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Abstract: Perception algorithms for autonomous vehicles demand large, labeled datasets. Real-world
data acquisition and annotation costs are high, making synthetic data from simulation a cost-effective
option. However, training on one source domain and testing on a target domain can cause a domain
shift attributed to local structure differences, resulting in a decrease in the model’s performance.
We propose a novel domain adaptation approach to address this challenge and to minimize the
domain shift between simulated and real-world LiDAR data. Our approach adapts 3D point clouds
on the object level by learning the local characteristics of the target domain. A key feature involves
downsampling to ensure domain invariance of the input data. The network comprises a state-of-
the-art point completion network combined with a discriminator to guide training in an adversarial
manner. We quantify the reduction in domain shift by training object detectors with the source,
target, and adapted datasets. Our method successfully reduces the sim-to-real domain shift in a
distribution-aligned dataset by almost 50%, from 8.63% to 4.36% 3D average precision. It is trained
exclusively using target data, making it scalable and applicable to adapt point clouds from any
source domain.

Keywords: autonomous vehicles; deep learning; domain adaptation; LIDAR; object detection; point
cloud; synthetic data

1. Introduction

Autonomous vehicles (AVs) are changing the automotive industry, promising im-
proved road safety and a reduction in emissions [1]. Autonomous shuttles are already
operating in restricted areas on public roads, even without safety drivers, but this approach
to AVs does not scale well. AVs are equipped with sensor arrays, including cameras, LiDAR
sensors, and RaDAR sensors, and are based on data-centric neural networks to perform
tasks such as object detection. While training of these object detection networks is usually
performed when supervised, the choice and characteristics of the datasets play a crucial
role in the network’s real-world performance.

The performance of perception algorithms in autonomous vehicles is related to the
quality and quantity of the dataset used for training [2–5]. This performance limitation is
known as the data hunger effect [6]. Specifically, the algorithms’ ability to accurately detect
and interpret objects in diverse real-world scenarios is based on the datasets’ representation
of these conditions. Factors such as differences in the environmental conditions, types
of objects, and sensor inaccuracies in the datasets significantly influence the algorithms’
resilience and ability to adapt to these conditions in the real world. This interdependence
highlights the need to select diverse and well-curated datasets to develop reliable perception
algorithms for AVs. Thus, the selection of a dataset is a critical factor in the overall success
of autonomous vehicle perception.
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Pairs of images or point clouds and their corresponding labels are required to train an
object detection network. Furthermore, to train these networks effectively, it is necessary
to have a large amount of labeled data similar to the conditions that will be encountered
when the network is used in the real world. When networks are trained in one domain
and then applied to another, for example, when using different datasets from the real
world, such as KITTI [7], Waymo [8] or nuScenes [9], a real-to-real domain shift can be
observed [10–12]. To be successful in inference, there must be a high degree of domain
similarity between the source dataset used for training and the target data seen during
inference. In conclusion, the scalability of AVs is highly dependent on the datasets needed
for the perception algorithms.

Gathering and labeling real-world data is a time-consuming and costly undertaking,
as it is a manual process and requires additional efforts for each new sensor configuration.
An alternative to real-world data is to employ synthetic data created in 3D simulation
environments, such as CARLA [13]. This approach is highly scalable, as the data are
automatically labeled in the simulation and further safety-critical scenarios can be recorded
in the simulation.

However, the divergence between simulation data and real-world data presents unique
challenges. Simulation environments such as CARLA, while highly controlled and repro-
ducible, often lack the complex and unpredictable nature of the real world. Key differences
include the representation of environmental conditions, such as varying light and weather
conditions, and the dynamic behavior of other road users and pedestrians. Data from
simulations typically feature more idealized and consistent conditions, whereas real-world
data encompass a wide range of variability, i.e., unexpected sensor noise and the often
erratic behavior of humans in the real world. Additionally, the physical properties of
objects, such as textures and reflectivity, are often simplified in simulations, leading to a
gap in the fidelity of sensor data, particularly for LiDAR and camera sensors. This disparity
poses significant challenges in training and validating perception systems, as algorithms
developed and tested in simulations may not translate effectively to the complexities and
unpredictability encountered in real-world environments.

Similarly to the real-to-real domain shift, a sim-to-real domain shift can also be ob-
served. This occurs when object detection networks are trained with synthetic data and
deployed in the real world. The source of the sim-to-real domain shift is a combination
of various factors. These include the difference in data distribution, diversity, and lack
of realism of the virtual sensor model [14], as it is not an exact replication of the physical
sensor and its associated characteristics.

Several studies have been conducted to evaluate or quantify the sim-to-real domain
shift, using camera [15,16] or LiDAR [17,18] object detection networks for quantification.
The authors train multiple networks on a source dataset and evaluate the trained networks
on a target dataset to quantify the domain shift. A metric, such as the mean average
precision (mAP), is used to calculate the object detection performance, which can be
compared to the object detection performance of a network trained and evaluated on the
target dataset. For instance, the study [17] shows that the LiDAR sim-to-real domain shift
can be as large as 50%, with real-world trained models achieving more than 70% mAP,
while models trained with simulated data consistently reach less than 20% mAP on the
real-world test dataset. These studies underscore the significance of the sim-to-real domain
shift and its implications for safety-critical applications, such as autonomous vehicles. In
other words, despite the advantages of using simulation data, these synthetically generated
data cannot be used for real-world applications, and expensive real-world data still need to
be collected and annotated.

As this is not scalable for a large number of perception algorithms, the research field
of domain adaptation has emerged. Domain adaptation is a form of transfer learning that
aims to minimize the domain shift between datasets. A variety of strategies for domain
adaptation exist to reduce the domain shift, which will be reviewed in more detail in the
following chapter.
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Our work presents a new domain adaptation approach that adapts point clouds on
the object level. The focus of our algorithm is to minimize the LiDAR sim-to-real domain
shift, which arises specifically from differences in sensor noise between the simulation and
the real world and is, therefore, limited to local regions. The goal of our algorithm is not to
minimize the domain shift caused by differences in scenarios or the distributions of vehicle
shapes and sizes. In detail, our main contributions are as follows:

• We propose a domain adaptation approach that adapts a LiDAR point cloud on
the object level, open-source available at https://github.com/TUMFTM/LOL_DA
(accessed on 21 November 2023).

