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Abstract: Physical layer security is a promising technique to ensure the confidentiality of short-packet
communications, since no additional channel uses are needed. Motivated by the fact of finite coding
blocklength in short-packet communications, we attempt to investigate the problem of how many the
channel uses utilized for channel training should be allocated to perform secure communications.
Based on the finite blocklength information theory, we derive a closed-form expression to approximate
the average achievable secrecy throughput. To gain more insights, we also present the asymptotic
average secrecy throughput under two special cases, i.e., high signal-to-noise ratio (SNR) and infinite
blocklength. Moreover, we determine the optimal channel training length to maximize the average
secrecy throughput under the reliability constraint and given blocklength. Numerical results are
provided to validate the analysis and demonstrate that the performance gain achieved by the optimal
channel training length is remarkable, relative to other benchmark schemes.

Keywords: physical layer security; short-packet communications; channel training; average secrecy
throughput

1. Introduction

Short-packet communications are recognized as a prominent technique for the fifth
generation (5G) and next generation communication networks since they can fulfill two
stringent quality-of-service (QoS) requirements, i.e., ultra-low latency and super-high
reliability [1–3]. The typical size of packet in short-packet communications is only hundreds
of bits (e.g., 80–160 bits of industrial manufacturing and control systems [4]). Due to the
limited packet length, the decoding error probability in short-packet communications
cannot be reduced to arbitrarily low. Motivated by this, block-error-rate as a proper
performance metric was developed in [5] to measure the performance of short-packet
communication systems, and the block-error-rate of the system increases with the decrease
of the blocklength. Since then, short-packet communications have attracted considerable
attention from both academia and the industry.

Due to the unchangeable open nature of the wireless transmission medium, security
is also a challenging issue for short-packet communications [6,7]. Conventionally, the
security is enhanced by encryption techniques, which are deployed at the network layer of
communication systems. However, all cryptographic measures require more overhead for
encryption and decryption and increase latency imposed, which may not be applicable for
short-packet communications [8]. As an alternative to cryptography, physical layer security
technique is more appealing for short-packet communications since no additional channel
uses are needed [9].

Physical layer security has been well investigated in the existing literature, where
the coding blocklength is sufficiently large for achieving the secrecy capacity [10,11]. For
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short-packet communications, ref. [12] derived the maximal secret communication rate
subject to reliability and security constraints. Subsequently, ref. [8] studied the secrecy
throughput performance with an external multi-antenna eavesdropper, and found the
optimal blocklength to maximize the secrecy throughput under reliability and latency
constraints. Moreover, considering both reliability and security, ref. [13] established the
outage probability and effective throughput to analyze the performance of secure short-
packet communications. The authors in [9] considered a multiuser downlink network in
the presence of an eavesdropper and developed efficient methods to solve the total transmit
power minimization and weighted throughput maximization problems. Packet replication
and interface diversity schemes were employed in [14] to improve the secure spectral
efficiency, where eavesdroppers are randomly distributed according to Poisson point
processes. In [15], the spectrum sensing blocklength and transmission blocklength were
jointly optimized to maximize the secrecy throughput. In order to achieve both high spectral
efficiency and low communication delay, incorporating short-packet communications with
non-orthogonal multiple access (NOMA) networks was investigated in [16–18].

It is worth noting that the previous studies on physical layer security with finite
blocklength assumed perfect channel state information (CSI) for communications. However,
in most realistic scenarios, perfect CSI may not be easy to obtain due to the feedback delay,
channel estimation errors, and limited feedback rate. Against this background, ref. [19]
addressed the secrecy throughput of full-duplex multiuser multiple-input-multiple-output
(MIMO) networks with short packets, where the impacts of imperfect CSI, co-channel
interference and self interference are jointly considered. In [20], the optimal power control
policy maximizing achievable secrecy rate under the queueing delay requirement was
carried out with channel estimation error. It is noted that these studies in [19,20] have not
considered explicit channel training schemes for channel estimation. In fact, the channel
estimation error is closely related to channel training schemes, e.g., pilot length and pilot
power. In particular, the pilot length significantly affects the overall performance of short-
packet transmission systems [2]. In [21], the authors presented a pilot-assisted secure
short-packet communications with randomly distributed eavesdroppers and characterized
the reliability and security performance by transmission error probability and intercept
probability, respectively. Furthermore, ref. [22] optimized the pilot length by an iterative
algorithm to maximize the achievable effective secrecy rate of the system. It is further noted
that the optimal pilot length that maximizes the secrecy rate has no closed-form solution
in [22]. Although their results provide useful insights, the computational complexity of
the iterative search algorithm is relatively high. On the other hand, the impact of the pilot
length on the secrecy throughput of short-packet communications has not been examined
thus far.

