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Abstract: Unmanned aerial vehicles (UAVs) have been employed extensively for remote-sensing
missions. However, due to their energy limitations, UAVs have a restricted flight operating time and
spatial coverage, which makes remote sensing over huge regions that are out of UAV flight endurance
and range challenging. PAD is an autonomous wireless charging station that might significantly
increase the flying time of UAVs by recharging them in the air. In this work, we introduce PADs to
simplify UAV-based remote sensing over a huge region, and then we explore the UAV route planning
problem once PADs have been predeployed throughout a huge remote sensing region. A route
planning scheme, named PAD-based remote sensing (PBRS), is proposed to solve the problem. The
PBRS scheme first plans the UAV’s round-trip routes based on the location of the PADs and divides
the whole target region into multiple PAD-based subregions. Between adjacent subregions, the UAV
flight subroute is planned by determining piggyback points to minimize the total time for remote
sensing. We demonstrate the effectiveness of the proposed scheme by conducting several sets of
simulation experiments based on the digital orthophoto model of Hutou Village in Beibei District,
Chongqing, China. The results show that the PBRS scheme can achieve excellent performance in three
metrics of remote sensing duration, the number of trips to charging stations, and the data-storage
rate in UAV remote-sensing missions over huge regions with predeployed PADs through effective
planning of UAVs.

Keywords: remote sensing; PAD; path planning; UAV

1. Introduction

The progress of automation control and data processing technology has significantly
contributed to the rapid growth of unmanned aerial vehicle (UAVs) remote-sensing tech-
nology [1–3]. This technology offers numerous advantages, including the ability to operate
without the constraints of complex ground conditions, improved mobility, cost efficiency,
increased safety, and impressive performance in spatial scale and data accuracy. UAVs
are generally categorized into two main types: fixed-wing UAVs and rotary-wing UAVs.
Rotary-wing UAVs have distinct benefits over fixed-wing UAVs, with them notably their
capability for vertical takeoff and landing, as well as hovering [4]. In comparison, fixed-
wing UAVs require more specific launch conditions. The unique features of vertical takeoff,
landing, and hovering make rotary-wing UAVs the preferred option in situations where
these capabilities are essential, particularly in remote-sensing missions.

The problem of UAV route planning has become a hotspot of research in numerous
related domains due to the energy limitation in terms of flight endurance and range of
UAVs, thereby presenting substantial research potential [5]. The problem of UAV route
planning holds significant relevance in the field of remote-sensing engineering, as it directly
impacts the quality and efficiency of remote sensing. However, because of the limitations
of battery capacity and its own weight, a single UAV’s flight-operating time and spatial
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coverage cannot match the needs of huge-region remote-sensing missions. As shown in
Figure 1a, the UAV cannot travel to all target points in a single flight. Currently, there are
three main methods for a huge-region remote-sensing mission:

(1) Single-UAV with multiple flights: As shown in Figure 1b, this method means a single
UAV covers the entire region with multiple flights [6].

(2) Multi-UAV cooperation: This method employs multiple UAVs to simultaneously cover
the entire region [7]. Figure 1c shows a paradigm of this method.

(3) Single-UAV with increased battery capacity: As shown in Figure 1d, this method
enhances the UAV’s battery capacity, thereby enabling it to survey the entire region in
a single flight [8].

Figure 1. The drawbacks of flying a single UAV over a huge region and the three main ways to solve
them. Where (a) depicts the initial remote sensing setup with a single UAV and a lone base station,
(b) depicts the multi-flight approach with a single UAV, (c) illustrates multi-UAV cooperation for
executing remote sensing missions and (d) shows a single UAV with increased battery capacity for
executing remote sensing missions.

However, all of these methods have drawbacks that make it difficult to achieve highly
effective remote-sensing observations. In the first method, the UAV has to make several
trips back and forth between the target region and the base station (BS) for energy replen-
ishment. To make matters worse, the BS must be relocated, as shown in Figure 1b, to
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cover more target points, thereby leading to a prolonged duration between the collections
of images. The second method operates by simultaneously introducing multiple UAVs,
thereby significantly reducing the mission execution time compared to the first method.
However, as shown in Figure 1c, the cost of executing a remote-sensing mission is signifi-
cantly higher when multiple UAVs are used at once, in addition to the setup of multiple
BSs. Additionally, the concurrent operation of multiple UAVs raises the risk of collisions.
Regarding the third method, theoretically, enhancing the UAV’s battery capacity could
improve its endurance and broaden its remote-sensing range. However, a larger battery
increases the UAV’s weight and volume, thereby leading to a higher energy-consumption
rate during flight.