• Our domain adaptation network is trained unsupervised and our modular architecture
is based on a point completion network, making it easily interchangeable with other
point completion networks.

• A distinctive aspect of our approach is the focus on local adaptation by employing
downsampling to generate domain-invariant representations of the object point clouds
and using a discriminator working with point cloud patches.

2. Related Work

In this chapter, we discuss the research fields of domain shift and domain adaptation,
with a particular emphasis on methods for adapting LiDAR point clouds.

2.1. Domain Shift

To assess the efficacy of any domain adaptation technique, it is necessary not only to
qualitatively examine the adapted samples, but also to quantify the domain shift using
the generated samples in a perception task, such as object detection or segmentation [19].
In order to measure the domain shift, perception networks are trained on both the source
and target domains and then evaluated on the target domain. This can be performed for
object detection [17] or semantic segmentation [11,12]. Training with the adapted dataset
and evaluating on the target domain, one can determine the effectiveness of the domain
adaptation method [20,21], which, in turn, determines the degree of reduction in the domain
shift. To quantify the domain shift specifically for the sim-to-real setting, a method has
been introduced that focuses on the local differences between the simulation and the real
world by using a scenario-aligned dataset, providing the same scenes in the real world and
the simulation [18]. In this study, we will use this dataset to measure the effectiveness of
the presented domain adaptation method. An additional way to evaluate the effectiveness
of domain adaptation algorithms is to compare the latent spaces produced by a variational
autoencoder (VAE) [22]. In [18], we also compare latent spaces, but instead of using a
distinct VAE network, we employ our pretrained perception networks to generate the
latent feature vectors. These high-dimensional latent feature vectors can be visualized
using methods such as t-distributed stochastic neighbor embedding (t-SNE) [23].

2.2. Domain Adaptation

In general, domain adaptation is a form of transductive transfer learning [24]. This
field of research is characterized by the fact that the source domain labels are available,
whereas the target domain labels are not. The domain adaptation process only alters the
data before passing them to the perception task, such as an object detection network, and
does not modify the perception task itself. Since labeled target data are unavailable, it
is also called unsupervised domain adaptation [25]. Domain adaptation can be further
categorized into domain-invariant feature learning, normalization statistics, and domain
mapping. This categorization originates in the image-based domain adaptation as defined
in [19]. In addition to these categories, [25] further introduces the category domain-invariant
data representation, another data-driven approach specifically for LiDAR-based domain
adaptation. These four approaches to domain adaptation will be reviewed in the following.

Domain-invariant feature learning techniques attempt to make the features produced
by a feature extractor independent of the domain, meaning that the features of the source

https://github.com/TUMFTM/LOL_DA
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and target domains should have the same distribution. To achieve this, there are two
approaches: One is to reduce the divergence of features by employing batch statistics [26]
or a cross-model loss from 2D images and 3D point clouds [27]. The other approach is to
align the features using a discriminator [28,29].

Normalization statistics techniques employ specific forms of batch normalization
layers, such as adaptive batch normalization (AdaBN). The idea is that batch norm statistics
can acquire domain knowledge and can be transferred from the source to the target domain.
However, ref. [30] highlights that simply relying on AdaBN does not result in satisfactory
performance for cross-sensor domain adaptation.

Data preprocessing algorithms that create a domain-invariant representation of the
source and target data are known as domain-invariant data representation methods. This
representation is then used to train and evaluate a perception network. A two-dimensional
projection can be used to convert the source and target data into a domain-independent
representation [31–33]. Alternatively, a voxelization of the point cloud can be performed
before it is fed into the perception network [34,35].

Domain mapping techniques can transform images or point clouds from the source
domain to the target domain, which can then be used to train a perception network. The
aim of these methods is to modify the source distribution to the target distribution without
altering the source semantics, meaning that the source labels remain the same and can be
used to train the perception network with pseudo-target samples. Research in this area
is scarce and can be divided into two approaches, both of which are based on unaltered
generative adversarial network (GAN) techniques created for image-to-image conversion.
The first category is to create 2D birds-eye-view image projections from 3D point clouds
before passing these into the domain mapping algorithm, such as CycleGAN [36]. For
example, refs. [37–39] use this approach to adapt synthetic point clouds to the real world.
Since the output of this method is a 2D top-view projection, just like the input, a 3D point
cloud cannot be recovered. The authors use YOLOv3 [40] for object detection to evaluate
their methods using adapted 2D projections. Instead of using 2D projected data, the second
approach of domain mapping is to generate front-view images as in [41,42]. Front-view
images are a lossless projection of 3D point clouds. Therefore, it is possible to obtain
3D point clouds after translating the domains. Refs. [42,43] investigated the dropout of
points from real-world point clouds and applied the same technique to synthetic point
clouds. Rather than relying on image-based adversarial domain mapping, ref. [44] pro-
posed aligning the data and class distributions of the source and target domains by means
of augmentation techniques and minimizing the Kullback–Leibler divergence between
the object classes. Ref. [45] employed a non-adversarial domain mapping technique for
real-to-real sensor-to-sensor transfer, with a focus on semantic segmentation. The authors
accumulated multiple annotated scans using 3D LiDAR SLAM to create a point cloud map,
and then generated semi-synthetic scans from the accumulated map with different sensor
parameters as the source sensor. There are methods to map the domains of 3D point clouds
beyond the field of autonomous driving, as demonstrated in [46]. This paper introduces
an unsupervised 3D domain adaptation technique for objects that aligns the source and
target distributions both locally and globally. However, ref. [25] highlighted the scarcity
of generative domain mapping methods that adapt 3D point clouds instead of 2D images.
For this reason, we aim to close this research gap by proposing a novel domain mapping
method. Instead of converting the 3D point clouds into an irreversible 2D bird’s-eye view
or front-view representation as in [37–39,41,42], our method directly adapts point clouds
in their 3D representation, leveraging the local relationships between neighboring points.
Moreover, instead of adapting the entire scene point clouds and potentially altering the
scene semantics as in previous methods, our method adapts point clouds on an object level
and ensures the preservation of scene semantics.
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3. Method
3.1. Problem Formulation and Notation

A point cloud is an unordered set of points Xi = {pj|
Nj
j=1} with Nj points in each

set, where pj = {xj, yj, zj} ∈ R3 denotes the 3D coordinates of each point pj of the i-th
point cloud. For each point cloud Xi, there is a set of annotations Yi = {yk|

Nk
k=1}, where

yk = {cx, cy, cz, l, w, h, θz}k denotes the center, dimension, and rotation around the z-axis of
a 3D bounding box [12]. We focus our efforts on adapting at the object level, so we define
the points within each bounding box yk of a scene point cloud Xi as Oi,k, which denotes the
k-th object point cloud of the i-th scene point cloud.