Motivated by the above considerations, we investigate the channel training design
for secure short-packet communications, where a source transmits pilot symbols before
its information transmission to enable channel estimation at a destination. In order to
maximize the secrecy throughput of the considered system, the number of channel uses
allocated to channel training and data transmission need to be carefully optimized. The
main contributions of this paper are summarized as follows:

• Based on the finite blocklength information theory, we derive a closed-form expression
to approximate the average achievable secrecy throughput, which provides an efficient
means to comprehensively evaluate the impact of key system parameters, e.g., the
channel training length and blocklength, on the latency-reliability tradeoff.

• To achieve additional insights on the application of the channel training scheme for
secure short-packet communications into the practical design, we also present the
asymptotic closed-form expressions for the average secrecy throughput under two
special cases, i.e., high signal-to-noise ratio (SNR) and infinite blocklength.

• We determine the optimal channel training length to maximize the average secrecy
throughput under the reliability constraint and given blocklength. Numerical results
demonstrate the performance gain achieved by the optimal channel training length
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is remarkable relative to the fixed-ratio channel training length and fixed channel
training length schemes.

The remainder of this paper is organized as follows. In Section 2, we describe the
secure short-packet communication system based on the channel training scheme. In
Section 3, we present the closed-form expression to approximate the average achievable
secrecy throughput, provide the high SNR and infinite blocklength analyses for the average
secrecy throughput, and determine the optimal channel training length to maximize the
average secrecy throughput. Finally, we respectively give numerical results and conclusions
in Sections 4 and 5.

2. System Model

In this paper, we consider a secure short-packet communication system as shown in
Figure 1, in which a source sends confidential short packets to a destination in the presence
of a passive eavesdropper. Due to size limitation, each node is equipped with a single
antenna. The channels from the source to the destination and the eavesdropper are subject
to independent quasi-static Rayleigh fading, which means that the channel coefficients
remain static during a coherence slot (n channel uses) and vary independently from one
coherence slot to the next [22–24].

Source

Destination

Eavesdropper

Channel training Data transmission

hsd

hse

np channel uses n-np channel uses

Figure 1. System model and packet structure for short-packet communications.

In each short-packet transmission, the source conveys L information bits over n
channel uses to the destination. In order to support the high reliability requirement,
we consider a two-phase training-based transmission scheme, which contains a channel
training phase and a data transmission phase. In the channel training phase, the source
transmits a predefined pilot sequence of np channel uses to enable channel estimation at the
receiver. In the data transmission phase, the source utilizes the remaining n− np channel
uses for information transmission. Thus, the received signal vectors at the destination and
the eavesdropper are, respectively, given by

yd = hsdx + nd, (1)

ye = hsex + ne, (2)

where hsd ∼ CN (0, γ̄sd) is the channel coefficient between the source and the destination,
hse ∼ CN (0, γ̄se) is the channel coefficient between the source and the eavesdropper, x is
the transmitted signal vector from the source, nd and ne are the additive white Gaussian
noise (AWGN) with zero-mean and variance N0 at the destination and the eavesdropper,
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respectively. After receiving the signals, both the destination and the eavesdropper estimate
their channels by the minimum mean-square error (MMSE) estimator and then decode the
data. As such, the actual channel coefficient can be denoted as the sum of the estimated
channel and the estimation error. According to [25], we have

hsd = ĥsd + h̃sd, (3)

hse = ĥse + h̃se, (4)

