, integrating our pipeline into treatment
planning workflows can be relatively straightforward and can drive further investigation
in this direction. Second, a broader evaluation of our frequency loss with different data
and use cases will allow us to present it as a truly generalized method experimentally.
Medical imaging use cases with different modalities such as MRI and PET-CT might benefit
largely from the use of such a frequency loss. We provide a simple function to generate
frequency loss terms which can then be added to existing losses, thereby allowing research
to incorporate and compare its benefit. Finally, further exploration into the development
of domain-specific quantitative metrics that can capture artifacts in generated images is
needed. In addition to standard image similarity metrics, we rely on qualitative evaluation
using domain expertise. However, this can prove to be quite challenging for large-scale
datasets, limiting the scope of extensive validation. We suggest further research into
developing novel evaluation criteria for CT images that can look at image similarity, and
organ- and tissue-specific similarity in an automated manner. For example, an existing
deep learning segmentation method can be used to segment several organs of interest, and
their values can be analyzed individually and in a collection to determine overall quality.

Author Contributions: Conceptualization, S.P., I.H. and I.Z.; Data curation, I.H.; Formal analysis, S.P.
and E.H.; Funding acquisition, A.D. and A.T.; Methodology, S.P, C.R. and I.Z.; Project administration,
A.D., A.T., I.Z. and E.H.; Software, S.P., I.H. and C.R.; Supervision, I.Z., S.A. and E.H.; Validation, S.P.
and E.H.; Writing—original draft, S.P.; Writing—review and editing, C.R., A.D., A.T., I.Z. and E.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was approved by the Institutional Review Board
of Maastro Clinic with an opt-out based patient consent which was deemed sufficient due the use of
de-identified data.

Informed Consent Statement: Patient consent on an opt-out basis was deemed sufficient due to
de-identified data.

Data Availability Statement: As the datasets used in this work are private, we do not provide any
resources attached to the data. Our results on the test set can be viewed as a Weights and Biases
report at https://api.wandb.ai/report/surajpai/w0rojf7d.

Acknowledgments: We would like to acknowledge support from MAASTRO Clinic for the proton
therapy dataset, especially Vicki Trier Taasti and Richard Canters for data curation and advisory opin-
ions.

Conflicts of Interest: The authors declare no conflict of interest.

https://api.wandb.ai/report/surajpai/w0rojf7d


Sensors 2023, 23, 1089 18 of 20

Appendix A

Figure A1. Block diagram of the 3D base configuration architecture. It comprises input blocks, output
blocks, up blocks, and down blocks along with skip connections as described in Section 3.3. The
input to the network is a patch of size 320 × 320 × 16 and the output is of the same dimension. The
legend to the bottom of the dotted line indicates information about individual model blocks
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