In unsupervised domain adaptation, the source domain S = {(XS
i , YS

i )|
NS
i=1} is com-

posed of NS point clouds XS
i , each of which is annotated with the corresponding labels YS

i .
The target domain T = {XT

i |
NT
i=1} only contains NT point clouds XT

i and no annotations are
provided. The objective of unsupervised domain adaptation is to learn a mapping function
Ψ between the point clouds of the source domain XS

i and the target domain XT
i .

3.2. General Outline

The purpose of our research is to train 3D object detection networks using adapted
data from the source domain and to test these trained networks in the target domain.
Therefore, the domain adaptation to reduce the domain shift between the source and target
data is performed on the object level, as objects are the most relevant features for an object
detection algorithm. To achieve this, only the objects Oi,k labeled in the source dataset are
adapted, not the entire scene point clouds XS

i .
This focus on object-level adaptation is motivated by both practical and scientific

considerations. The point clouds of entire scenes are usually too large to be processed
efficiently on GPUs and exhibit greater sparsity than object point clouds. Additionally,
our chosen network, designed primarily for point cloud completion, is optimized to
process individual objects rather than entire scenes. Adapting entire scenes would risk
losing crucial global structure within the objects, especially when FPS downsampling is
taken into account. In comparison, object-level adaptation provides a more consistent
density and better preservation of the global structure, which is in line with the abilities
of our point completion network, and, thus, guarantees more accurate and meaningful
domain adaptation.

A key aspect of our training methodology involves using the ground truth of the
target scene. This approach, in contrast to traditional domain adaptation methods that
tackle label scarcity in the target domain, enables our model to independently supervise
the adaptation of source data. By taking this approach, our training is not dependent on the
source domain, allowing the model to adapt any source domain without the requirement of
retraining for each new domain. For instance, various datasets from different simulations
can be adapted to the real-world style after a single training using a limited set of labeled
target data. This approach can be advantageous as it boosts performance by utilizing large,
easily generated simulated datasets; a limited number of labeled target data can enable the
adaptation of a much larger set of source data.

Following the training phase, our domain adaptation approach demonstrates its scale
capability, allowing the adaptation of an unlimited number of source point clouds from any
source domain. This feature is particularly advantageous for sim-to-real domain adaptation
scenarios, where simulation engines typically provide automatic annotation of point clouds.

The illustration in Figure 1 outlines our general process, which is explained in the
following. We start by obtaining the relevant objects Oi,k from the source S and target
T datasets, respectively. This is performed by extracting the objects from all scene point
clouds Xi. Examples of these objects can include cars, pedestrians, and cyclists, which
are defined by the object detection task. Using the extracted objects OT

i,k from the target
domain, we train a point completion network to reconstruct these objects. The input to
the network is a downsampled representation of the object point clouds, making them
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domain-invariant. In this way, our network learns to generate objects and applies the
desired target characteristics locally while preserving the global structure of the input
object. This is important because we do not want to alter the global structure of the objects,
as they are reinserted into their original position in the scene point clouds during domain
adaptation inference.

Object Extraction Object Injection

Source Scene Point Cloud Adapted Scene Point Cloud

Source Object Point Cloud Adapted Object Point Cloud

Scene Retention

Domain Adaptation

Figure 1. We present an object-based point cloud domain adaptation method. We start by extracting
object point clouds OS

i,k from a source scene point cloud XS
i (here: simulated data, blue). Our trained

domain adaptation network then adapts these object point clouds to create target-style object point
clouds (here: real-world, red) OS,adapted

i,k , which are placed back in their original positions in the

source scene point cloud. The final output XS,adapted
i is a combination of the original source scene

point cloud and the adapted object point cloud.

Once the network has been trained and, hence, has learned to reconstruct point clouds
with target domain characteristics, we use source object point clouds OS

i,k as the input for
the network during inference instead of the target object point clouds OT

i,k. The source
object point clouds are also downsampled to remove the local structure before being fed to
the network, making them domain-invariant and, thus, allowing the network to generate
target-style object point clouds while preserving the global structure of the source object
point cloud. Finally, the adapted source object point clouds OS,adapted

i,k are reinserted into
their original positions in the source scene point cloud XS

i . The adapted scene point clouds

XS,adapted
i are used to train object detection networks, with the hypothesis that this results

in a reduced domain shift compared to training using the unaltered original source scene
point clouds XS

i .

3.3. Network Structure

Our domain adaptation method is based on a GAN, which includes a generator G and
a discriminator D. The discriminator is only used during the training process to guide the
training of the generator. The network structure and specifics for training and inference are
illustrated in Figure 2. We will first discuss the input representation of the network before
providing details of the generator and discriminator.
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Training

Inference

FPS

 

Point Completion Network

Encoder Decoder Patch
Extraction

Discriminator

Patch
Extraction

Patches

Patches

FPS

 

Point Completion Network

Encoder Decoder

Patch Extraction

FPS

k-NN

Patch-wise
Zero-mean

Transformation
PatchesPatches centered

Figure 2. Detailed structure of our object-based point cloud domain adaptation network. The training
procedure involves reducing the size of a point cloud OT

i,k by means of farthest point sampling (FPS)
and then reconstructing it using the generator G, which is a point completion network. We employ
a discriminator that uses patches with λpatch points as input to further aid reconstruction. During
inference, the generator G takes the source point clouds OS

i,k that have been downsampled using

FPS as input and then adapts them locally to generate the output point clouds OS,adapted
i,k in the

target style.

3.3.1. Input Representation

Our network adapts the local structure of object point clouds, as outlined in Section 3.2.
The number of points associated with each object usually decreases as the distance of
the object from the LiDAR sensor increases. Consequently, our network must be able to
process a varying number of input points and must be able to generate a varying number
of output points. The number of points per object point cloud can be as few as one for
objects that are far away, which makes it hard to adapt the domains due to the lack of local
structure. Therefore, we define a minimum number of points. If an object point cloud has
fewer points than this predetermined minimum, we will not use it to train our domain
adaptation network.