where ĥsd ∼ CN
(

0, ρpnpγ̄2
sd

ρpnpγ̄sd+N0

)
is the estimated value of hsd, h̃sd ∼ CN

(
0, γ̄sd N0

ρpnpγ̄sd+N0

)
is

the estimation error of hsd, ĥse ∼ CN
(

0, ρpnpγ̄2
se

ρpnpγ̄se+N0

)
is the estimated value of hse, h̃se ∼

CN
(

0, γ̄se N0
ρpnpγ̄se+N0

)
is the estimation error of hse, and ρp is the average power of the pilot

symbols.
The destination and the eavesdropper use the estimated channel for information re-

ception. Thus, in the data transmission phase, the received signal vectors at the destination
and the eavesdropper are, respectively, rewritten as

yd =
√

ρd ĥsdxd +
√

ρd h̃sdxd + nd, (5)

ye =
√

ρd ĥsexd +
√

ρd h̃sexd + ne, (6)

where ρd is the average power of the data symbols, and xd is the data symbols. The actual
instantaneous SNRs for information reception at the destination and the eavesdropper can
be, respectively, given by

γsd =
ρd

∣∣∣ĥsd

∣∣∣2
ρd
∣∣h̃sd

∣∣2 + N0

, (7)

γse =
ρd

∣∣∣ĥse

∣∣∣2
ρd
∣∣h̃se
∣∣2 + N0

. (8)

We assume that the source uses a fraction α of the total power for data transmission
and the remaining 1− α portion for channel training, where α is the power allocation factor.
Thus, we have

ρd
(
n− np

)
= αρn, ρpnp = (1− α)ρn, (9)

where ρ is the average power of all the transmitted symbols at the source. Then, the instan-
taneous SNRs at the destination and the eavesdropper can be, respectively, rewritten as

γsd =
αρn

∣∣∣ĥsd

∣∣∣2
αρn

∣∣h̃sd
∣∣2 + N0

(
n− np

) , (10)

γse =
αρn

∣∣∣ĥse

∣∣∣2
αρn

∣∣h̃se
∣∣2 + N0

(
n− np

) . (11)

Since the eavesdropper’s estimation error is typically unknown to the source, it is
necessary to design a robust approach for the worst-case scenario. That is, there is no esti-
mation error at the eavesdropper. Then, the actual instantaneous SNR at the eavesdropper
can be rewritten as

γse =
αρn|hse|2

N0
(
n− np

) . (12)
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Based on [8], the achievable secrecy rate of the considered system with the blocklength
n and channel training length np for a given constraint on the decoding error probability ε
and a secrecy constraint on the information leakage δ can be approximated as

Rs
(
n, np, ε, δ

)
=

{
Cs −

√
Vsd

n−np

Q−1(ε)
ln 2 −

√
Vse

n−np

Q−1(δ)
ln 2 , γsd > γse,

0, γsd ≤ γse,

(13)

where Cs = log2(1 + γsd)− log2(1 + γse) is the secrecy capacity with infinite blocklength,
Vx = 1− (1 + γx)

−2, x ∈ {sd, se}, is the channel dispersion, and Q−1(·) is the inverse

Q-function Q(x) =
∫ ∞

x
1√
2π

e−
t2
2 dt.

3. Secrecy Performance Analysis

In this section, we investigate the average secrecy throughput performance of the
short-packet communication system with the channel training scheme. Then, we focus
on the asymptotic analysis for the average secrecy throughput. Finally, we determine the
optimal channel training length to maximize the average secrecy throughput under the
reliability constraint and given blocklength.

3.1. Secrecy Throughput Approximation

The secrecy throughput in short-packet communications is defined as the average
secrecy rate where the data packet is reliably transmitted subject to a certain secrecy
constraint. Mathematically, the average secrecy throughput of the considered system is
formulated as

T = Eγsd ,γse

(
L

n− np
(1− ε)

)
=

L
n− np

(1− ε̄) (14)

where ε̄ = Eγsd ,γse(ε) is the average decoding error probability. When γsd > γse, the decod-
ing error probability at the destination can be characterized by

ε = Q
(√

n−np
Vsd

(
ln 1+γsd

1+γse
−
√

Vse
n−np

Q−1(δ)− L
n−np

ln 2
))

. When γsd ≤ γse, the achievable
secrecy rate is zero and we set ε = 1. The average secrecy throughput in (14) can be further
derived as

T =
L

n− np

∫ ∞

0
Ψ(y) fγse(y)dy, (15)

where Ψ(y) =
∫ ∞

y

(
1− εγsd |γse=y (x)