With the advancement of wireless power transfer technologies, researchers have
developed a novel wireless charging station, known as PAD, for charging UAVs [9,10].
Consequently, an energy-depleted UAV can instead head to a nearby PAD for energy
replenishment. This approach enhances the UAV’s operational time and spatial coverage,
as well as reduces the frequency of repetitive flights to the BS for charging. PAD technology
has demonstrated its effectiveness in wireless rechargeable sensor networks (WRSNs). In
these networks, PADs can be strategically placed in advance to recharge UAVs, which then
act as mobile chargers for the sensor nodes.

Inspired by the PAD-based WRSNs where the UAV charges nodes, we introduce
PADs in the field of remote sensing and study the PAD-based UAV remote-sensing route-
planning problem for huge regions in this work. As shown in Figure 2, by deploying PADs
in the target observation region, a single UAV can accomplish remote-sensing observation
missions over a huge monitoring region in a single flight. Both UAVs in WRSNs and
UAVs in remote-sensing missions need to depart from a base station, perform a mission,
and return. To simplify the problem, we analogize the target points in remote-sensing
missions to sensor nodes. In our scheme, an energy-depleted UAV can visit a nearby PAD
for replenishment. Therefore, current UAV remote-sensing route-planning methods are
not suitable for our mission. Similarly, the existing mobile-charger scheduling algorithms
in WRSNs, designed to prioritize the most energy-depleted nodes, do not align with our
requirements. Moreover, in our case, it is crucial for the UAV to consider its limited storage
capacity and the energy used for turning during remote-sensing missions. In conclusion,
while the introduction of PADs brings a new method to accomplish UAV remote-sensing
missions over huge regions, it also brings new challenges for PAD-based UAV remote-
sensing route planning.

Figure 2. (a) represents the initial remote-sensing region. (b) represents the remote-sensing region
after the introduction of PAD.
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In this study, we investigate the UAV remote-sensing route-planning problem in a
huge remote-sensing region with predeployed PADs. We choose minimizing the total time
it takes for a single UAV to execute a remote-sensing mission as the optimization objec-
tive and thus name this problem the PAD-based UAV remote-sensing time-minimization
(PURSTM) problem. We first define and formulate the PURSTM problem and prove that
this problem is NP-hard. Then, a route-planning scheme called the PAD-based remote-
sensing (PBRS) scheme to schedule the UAV to travel to target points for a remote sensing
mission is proposed. Simulation results show that our proposed scheme achieves signifi-
cant performance.

The main contributions of this paper are as follows:

• By using predeployed PADs in the target region, we propose a novel solution to
huge-region UAV remote sensing in which a single UAV can accomplish a huge-region
remote-sensing mission in a single flight by automatically traveling to the PAD for
energy replenishment. To the best of our knowledge, this is the very first study to
introduce PAD technologies into the remote-sensing field.

• We propose the PURSTM problem with the goal of minimizing the total time spent
on remote-sensing missions and examine how to plan the route of a single UAV to
execute a remote-sensing mission over a huge region with predeployed PADs in a
single flight. We formulate the problem and prove it is NP-hard.

• We propose a solution to the PURSTM problem called PBRS, which uses a more
practical UAV model that accounts for the turning energy consumption and data
storage of the UAV.

• We conduct several group simulations with real geographic scenarios to demonstrate
the effectiveness of our proposed scheme.

The rest of the paper is organized as follows. Section 2 reviews the related work.
Section 3 introduces the model and formulates our problem. Section 4 presents the proposed
scheme. Section 5 conducts simulations for performance evaluation. Section 6 discusses
the superiority of our proposed scheme. Section 7 concludes our work.

2. Related Work

In this section, we review existing research related to our work. First, we present
research on the UAV route-planning problem for UAV remote sensing. Then, we discuss
research on PAD.

2.1. Route-Planning Problem for UAV Remote Sensing

When planning a route for UAV remote sensing, it is necessary for the UAV to fly to
each target point and back to the BS.