Each input object point cloud is downsampled by a fixed downsampling factor δ
using the farthest point sampling (FPS) algorithm. Depending on the choice of δ, FPS
enables the preservation of the global structure of the object point cloud while removing
the local structure, thus making the downsampled object point cloud domain-invariant. δ
is a hyperparameter that can be tuned for each domain separately. In practice, a reasonable
choice for δ is in the range of [3, 10].

3.3.2. Generator

The generator G has the task of upsampling the previously FPS downsampled object
point cloud, which is either an object point cloud of the target or the source domain for
training or testing, respectively. We define the upsampling factor for the generator to be
the same as the downsampling factor δ, as the number of points in the output point cloud
should be the same as the number of points in the input point cloud.
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During training, G aims to reconstruct the target point cloud, thus learning to complete
the local structure of the input while preserving the global structure. At inference time,
the same network is used to reconstruct the FPS downsampled source object point cloud,
but it reconstructs the source point cloud using the local structure of the target domain
it has seen during training. Therefore, domain adaptation occurs only when making
predictions during inference and not during training, as the latter is based on target domain
reconstruction only.

Our method is highly scalable, as it requires a dataset of target point clouds for
training, but once trained, it can adapt an unlimited number of source point clouds. Our
network does not need to be trained to adapt a particular source domain, so it can adapt
source data from various source domains, such as different simulations, without needing
to be retrained.

We employ the state-of-the-art point completion network SeedFormer [47], which
can recover regional information of local patterns in a coarse-to-fine manner. Rather than
relying on the seeds generated from the global and patch features of SeedFormer, we
directly use the FPS downsampled point cloud in the SeedFormer decoder. The purpose of
the original SeedFormer architecture is to upsample a partial point cloud, which requires
the generation of the missing elements of the point cloud. However, our FPS-downsampled
point cloud already contains all the global parts of the input and output point cloud.
Furthermore, the SeedFormer architecture must be modified to process a varying number
of input points, necessitating alterations to the PointNet++ set abstraction (SA) layers
employed in the feature extractor of SeedFormer. We modify the SA layers so that the
number of query points is determined dynamically based on the number of input points
instead of using a fixed number, as in the original SeedFormer architecture.

Apart from these changes, we use the original SeedFormer architecture. This implies
that G can be substituted with any point completion or point upsampling network, as long
as the requirement for a variable number of input points can be integrated.

3.3.3. Patch Discriminator

In addition to the generator G that upsamples the input point cloud to the target style,
we employ a discriminator to guide the reconstruction process and concentrate on the local
aspect of reconstruction. The generator’s reconstruction attempts to balance between local
and global reconstruction, which can sometimes lead to suboptimal results for certain local
parts of the point clouds. This is especially noticeable in the sparse areas of the point clouds,
which we will explain using the following example.

Choose a point pi without close neighbors in the input point cloud Oi,k. When applying
FPS downsampling, this point will be chosen as a seed point due to its large distance from
other points and will be included in the set of points that the generator G will process.
During upsampling, G has the task of upsampling pi δ-times and placing δ − 1 points
around this seed point pi. This patch in the input point cloud contains a single point,
whereas the same patch in the output point cloud contains δ points. Since G attempts to
reconstruct the overall structure during the training process, the patch of δ points could
converge to the same coordinate as the input point pi.

We use a discriminator D to tackle this issue, which assists G in concentrating on
reconstructing local structures. D discriminates between point cloud patches from the
input point cloud OT

i,k and the reconstructed point cloud OT,rec
i,k .

The extraction of the point cloud patches is an upstream process shown in Figure 2
downright. The centers of the potential patches are determined by extracting points from
either OT

i,k or OT,rec
i,k . We use the k-Nearest Neighbor (k-NN) algorithm to identify the λpatch

points that are closest to each patch center. The size of each patch λpatch is closely linked
to the downsample and upsample factor δ, as the size of a potentially collapsing patch
is usually equal to δ, as previously mentioned. The last step of patch extraction involves
transforming the coordinates of each patch to have a mean of zero.
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Taking the patches of OT
i,k and OT,rec

i,k , D is trained to differentiate between the original
and reconstructed patches. G is trained adversarially and receives the negative loss of D.

D comprises two PointNet++ SA layers followed by three fully connected (FC) layers.
Instead of the default ball query to sample neighboring points in the SA layers, we opted
to use k-NN to sample three neighbors for each query point due to the varying density
of our objects. We increase the feature dimension of each sampled point to 1024 before
applying MaxPooling and feeding the 1024-dimensional global feature vector into the FC
layers. We adhere to the standard practice of not including BatchNorm layers in D and
using LeakyReLU activation functions in the FC layers. In Section 5.3, we investigate the
impact of including D in the training phase on our results.

3.4. Loss Function

The total loss of our GAN architecture Ltotal is a linear combination of the generator
loss LG and the discriminator loss LD

Ltotal = LG + LD. (1)

The generator loss LG consists of two parts. The first part is the reconstruction loss
Lrec

G and the second part is the adversarial loss Ladv
G . Following [47], we use the chamfer

distance (CD) to compute the reconstruction loss Lrec
G of G. The chamfer distance measures

the distance between two unordered sets of points S1, S2 ⊆ R3. It is calculated by taking
the sum of the shortest distances between each point in one set and the closest point in the
other set.

dCD(S1, S2) =
1
2

(
1

|S1| ∑
x∈S1

miny∈S2 ||x − y||22

+
1

|S2| ∑
y∈S2

minx∈S1 ||y − x||22

) (2)

As we compare the point clouds on the object-level, Lrec
G is defined as

Lrec
G

(
OT,rec

i,k , OT
i,k

)
= dCD

(
OT,rec

i,k , OT
i,k

)
. (3)

We also experimented using the earth movers distance (EMD) but found the reconstruction
results inferior to CD. The adversarial loss of the generator Ladv

G is calculated as

Ladv
G

(
OT

i,k

)
= − log

(
D
(

G
(

OT
i,k

)))
, (4)

where G(OT
i,k) represents the reconstructed point cloud OT,rec

i,k . If Ladv
G (OT

i,k) is close to one,
it implies that the generator G has deceived the discriminator successfully.