)
fγsd(x)dx, εγsd |γse=y (·) is the conditional decoding

error probability conditioned on γse = y, and fγse(y) is the probability density function
(PDF) of γse. In order to calculate the double integral in (15), we propose to use the
first-order approximation of εγsd |γse=y (x) as follows

εγsd |γse=y (x) ≈ Pγsd |γse (x)

=


1, x < 1

2k + x0,
1
2 + k(x− x0), x ∈

[
1
2k + x0,− 1

2k + x0

]
,

0, x > − 1
2k + x0,

(16)

where x0 = e
√

Vse
n−np Q−1(δ)+ L

n−np ln 2
(1 + γse)− 1 and k =

dεγsd |γse=y (x)
dx

∣∣∣∣
x=x0

= −
√

n−np
2πx0(x0+2) .
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Based on the fact that εγsd |γse=y (x) > 1/2 when x < y, the integral Ψ(y) can be further
simplified by changing the lower limit from y to 0. Therefore, we have

Ψ(y) ≈
∫ ∞

0

(
1− εγsd |γse=y (x)

)
fγsd(x)dx

≈ 1−
∫ ∞

0
Pγsd |γse (x) fγsd(x)dx

= 1 + k
∫ − 1

2k +x0

1
2k +x0

Fγsd(x)dx, (17)

where Fγsd(x) and fγsd(x) are respectively the cumulative distribution function (CDF) and
PDF of γsd. It is important to point out that |k| is an increasing function of n. When n
is in the moderate blocklength region, i.e., 102 ≤ n ≤ 103, which is really important to
short-packet communications, the integral interval

[
1
2k + x0,− 1

2k + x0

]
is generically small.

Therefore, with the help of the first order Riemann integral approximation, we further
approximate (17) as

Ψ(y) ≈ 1− Fγsd(x0). (18)

According to (10) and (12), the CDF of γsd and the PDF of γse can be, respectively,
formulated as

Fγsd(x) = 1−
(1− α)ρnγ̄2

sde
− xN0(n−np)((1−α)ρnγ̄sd+N0)

α(1−α)ρ2n2 γ̄2
sd

xγ̄sdN0 + (1− α)ρnγ̄2
sd

, (19)

and

fγse(y) =
N0
(
n− np

)
αρnγ̄se

e−
yN0(n−np)

αρnγ̄se . (20)

By applying (18)–(20) into (15), we have

T ≈
(1− α)LN0γ̄2

sd
αγ̄se

∫ ∞

0

e
−
(

x0(y)N0(n−np)
αρnγ̂sd

+
yN0(n−np)

αρnγ̄se

)
x0(y)γ̄sdN0 + (1− α)ρnγ̄2

sd
dy

≈
(1− α)LN0γ̄2

sd
αγ̄se


∫ M1

0

e
−
(

x0(y)N0(n−np)
αρnγ̂sd

+
yN0(n−np)

αρnγ̄se

)
x0(y)γ̄sdN0 + (1− α)ρnγ̄2

sd
dy︸ ︷︷ ︸

Ξ1

+
∫ ∞

M1

e
−
(
(v1y+v1−1)N0(n−np)

αρnγ̂sd
+

yN0(n−np)
αρnγ̄se

)
(v1y + v1 − 1)γ̄sdN0 + (1− α)ρnγ̄2

sd
dy︸ ︷︷ ︸

Ξ2

, (21)

where γ̂sd=
(1−α)ρnγ̄2

sd
(1−α)ρnγ̄sd+N0

, v1 = e
Q−1(δ)√

n−np
+ L

n−np ln 2
and M1 is a sufficiently large parameter to

ensure Vse ≈ 1 when γse > M1.
By leveraging Gaussian-Chebyshev quadrature, the integral Ξ1 can be approximated

as

Ξ1 ≈
M1

2

M2

∑
m=1

(
π

M2
f
(

M1

2
(tm + 1)

)√
1− t2

m

)
, (22)

where M2 is a parameter for the complexity accuracy tradeoff, f (z) = e
−
(

x0(z)N0(n−np)
αρnγ̂sd

+
zN0(n−np)