In the research on route planning for UAV remote sensing, the UAV has to fly to
the target point, which is an important part of the route-planning algorithm for UAV
remote sensing. Jang et al. [11] considered the route-planning problem for UAV remote
sensing as a dynamically constrained traveling salesman problem (TSP) with neighbor-
hoods. By incorporating the turning energy and switching energy into the UAV energy
model, Huang et al. [12] were able to transform the UAV path-planning problem into a
general target-visiting problem for minimizing the energy consumption of UAV flights
based on waypoints. In [13], a modified mayfly algorithm based on an exponentially de-
creasing inertia weight strategy was proposed for UAV route planning in two-dimensional
planar space. In [14], an improved butterfly optimization algorithm was proposed for
three-dimensional space.

Some research projects have investigated deploying a UAV network consisting of
multi-UAV operations as a method of addressing the limitations of single-UAV operations.
Based on the vehicle-routing problem (VRP), Chen et al. [15] proposed an optimization
algorithm for UAV route planning for remote-sensing observation, thereby minimizing
the observation time and the number of UAVs dispatched. Xu et al. [16] used threat cost
and fuel cost as criteria for evaluating routes. The algorithm also considered time and



Sensors 2023, 23, 9897 5 of 21

space constraints to improve mission efficiency and ensure the safety of the UAVs. Liu et
al. [17] proposed a UAV swarm-scheduling method for the problem of multiple UAVs for
remote-sensing observation, which improved the observation efficiency of the UAV swarm
for emergency situations.

In addition, a few studies have begun to consider powering the UAV while it is in
flight. In [18], the introduction of depots was proposed, thereby allowing UAVs to gain
flight energy to visit more target points by traveling to the depot for recharging; however,
the study deployed the depots by precomputing the route of the UAVs, which made it
adaptable to only a small region with fewer target points. In [19], a deep reinforcement
learning-based approach was proposed using an encoder–decoder-like policy network that
uses two types of attention to learn the relationship between the monitoring target and the
charging-station nodes. However, these studies deployed the charging stations randomly
in the network, which cannot ensure that every target point in the region is accessible, and
some of them might not be used, thereby resulting in wasted economic costs.

2.2. PAD Technology

With the expanding use of UAVs, there is a growing need for more efficient charging
solutions. UAVs can autonomously recharge via either wired or wireless connections.
Wired connections offer efficient energy use, but their reliability can be compromised due
to the impact of environmental conditions on the system’s mechanical contacts. In contrast,
wireless connections provide greater reliability but at the expense of efficiency. Wireless
charging faces challenges in energy efficiency due to alignment issues between the receiver
and transmitter circuit elements [20]. According to [21], the efficiency of wireless charging is
typically 20% to 50% lower than that of wired charging. Nonetheless, the reliability offered
by wireless charging is more suitable for the outdoor conditions of UAV remote-sensing
operations. Moreover, as [21] notes, current PAD technology can achieve a wireless power
transfer efficiency of 74.8%, with the potential to deliver a maximum charging power of up
to 195W at an efficiency of 91% [22].

For economic cost savings and more efficient use of PADs in huge regions, Chen
et al. [23] introduced PADs in wireless rechargeable sensor networks and proposed four
heuristic algorithms for deploying PADs and an on-demand charging scheduling scheme
for WRSNs, in which UAVs can charge uniformly distributed sensor nodes deployed in
the network with PADs. However, Ref. [23] solely focused on the uniform distribution
of central BSs and nodes, thus rendering it inadequate for large-scale or constrained
node-deployment scenarios. Conversely, Ref. [24] investigated the problem of deploying
a minimum number of PADs in UAV-based WRSNs and proposed a PAD deployment
algorithm that can be applied to any BS location, any geographical distribution of sensor
nodes, and any network region. In both [23,24], the deployment of PADs must satisfy
two constraints simultaneously: the coverage constraint and the connectivity constraint.
Among them, the coverage constraint requires that a node in the network be covered by at
least one PAD, thereby ensuring that the UAV can reach the node via the PAD to replenish
its energy. The connectivity constraint requires that the UAV must start from any PAD
(including the BS) to reach another PAD in the network, which ensures that the UAV can
start from the BS and successfully return to the BS after completing the mission.

3. Preliminaries

In this section, with the introduction of the region model and the energy-consumption
model of the UAV, we formulate the PAD-based UAV remote-sensing time-minimization
(PURSTM) problem and prove that it is NP-hard. Table 1 lists all the symbols used in
this article.
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Table 1. List of notations.