The loss of the discriminator LD is calculated as

LD

(
OT

i,k

)
=− log

(
D
(

OT
i,k

))
− log

(
1 − D

(
G
(

OT
i,k

)))
,

(5)

where D(OT
i,k) represents the discriminator’s output when evaluating a target point cloud,

which should be close to one. D(G(OT
i,k)) represents the discriminator’s output when

evaluating a reconstructed point cloud OT,rec
i,k , which should be close to zero since G

generates it.
Inserted into Equation (1), the total loss Ltotal can be calculated as
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Ltotal = Lrec
G

(
OT,rec

i,k , OT
i,k

)
+ Ladv

G

(
OT

i,k

)
+ LD

(
OT

i,k

)
= dCD

(
OT,rec

i,k , OT
i,k

)
− log

(
D
(

G
(

OT
i,k

)))
− log

(
D
(

OT
i,k

))
− log

(
1 − D

(
G
(

OT
i,k

)))
.

(6)

4. Experimental Setup

In this chapter, we provide an overview of the experimental setup by introducing our
dataset, describing the model configuration, and providing details of the metrics used for
the evaluation.

4.1. Dataset

The focus of our work is on a domain adaptation algorithm that minimizes the LiDAR
sim-to-real domain shift. This requires a dataset with data from the source and target
domains, whereas the source data are generated in simulation and the target data are
captured in the real world. The distinguishing feature of the real-world target domain,
as opposed to the simulated source domain, is predominantly its complex and variable
sensor noise characteristics. Real-world environments present a challenging array of sensor
noises that are typically absent or greatly simplified in simulation settings. This noise can
originate from a variety of sources, including environmental factors such as rain, fog, or
varying light conditions, and from inherent imperfections and aging of the sensor hardware.
In contrast, simulated data often lack this level of noise variability, offering overly clean
and consistent sensory inputs.

Our domain adaptation method focuses on adapting the local structure of object
point clouds. Therefore, to satisfy the need for a separate examination of the global and
local domain shifts, we require a dataset in which the global domain shift is minimized.
A dataset that meets this requirement is the Sim-to-Real Distribution-Aligned Dataset
introduced in [18]. This dataset consists of two subsets and is described briefly in the
following. For a detailed description, we refer to [18]. One subset was captured in the real
world and automatically annotated using the GPS trajectories of the vehicles involved. It
contains scenarios captured during the Indy Autonomous Challenge in Las Vegas on a
race track with AV-21 race cars. The other subset is a scenario-identical digital counterpart
generated in simulation using the same GPS trajectories. This digital counterpart includes
the same scenarios, objects, and environment as the real-world counterpart. The subsets
are distribution-aligned, that is, an almost scenario-identical simulated counterpart exists
for every real-world point cloud. Therefore, this dataset is uniquely suitable for our study,
as it minimizes the global domain shift, allowing us to focus on and accurately evaluate the
adaptation of local structures. Other available dataset pairs of real-world and simulated
data do not provide the same level of global alignment, making them less suitable for
isolating and assessing the effectiveness of adaptation of local structures. We recognize the
restriction of our current approach and intend to broaden our technique to encompass a
wider range of datasets in the future, thus increasing the generality and applicability of
our study.

We use this dataset both for training our object-based domain adaptation method and
to evaluate the performance of the adaptation by training object detection networks using
the adapted scene point clouds XS,adapted

i .
The former requires extracting the objects as explained in Section 3.2 and shown in

Figure 1. To that end, we extract all object point clouds with at least 512 points per object
from both the real-world and simulated datasets. We set this minimum number of points
per object since object point clouds with fewer points than this minimum number of points
are sparse and barely contain any local information. After extracting the object point
clouds from the scene point clouds, our object dataset contains 528, 14, and 14 object point
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clouds for training, validation, and testing, respectively. The validation and testing splits
of this dataset are intentionally much smaller compared to the training split because the
target object dataset is exclusively used for training purposes, i.e., the target object dataset
is used to train and validate our domain adaptation network and to test reconstruction
after training.

Once training is complete, the entire source object dataset consisting of 556 objects
is used to generate domain-adapted object point clouds OS,adapted

i,k , which are then placed
back into their original positions in the source scene point clouds XS

i .
In the remainder of this work, we will refer to the domain-adapted dataset as sim-to-real,

meaning that it has been adapted from the source (sim) to the target (real) dataset.
Benchmark. To further benchmark the performance of our domain adaptation method

with a baseline method, we employ a noise module to the virtual sensor model in simula-
tion. Using this noise module, we create a new simulation dataset with different LiDAR
characteristics but the same scenarios as the original sim dataset. In particular, we add
Gaussian noise with a standard deviation of 2 cm to each LiDAR ray in the longitudinal
direction, similar to [18]. To make it comparable to our approach, which only adapts the
objects and not the entire scene, the noise of the sensor model is only applied to all points
that hit objects. This baseline dataset is referred to as sim-noise.

4.2. Model and Training Setup

We train our GAN architecture end-to-end using the PyTorch framework, with the
AdamW optimizer and a learning rate of 10−4. The patch size λpatch is equal to the
downsampling factor δ, as described in Section 3.3.3. When training sim-to-real domain
adaptation, the downsampling factor δ is set to seven, and when training real-to-sim
domain adaptation, it is set to five. As the input number of points is variable, the batch size
is limited to one. Each configuration is trained for 100 epochs.

We assess our domain adaptation using object detectors. Since the training of these
networks is non-deterministic, we train each configuration five times and report the mean
and standard deviation of each metric.

4.3. Metrics

We measure the performance of our domain adaptation network by training 3D LiDAR
object detectors on the source, target, and adapted datasets. We then evaluate each trained
network on the target dataset, as was performed in [17,18]. We assess both the sim-to-real
and the real-to-sim directions of the domain shift. To validate our method for a point-based
and a voxel-based object detection approach, we use PointRCNN [48] and PointPillars [49].
Both networks use the same configuration as in [18]. Furthermore, we use the same test
split of 1000 point clouds for evaluation. However, instead of using the entire training
split, we only use the point clouds that include adapted objects. We report the 3D average
precision (AP) and recall as metrics. For each metric, we assess the performance at two
different intersection over union (IoU) thresholds, 50% and 70%. These are referred to as 3D
AP (0.5) or Recall (0.5) and 3D AP (0.7) or Recall (0.7), respectively. In addition, we report
the AP for the full range, which encompasses an object distance of up to 100 m, as well as
for the close range r1 = [0.0 m, 33.3 m), similar to [18]. Especially, r1 is relevant since most
adapted objects are within this range due to the minimum number of points needed by the
domain adaptation network.