αρnγ̄se

)
x0(z)γ̄sd N0+(1−α)ρnγ̄2

sd

with x0(z) = x0|γse=z, and tm = cos
(

2m−1
2M2

π
)

.
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According to [26] (3.352.2), the integral Ξ2 can be derived as

Ξ2 = − ev2v3−
(v1−1)N0(n−np)

αρnγ̂sd

v1γ̄sdN0
Ei(−M1v2 −v2v3), (23)

where Ei(·) is the exponential integral function, v2 =
v1 N0(n−np)

αρnγ̂sd
+

N0(n−np)
αρnγ̄se

and v3 =
(v1−1)N0+(1−α)ρnγ̄sd

v1 N0
.

The average secrecy throughput of the considered system with short-packet communi-
cations can be directly obtained by substituting (22) together with (23) into (21).

3.2. High SNR Regime

To further characterize the impact of key system parameters on the average secrecy
throughput, we focus on the asymptotic average secrecy throughput in the high SNR
regime, where the average transmit power ρ at the source approaches infinity. When
ρ→ ∞, we know that the estimation error approaches zero and E(γse) approaches infinity.
According to (21), the average secrecy throughput in the high SNR regime of the considered
system with finite blocklength can be simplified as

Tρ→∞ =
L

n− np
(1− ε̄ρ→∞), (24)

where ε̄ρ→∞ = 1 − (α−1)(n−np)γ̄sd
αv1γ̄se

e
(1−α)(n−np)

α

(
1+

γ̄sd
v1 γ̄se

)
Ei
(

(α−1)(n−np)
α

(
1 + γ̄sd

v1γ̄se

))
. An

important observation from (24) is that the average decoding error probability cannot
reduce to zero even when the transmit power at the source approaches infinity. This is
because not only the destination but also the eavesdropper will benefit from increasing
the transmit power. Moreover, we know that the average secrecy throughput in the high
SNR regime is dependent on the power allocation factor between channel training and data
transmission.

3.3. The Class Case with Infinite Blocklength

To further understand the connection between finite blocklength and infinite block-
length, we turn our attention to the classical case with infinite blocklength. When N → ∞,
we know that ε → 0 as long as γsd > γse (otherwise ε → 1). Thus, the average secrecy
throughput of the considered system with infinite blocklength can be expressed as

Tn→∞ =
L

n− np
Pr(γsd > γse),

=
Lγ̄sd(α− 1)

αγ̄se
e

(
1

γ̄sd
+ 1

γ̄se +
N0

(1−α)ρnγ̄2
sd

)

× e
(1−α)(n−np)γ̄sd

α Ei

(
(α− 1)

(
n− np

)
γ̄sd

α(
1

γ̄sd
+

1
γ̄se

+
N0

(1− α)ρnγ̄2
sd

))
. (25)

From (25), it is worth noting that Tn→∞ → 0 due to the fact that exEi(−x) → 0 as
x → ∞. This is because the transmission rate L

n−np
→ 0 as n → ∞. However, when

γsd > γse, the secrecy capacity of the considered system is not zero.

3.4. Optimal Transmission Design

To maximize the average secrecy throughput, the designers have to choose the suitable
channel training length in a coherence slot. This is due to the fact that the channel estimation
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becomes more accurate and the destination can decode more information bits reliably as
the channel training length increases. However, this will reduce the duration for data
transmission at the same time, which leads to the degradation of the average secrecy
throughput. The optimization of np maximizing the average secrecy throughput under the
reliability constraint and given blocklength can be formulated as

max
np

T, (26a)

s.t. ε̄ ≤ εmax, (26b)

0 ≤ np ≤ n, (26c)

np ∈ N+, (26d)

where N+ denotes the non-negative integer set and (26b) denotes the system’s reliability
constraint.