Notation Description

EUAV Battery capacity of the UAV
BUAV Buffer capacity of the UAV
VU Flight speed of the UAV
O The set of target points
P The set of charging stations
B The set of the number of images required for the target points
Emov Energy consumption during the movement of the UAV
Ehov Energy consumption of the UAV hovering
Eturn Energy consumption of the UAV turning
E The sum of Emov and Ehov and Eturn
Phov The hovering power of the UAV
Pmov The motion power of the UAV
Pcharge The power of charging station to charge the UAV
bmax The max number of images required for one target point
bmin The min number of images required for one target point
Creturn The number of times the UAV returns to the PAD
η Time cost of the UAV to collect an image
δ Data size of an image
β Constant of energy consumption of the UAV turning
ω Coefficient of energy consumption of the UAV turning
ρ Energy consumption of the UAV to acquire an image
τ The angular velocity of the UAV
tmov The total flight time of the UAV
thov The total hovering time of the UAV
dmax The maximum flight distance of the UAV
dcover The charging coverage of the UAV
ti The position of the target point i or the PAD i
θijk The angle of turn required for the UAV to travel from point i to j to k

3.1. Region Model

The original scene of the remote-sensing region is shown in Figure 2a: the region
comprises one UAV, one BS, and N target points. The target points are randomly located in
three-dimensional regions, thereby resulting in the UAV’s altitude being variable during
flight. Let O = {o1, o2, . . . , oN} denote the set of target points. The location of each target
point oi ∈ O(1 ≤ i ≤ N) is known to both the BS and UAV. Without causing confusion, we
also refer to oi as the coordinate of the corresponding target point.

The UAV needs to travel to the target point for remote-sensing missions by collecting
images. The required number of images for target point oi is represented as bi. Clearly,
bi ∈ [bmin, bmax], where bmin and bmax are the min number and the max number of images
required for one target point, respectively. Let B = {b1, b2, . . . , bN} denote the set of the
required number of images for all the target points.

The UAV is required to travel to these target points for remote sensing and then return
to the BS or PAD for data offloading or recharging. Once the UAV has visited all of the
target points to perform remote-sensing operations and returned to the BS, the remote-
sensing mission is considered complete. To accomplish the remote-sensing mission in a
cost-effective manner, we need to deploy as few PADs as possible in the target remote-
sensing region. Therefore, we use the algorithm proposed in [24] to deploy M PADs across
this region to accomplish coverage of all the target points, and the deployment result
is shown in Figure 2b. For simplicity’s sake, we refer to the BS and PAD as charging
stations because they can both supply power to the UAV and receive data from it. Let P0
denote the BS, and let P = {P0, P1, P2, . . . , PM} denote the set of charging stations. We use
pi ∈ P(0 ≤ i ≤ M) for the location of the charging stations.

In our region model, we use the target-point locations in the remote-sensing region as
the sensor-node positions in the algorithm in [24] to generate the corresponding PAD de-
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ployment. The coverage constraint and the connection constraint are used by the algorithm
in [24] to determine where to place PADs. Both constraints become important assumptions
in our case.

The coverage constraint requires that the UAV has enough energy to reach the target
point for remote sensing and return to the nearest charging station to recharge, i.e., the
distance between the target point and the nearest charging station can not greater than
dcover, which is formulated as follows:

d
(
oi, pj

)
≤ dcover, ∀oi ∈ O, ∃pj ∈ P (1)

where d
(
oi, pj

)
is the Euclidean distance between oi and pj.

The charging station pj is said to cover the target point oi if the constraint of Equation (1)
is satisfied, and pj is the nearest charging station of oi , which is denoted as follows:

P(oi) = pj, oi ∈ C
(

pj
)

(2)

where P(oi) denotes the charging station covering oi, and C
(

pj
)

denotes the set of target
points covered by the charging station pj. According to Equation (1), we have:

O =
⋃N

i=1
C
(

pj
)

(3)

Meanwhile, the connectivity constraint requires that the distance between a charging
station and its nearest charging station is not greater than dmax so that the UAV has enough
energy to travel from one charging station to the other, i.e., the UAV is able to travel from
the BS and back to the BS to complete a remote-sensing mission. The connectivity constraint
is expressed as follows:

d
(

pi, pj
)
≤ dmax, ∀pi ∈ P, ∃pj ∈ P\{pi} (4)

where d
(

pi, pj
)

denotes the Euclidean distance between pj and pj. If pi and pj satisfy the
constraint of Equation (4), then pi and pj are said to be neighbors, and, in the case that pi is
a neighbor of pj, for example, their relationship is expressed as follows:

pi ∈ N
(

pj
)
, pi ∈ P, pj ∈ P, i 6= j (5)

where N
(

pj
)

denotes the set of charging stations that are close to the neighbors and excludes
the others.