In addition to the quantitative evaluation, we further assess the performance of our
domain adaptation method qualitatively by visually inspecting the adapted point clouds in
comparison to the source and target domains. To this end, we visualize the 3D point clouds
of selected objects of the real, sim, and sim-to-real datasets and also visualize a cropped
part of the objects to highlight the local structure differences. Additionally, we aggregate
multiple point clouds of each domain into a single point cloud, allowing a qualitative
comparison of the entire object point cloud. As another qualitative metric, we visualize
the t-distributed stochastic neighbor embedding (t-SNE) [23] using the high-dimensional
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latent features of the object detection networks, generated during inference when passing
point clouds of different domains through the networks.

5. Results
5.1. Quantitative Evaluation

The bean plots in Figure 3 show the quantitative results of the object detection network
PointRCNN trained on different datasets. Each bean represents the five identical training
runs of a specific dataset, whereas all training runs are evaluated on the test split of the
real dataset. We further split the evaluation into different ranges, that is the close-range
[0.0 m, 33.3 m) and the full range [0.0 m, 100.0 m]. When analyzing the close-range, the
3D AP (0.7) of real (53.48%) is higher than the performance of sim (44.85%), highlighting
the sim-to-real domain shift of 8.63% we aim to minimize using domain adaptation. In
the same range, our domain-adapted sim-to-real dataset achieves a 3D AP of (49.12%),
showing a considerable minimization of the sim-to-real domain shift from 8.63% to 4.36%, a
reduction of almost 50%. Similar results can also be seen for the full range, PointPillars, and
3D AP (0.5) in Table 1. In Table 2, we show the recall for both IoU thresholds, corresponding
with the 3D AP results.
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Figure 3. 3D average precision (AP) with IoU 70% for PointRCNN trained with sim, sim-to-real, or real
data and evaluated on real data (target). The horizontal lines mark the mean AP, and the five points
mark the individual five training runs per train-test pairing.
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Table 1. Sim-to-Real: 3D average precision for IoU thresholds 70% and 50%, denoted as 3D AP (0.7)
or 3D AP (0.5), respectively. The networks PointRCNN and PointPillars were trained five times using
the indicated train dataset and evaluated on the test split of the real dataset. ↑: Higher values are
better, bold values mark the best value of each category.

Network Train Dataset 3D AP (0.7) ↑ 3D AP (0.5) ↑
Close-Range Full Range Close-Range Full Range

PointRCNN

Sim (Source) 44.85 ± 2.82 17.06 ± 1.34 52.48 ± 1.42 24.11 ± 2.31

Sim-Noise 41.34 ± 3.89 15.58 ± 2.83 49.14 ± 5.07 22.17 ± 4.47
Sim-to-Real No-GAN 48.09 ± 2.05 20.03 ± 3.29 57.94 ± 0.81 30.58 ± 1.75
Sim-to-Real δ = 3 48.10 ± 2.72 20.39 ± 3.44 55.44 ± 1.68 28.67 ± 3.93
Sim-to-Real δ = 5 48.00 ± 3.03 20.19 ± 2.65 56.36 ± 1.14 28.89 ± 2.43
Sim-to-Real 49.12 ± 1.53 20.10 ± 1.46 56.51 ± 1.31 29.82 ± 1.99
Real (Target) 53.48 ± 3.15 20.40 ± 1.71 59.17 ± 1.88 28.46 ± 4.09

PointPillars

Sim (Source) 26.39 ± 0.00 9.85 ± 0.00 63.51 ± 0.00 23.75 ± 0.00

Sim-Noise 31.46 ± 0.00 11.80 ± 0.00 67.16 ± 0.00 28.45 ± 0.00
Sim-to-Real No-GAN 26.33 ± 0.00 10.90 ± 0.00 63.77 ± 0.00 29.20 ± 0.00
Sim-to-Real δ = 3 28.03 ± 0.00 10.86 ± 0.00 61.47 ± 0.00 30.01 ± 0.00
Sim-to-Real δ = 5 30.69 ± 0.00 11.91 ± 0.00 61.10 ± 0.00 28.79 ± 0.00
Sim-to-Real 38.03 ± 0.00 14.41 ± 0.00 64.11 ± 0.00 29.31 ± 0.00
Real (Target) 51.32 ± 0.00 18.33 ± 0.00 81.52 ± 0.00 32.62 ± 0.00

Table 2. Sim-to-Real: Recall for IoU thresholds 70% and 50%, denoted as Recall (0.7) or Recall (0.5),
respectively. The networks PointRCNN and PointPillars were trained five times using the indicated
train dataset and evaluated on the test split of the real dataset. ↑: Higher values are better, bold values
mark the best value of each category.

Network Train Dataset Recall (0.7) ↑ Recall (0.5) ↑

PointRCNN

Sim (Source) 32.22 ± 2.11 44.52 ± 2.91

Sim-Noise 29.92 ± 1.20 43.04 ± 1.44
Sim-to-Real No-GAN 32.18 ± 1.88 44.20 ± 1.51
Sim-to-Real δ = 3 31.32 ± 3.56 42.76 ± 3.05
Sim-to-Real δ = 5 32.12 ± 1.64 42.66 ± 0.78
Sim-to-Real 33.00 ± 0.73 43.22 ± 0.88

Real (Target) 38.50 ± 2.32 64.32 ± 1.63

PointPillars

Sim (Source) 15.50 ± 0.00 26.40 ± 0.00

Sim-Noise 18.00 ± 0.00 32.90 ± 0.00
Sim-to-Real No-GAN 18.70 ± 0.00 34.80 ± 0.00
Sim-to-Real δ = 3 15.90 ± 0.00 33.10 ± 0.00
Sim-to-Real δ = 5 19.40 ± 0.00 36.20 ± 0.00
Sim-to-Real 21.90 ± 0.00 36.40 ± 0.00

Real (Target) 22.10 ± 0.00 34.40 ± 0.00

Nevertheless, a remaining domain shift of 4.36% still exists in the sim-to-real adapted
dataset. This can be explained by the fact that our method adapts only the object point
clouds but still uses the remainder of the source scene point cloud, contributing to the
domain shift. Nevertheless, we want to mention that our domain adaptation method
performs better than the source dataset in all scenarios.