In the following, we show that ε̄ is a convex increasing function of np and T is a
quasi-concave function of np. Based on the Leibniz integral rule, the monotonicity of ε̄ with
respect to np is consistent with that of ε with respect to np. Taking the first and second
derivative of ε on np, we have

∂ε

∂np
=

∂ε

∂φ

∂φ

∂np
, (27)

and
∂2ε

∂n2
p
=

∂2ε

∂φ2

(
∂φ

∂np

)2
+

∂ε

∂φ

∂2φ

∂n2
p

(28)

where φ=
√

n−np
Vsd

(
ln 1+γsd

1+γse
−
√

Vse
n−np

Q−1(δ)− L
n−np

ln 2
)

. For short-packet communica-

tions, ε is generally much smaller than 0.5. Hence, we have φ = Q−1(ε) > 0, ∂ε
∂φ =

− 1√
2π

e−
φ2
2 < 0 and ∂2ε

∂φ2 = φ√
2π

e−
φ2
2 > 0. Then, we need to check the sign of ∂φ

∂np
and ∂2φ

∂n2
p
. To

facilitate analysis, we approximate Vsd = Vse ≈ 1 and ln 1+γsd
1+γse

≈ ln γsd
γse
≈ ln |hsd |2

|hse |2
, which is

very accurate in the high SNR regime [8]. Then, we have ∂φ
∂np

= −
(n−np) ln

(
|hsd |2

/
|hse |2

)
+L ln 2

2(n−np)
3/2 <

0 and ∂2φ

∂n2
p
= −

(n−np) ln
(
|hsd |2

/
|hse |2

)
+3L ln 2

4(n−np)
5/2 < 0. Therefore, we state that ε̄ is a convex in-

creasing function of np and T is a quasi-concave function of np.

When ∂T
∂np

∣∣∣
np=0

≤ 0, the optimal channel training length for problem (26) is given by

n∗p = 0. (29)

When ∂T
∂np

∣∣∣
np=0

> 0, the optimal channel training length for problem (26) is given by

n∗p =

 arg maxnp∈{dn#
pe,bn#

pc}T, n#
p < min

(⌈
no

p

⌉
, n
)

,

min
(⌈

no
p

⌉
, n
)

, n#
p ≥ min

(⌈
no

p

⌉
, n
)

.
(30)

where n#
p is the solution of ∂T

∂np
= 0, no

p is the solution of ε̄ = εmax, and d·e and b·c are the
ceiling and floor operations, respectively.

Proof. We first relax the integer constraint in problem (26). Then, the optimal channel
training length can be derived directly from the fact that ε̄ is a convex increasing function
of np and T is a quasi-concave function of np.
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4. Numerical Results

In this section, we provide simulation and numerical results to demonstrate how the
key system parameters, i.e., channel training length and blocklength, impact the average se-
crecy throughput of the considered system. Unless otherwise stated, the system parameter
settings are as follows: L = 200, δ = 10−2, N0 = 1, M1 = 10 and M2 = 20.

Figure 2 shows the average secrecy throughput versus the average transmit power
with different channel training length. We first observe that the approximation results in (21)
coincide well with the Monte-Carlo simulation points, which corroborates the accuracy
of the analytical expressions. Second, we observe that the average secrecy throughput
increases as the average transmit power increases, and then converges to a constant when
the average transmit power is sufficiently large. This is due to the fact that the average
secrecy throughput is independent of the average transmit power in the high SNR regime
according to (24). Moreover, we observe that the channel training length is not better when
the blocklength is fixed.
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Figure 2. The average secrecy throughput T versus the average transmit power ρ with different
channel training length np, where α = 0.5, n = 300, γ̄sd = 0 dB, and γ̄se = 0 dB.

Figure 3 depicts the average secrecy throughput versus the power allocation factor
with different channel training length. We observe that the average secrecy throughput
increases as the power allocation factor increases from 0 to an optimal value but later,
it starts decreasing as the power allocation factor increases from its optimal value. This
can be explained as follows. When the power allocation factor is too small, there is less
power available for data transmission, which, of course, will result in poor average secrecy
throughput. When the power allocation factor is too large, there is less power available
for channel training which, consequently, also leads to poor average secrecy throughput.
Although an explicit solution for the optimal power allocation factor is intractable due to
the complexity of the average secrecy throughput expression, the solution can be obtained
offline by numerical search methods, for example, the gradient-based search method.
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Figure 3. The average secrecy throughput T versus the power allocation factor α with different
channel training length np, where n = 300, ρ = 10 dB, γ̄sd = 0 dB, and γ̄se = 0 dB.