When comparing our sim-to-real domain adaptation method with the baseline ap-
proach introduced in the sim-noise dataset, our method performs better for both PointRCNN
and PointPillars in terms of 3D AP and recall. Our method minimizes the sim-to-real do-
main shift more than the baseline approach. Only in one instance does sim-noise outperform
our sim-to-real dataset, and that is for PointPillars in close-range 3D AP (0.5). The lower
false positive rate of sim-noise compared to sim-to-real is likely due to its more consistent
noise pattern, resulting in better performance at lower IoU thresholds.
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5.2. Qualitative Evaluation

As explained in Section 4, we further analyze the adapted point clouds qualitatively by
visualizing samples of object point clouds. Figure 4 shows three selected point clouds from
the sim, sim-to-real, and real datasets, each with a similar number of points. The point color
is consistent with the rest of our paper, with blue hues representing simulated point clouds
and red hues representing real-world point clouds. The color gradient within each point
cloud correlates with the object’s y-axis, visually encoding the y-axis dimension through
color intensity. Along the object point clouds, we visualize a cropped section of the object
point clouds to analyze the local structure in detail. The object point clouds of the sim and
real dataset in Figure 4a,e are clearly distinguishable, highlighted by the smooth contours
of the sim point clouds compared to the noise silhouette of the real point cloud. This local
difference is especially visible in the cropped sections in Figure 4b,f.
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Figure 4. Single object point clouds of sim, sim-to-real, and real datasets for comparison of the domain
adaption method. In (b,d,f) we provide a crop of the red boxes depicted in (a,c,e), respectively, for a
detailed view of the local structure. Blue shades represent simulated point clouds and red shades
represent real-world point clouds. For reference, we include the 3D model and picture of the object in
(a,e), respectively.
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Figure 4c shows the sim-to-real adapted object point cloud. The cropped section in
Figure 4d highlights the successful domain adaptation on a local level, introducing a noisy
characteristic similar to the real cropped section.

The aggregated object point clouds are compared in Figure 5. In these plots, 50 ran-
domly selected point clouds of each domain are first normalized and then aggregated to
generate a single aggregated object point cloud per domain. This allows for a comparison
of all parts of the objects. When comparing the sim and the sim-to-real aggregated point
clouds in Figure 5a,b, respectively, the sim-to-real clearly shows a noisy characteristic on the
local level similar to the real point cloud in Figure 5c. This further emphasizes a successful
sim-to-real domain adaptation.
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Figure 5. Aggregated normalized object point clouds of sim (blue), sim-to-real (blue), and real (red)
datasets. Each aggregated object point cloud consists of 50 randomly selected individual point clouds.
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A t-SNE plot of the latent feature space of PointPillars trained on real, sim-to-real, and
sim is depicted in Figure 6. Each point is a 2D representation of the high-dimensional
latent feature space of PointPillars when tested on the real dataset. For a perfect domain
adaptation, the expectation would be that the cluster of the sim-to-real dataset merges with
the cluster of the real dataset. Since three distinct clusters are visible for each training
dataset, this shows that a domain shift between the sim-to-real and the real dataset still
exists even after our domain adaptation. This is in agreement with the quantitative results.
However, t-SNE cannot quantify the magnitude of the remaining domain shift.

Real
Sim-to-Real
Sim

Figure 6. T-SNE plot of the latent feature space of PointPillars trained on real, sim, or sim-to-real data.
Each point visualizes a feature vector generated by network inference with a single point cloud of the
real test set.

5.3. Ablation Study

To demonstrate the sensitivity of certain parameters of our domain adaptation method,
we conduct an ablation study. In detail, we analyze the impact of the downsampling factor δ
and the impact of adversarial training using the discriminator.

In the first experiment, we alter the downsampling factor δ from the original sim-to-real
setting of δ = 7 to five and three. After training our domain adaptation network with
these settings, we create two adapted datasets sim-to-real δ = 5 and sim-to-real δ = 3.
These datasets are also evaluated using the two object detection networks PointRCNN and
PointPillars. Figure 7 presents the 3D AP (0.7) results of these experiments for PointRCNN
and close range, while the remaining results can be found in Tables 1 and 2. When choosing
a lower downsampling factor of either δ = 5 or δ = 3, the mean 3D AP (0.7) decreases
by more than one percent to 48.00% or 48.10%, respectively, in comparison to δ = 7 with
49.12%. This observation is particularly noticeable when examining PointPillars. Recall
also demonstrates a decrease in performance as the downsampling factor decreases. It
is reasonable to assume that a larger downsampling factor will give the generator more
freedom to generate meaningful adapted point clouds. However, a larger downsampling
factor also decreases the number of points in the domain-invariant input point cloud, which
can cause the adaptation to be more focused on the global space than the local level.
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Figure 7. 3D average precision (AP) with IoU 70% for PointRCNN trained with sim, real, multiple
sim-to-real variants, or sim-noise data and evaluated on real data (target) in close-range [0.0 m, 33.3 m).
For the sim-to-real variants, we alter the downsampling factor δ from its default value seven to five
or three, respectively. Furthermore, we analyze the performance of our domain adaptation method
without adversarial training, i.e., without the discriminator (Sim-to-Real No-GAN). The horizontal lines
mark the mean AP, and the five points mark the individual five training runs per train-test pairing.

We conduct a second experiment to analyze the performance of our network trained
without the adversarial setting. Therefore, we remove the discriminator from the architec-
ture and train using the generator reconstruction loss Lrec

G only. This setting allows us to
quantify the influence of the discriminator. We refer to the resulting sim-to-real adapted
dataset as sim-to-real no-GAN. As shown in Figure 7, the mean 3D AP (0.7) of sim-to-real
no-GAN (48.09%) is greater than the mean 3D AP of sim (44.85%), thus minimizing the
sim-to-real domain shift. However, in comparison to the default sim-to-real (49.12%) with
adversarial training, sim-to-real no-GAN does not perform as well, thus demonstrating the
advantage of using a patch discriminator with adversarial training. It is worth noting that in
certain settings, such as PointRCNN’s 3D AP (0.5) or Recall (0.5), the sim-to-real no-GAN ap-
proach outperforms the default sim-to-real method. Despite this, most metrics demonstrate
improved results when adversarial training is used.

Since our method is applicable for any combination of source and target datasets, we
also analyze the performance of real-to-sim, i.e., adapting real point clouds to sim point
clouds. The results of this analysis are summarized in Table 3. The adapted real-to-sim
dataset consistently outperforms the source dataset, showing a reduced real-to-sim domain
shift, albeit the magnitude of reduction differs between PointRCNN and PointPillars.

Table 3. Real-to-Sim: 3D average precision for IoU thresholds 70% and 50%, denoted as 3D AP (0.7)
or 3D AP (0.5), respectively. The networks PointRCNN and PointPillars were trained five times
using the indicated train dataset and evaluated on the test split of the sim dataset. ↑: Higher values
are better.

Network Train Dataset 3D AP (0.7) ↑ 3D AP (0.5) ↑
Close-Range Full Range Close-Range Full Range

PointRCNN
Real (Source) 55.73 ± 4.78 22.69 ± 3.16 62.66 ± 2.38 32.87 ± 4.80
Real-to-Sim 55.94 ± 3.68 22.72 ± 3.42 68.43 ± 4.07 40.04 ± 7.93
Sim (Target) 65.37 ± 2.69 26.98 ± 1.89 71.99 ± 2.23 41.19 ± 1.56

PointPillars
Real (Source) 23.46 ± 0.00 8.27 ± 0.00 77.04 ± 0.00 28.56 ± 0.00
Real-to-Sim 32.03 ± 0.00 13.08 ± 0.00 85.79 ± 0.00 34.57 ± 0.00
Sim (Target) 95.94 ± 0.00 33.93 ± 0.00 99.89 ± 0.00 39.26 ± 0.00
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6. Discussion

In the following, we discuss the limitations of our presented domain adaptation network.
First, in our method, the need for an annotated target dataset initially presents itself as

a limitation, as it requires access to labeled target domain data for training. However, this
approach has been strategically chosen to enhance the model’s scalability and domain inde-
pendence. Once trained with the target domain data, our network is capable of adapting
an unlimited number of source domain point clouds without the need for retraining for
each new domain. This means that, while the initial requirement for labeled target data
may seem restrictive, it actually opens up a pathway for extensive and versatile application
of the model across various source domains. The use of a limited set of labeled target data
facilitates the adaptation of a much larger set of source data, thus maximizing the utility
and reach of our method in diverse real-world scenarios.

Second, instead of adapting entire scene point clouds, we only adapt the relevant
objects, i.e., the objects detected by the perception task. This is not just a restriction, but
rather a deliberate decision. Focusing on object-level adaptation aligns with the practical
and computational limitations of processing large scene point clouds. Scene point clouds
are typically too large for efficient GPU processing and are more sparse compared to object
point clouds, which can impact the effectiveness of domain adaptation. Moreover, our
generator G, originally designed for point cloud completion, is better suited for processing
single objects rather than entire scenes. Adapting entire scenes with our method could risk
losing important global structures in the objects due to the constraints of downsampling.

This requires an annotated target dataset, as we need target object point clouds to
train our domain adaptation network. Once our domain adaptation network is trained,
we do not need target labels, enhancing the method’s scalability and enabling it to adapt
an unlimited number of annotated source point clouds from any source domain without
retraining for each source domain, as explained in the first limitation. Although focusing
on object-level adaptation means that we cannot fully eliminate the domain shift, it allows
us to maximize the precision and effectiveness of our adaptation within the most critical
aspects of the data, which is reflected in the results.

Third, our method can handle a variable number of points in the object point cloud
but still requires a minimum number of points, as sparse object point clouds do not contain
meaningful information on local structures.

In future work, the current limitations can be resolved by extending our method to
adapt entire scene point clouds. In addition, our method can be transferred to public
real-world and simulated datasets, such as KITTI and CARLA. These datasets are not
distribution-aligned. Hence, they contain a global domain shift in addition to the local
domain shift due to differences in objects, scenarios, environment, etc. Therefore, our
method cannot fully eliminate the domain shift in these datasets. However, the use of such
diverse datasets will allow us to further evaluate and enhance the generalizability of our
domain adaptation method.

Although our current study relies on the Sim-to-Real Distribution-Aligned Dataset,
specifically chosen for its minimal global domain shift, we recognize the importance of
testing our method across a variety of datasets to establish broader applicability and
robustness. By expanding our research to include datasets that present both global and
local domain shifts, we aim not only to validate our method in more complex scenarios
but also to refine it to address a wider range of domain adaptation challenges. Since our
method can reduce the domain shift on our distribution-aligned dataset, we expect to also
reduce the total domain shift on these public datasets by focusing on the reduction in the
local domain shift. Another area of research is the intensity channel of the LiDAR point
clouds, which we currently neglect but want to include in future work.

7. Conclusions

In this paper, we have introduced a novel domain adaptation network for 3D LiDAR
object detection, achieving significant advancements in minimizing the sim-to-real domain
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shift. Our adversarial-based network architecture, incorporating a point cloud completion
network for generation and a PointNet++-inspired discriminator, has demonstrated a
notable reduction in the domain shift, quantified by a decrease in the domain shift from
8.63% to 4.36% 3D AP.

Key findings of our research include the ability of the network to adapt object point
clouds with high fidelity to the target domain’s local structure. This achievement is further
underscored by our network’s outperformance of baseline models. Additionally, we have
established the importance of the downsampling factor and the adversarial training strategy
in improving domain adaptation.

Although our approach necessitates an initial annotated target dataset and focuses
on object-level adaptation, these aspects are balanced by the method’s scalability and
precision. The limitations noted pave the way for future work, where we aim to extend our
methodology to entire scene point clouds and explore its applicability on diverse datasets,
like KITTI and CARLA, as well as incorporating the intensity channel of LiDAR data.

In conclusion, our domain adaptation network marks a significant step forward in the
field of robust 3D object detection using domain adaptation.
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