Figure 4 demonstrates that the optimal channel training length can significantly improve
the average secrecy throughput of the considered system. To obtain comparable results, we
provide the following channel training transmission schemes: (1) Fixed-ratio channel training
length, in which the channel training length np = 0.5n is fixed; (2) Fixed channel training
length, in which the channel training length np = 20 is fixed. It is clear that the average secrecy
throughput with the optimal channel training is superior to the two benchmark schemes
mentioned above, which implies that the average secrecy throughput of the considered system
can be significantly improved via optimizing the channel training length.
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Figure 4. The average secrecy throughput T versus the blocklength n with α = 0.5, ρ = 10 dB,
γ̄sd = 0 dB, and γ̄se = 0 dB, where the optimal channel training length is obtained without
reliability constraint.
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Figure 5 depicts the optimal channel training length versus the blocklength with
different values of δ. We observe that the optimal channel training length that maximizes
the average secrecy throughput increases with the increase of the blocklength. Moreover,
from Figure 4, one can observe that the average secrecy throughput with the optimal
channel training length increases as the blocklength increases. Thus, we can conclude that
when the transmission latency constraint is loose, it is favorable to allocate more channel
uses for channel estimation to mitigate the decoding error.

200 250 300 350 400 450 500
Blocklength n

0

50

100

150

200

250

300

350

400

O
p
ti
m

al
ch

an
n
el

tr
ai

n
in

g
le
n
gt

h
n

p

/ = 10!2

/ = 10!4

/ = 10!6

Figure 5. The optimal channel training length np versus the blocklength n with α = 0.5, ρ = 10 dB,
γ̄sd = 0 dB, and γ̄se = 0 dB, where the optimal channel training length is obtained without reliability
constraint.

Figure 6 plots the optimal channel training length versus the average transmit power
with different values of δ. We first observe that for a fixed δ, the optimal channel training
length increases as the average transmit power increases. Moreover, we also observe that
for a fixed average transmit power, the optimal channel training length increases as δ
increases. This is because when either the average transmit power or the tolerance of the
information leakage δ increases, the probability of decoding error decreases and the optimal
channel training length becomes larger in order to support higher transmission rate.

Figure 7 plots the average secrecy throughput versus the channel training length with
different values of εmax. We first observe that strengthening the reliability constraint, i.e.,
reducing εmax, decreases the average secrecy throughput. We further observe that the
optimal channel training length maximizing the average secrecy throughput depends on
the value of εmax. In particular, when εmax is small, the average secrecy throughput mono-
tonically increases as the channel training length increases, such that the optimal channel
training length is at the right boundary. When εmax becomes larger, the average secrecy
throughput first increases and then decreases as the channel training length increases, and
the optimal channel training length is the one from

{⌈
∂T
∂np

= 0
⌉

,
⌊

∂T
∂np

= 0
⌋}

that yields the
largest average secrecy throughput.



Sensors 2023, 23, 1068 12 of 14

0 5 10 15 20 25 30 35 40
Average transmit power ;

0

10

20

30

40

50

60

70

80

O
p
ti
m

al
ch

a
n
n
el

tr
ai

n
in

g
le
n
gt

h
n

p

/ = 10!6

/ = 10!4

/ = 10!2

Figure 6. The optimal channel training length np versus the average transmit power ρ with α = 0.5,
n = 200, γ̄sd = 0 dB, and γ̄se = 0 dB, where the optimal channel training length is obtained without
reliability constraint.
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Figure 7. The average secrecy throughput T versus the channel training length np under the reliability
constraint, where α = 0.5, n = 300, ρ = 10 dB, γ̄sd = 20 dB, and γ̄se = 0 dB.

5. Conclusions

In this paper, we investigated the average secrecy throughput of a short-packet com-
munication system with a two-phase training-based transmission scheme. Based on the
finite blocklength information theory, the average secrecy throughput has been approxi-
mated in closed-form, which quantitatively reveals the impact of channel training length
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on the the tradeoff between reliability and transmission latency under a secrecy constraint.
In addition, we also derived simple asymptotic results for the average secrecy throughput
to offer valuable insights into practical design. Finally, the optimal channel training length
under the reliability constraint and given blocklength was obtained, and the simulation
results demonstrated that the performance gain achieved by the optimal channel training
length is remarkable, relative to the fixed-ratio channel training length and fixed channel
training length schemes.
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