Based on the connectivity constraint, we can construct a weighted connectivity graph
G = (P, E) with the set of charging stations P as the set of vertexes and add the edge
e
(

pi, pj
)

to the set of edges E with weight w
(

pi, pj
)

of the distance d
(

pi, pj
)

between pi and
pj if they are neighbors. For the purpose of simplification, we assume that the energy of
the charging stations is unlimited.

3.2. Energy Consumption Model

The UAV must fly to each target-point location within the region for its remote-sensing
mission. We use a fixed constant ρ to represent the energy consumed by the UAV when
it captures an image. δ denotes the size of each image taken. The energy consumed by
the UAV for image acquisition at each target location is denoted by ei, which is expressed
as follows:

ei = biρ (6)

In most previous studies, the energy consumption of the UAV during flight was
assumed to be directly proportional to the distance traveled, without consideration of the
real-world circumstances. In actuality, the UAV must adjust its orientation during turns,
which affects energy consumption and consequently influences the UAV’s chosen route.
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As depicted in Figure 3, when the UAV flies from point li to point lj, the distances to reach
lk and ll are equal.

Figure 3. UAV turning schematic. (a) denotes the UAV traveling from point i via point j to point l
and (b) denotes the UAV traveling from point i via point j to point k.

However, due to θijk < θijl , the energy consumption of routes with larger angles
increases for the same distance traveled. Therefore, it is necessary to consider the energy
consumption at corners in the flight route of a UAV. According to [12], the turning energy
consumption Eturn of a UAV flying to lk, after reaching lj from li, can be expressed as follows:

Ei,j,k
turn = ωθi,j,k + β (7)

where ω and β are constant factors related to the turning energy consumption of the UAV.
θi,j,k

(
0 ≤ θi,j,k ≤ π

)
signifies the turning angle of the UAV at position lj, with its previous

position being li and the next one being lk. This position could pertain to either the target
point or the charging station.

Furthermore, according to [25], the turning time is calculated as follows:

ti,j,k
turn = τθi,j,k (8)

where τ is the angular velocity of the UAV.
The rotary-UAV energy model mentioned in [4] is used to calculate the traveling

power Pmov and hovering power Phov of the UAV. Based on this, we can determine the
traveling energy consumption Emov and hovering energy consumption Ehov of the UAV:

Emov = Pmovtmov (9)

Ehov = Phovthov (10)

where tmov, thov represent the traveling time and hovering time of the UAV in one remote-
sensing mission, respectively.

As the UAV is required to hover at the target point for remote sensing, the number of
images at each target point results in varying hovering times for the UAV. The hovering
time of the UAV at target point oi is defined as follows:

ti
h = ηbi (11)

where η is the time taken by the UAV to acquire an image; we obtain the total hovering
time of the UAV:

thov =
N

∑
i=0

ti
h +

EUAV
Pcharge

× Creturn (12)

where Pcharge represents the power of the charging station to charge the UAV, and Creturn
represents the number of times the UAV returns to the PAD.
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Based on the moving speed VU and battery capacity EUAV ,the maximum travel
distance dmax is calculated as follows:

dmax =
EUAV
Pmov

×VU (13)

Considering the additional energy consumption caused by the UAV for completing
the remote sensing mission, the coverage distance dcover of the UAV can be calculated
as follows:

dcover =
1
2
× EUAV − ρbmax − 2× (ωπ + β)

Pmov
×VU (14)

3.3. Problem Definition

Considering the remote-sensing mission of the UAV, the UAV starts from the BS and
ends back at the BS. Due to the energy limitation, the UAV travels to the charging stations
for energy replenishment or data offloading due to energy shortage and data overflow, and
it then travels to the remaining target points. Therefore, we can divide the whole route
of UAV remote sensing into several subroutes. The subroutes start and end at charging
stations. Since there may be many target points covered by a single charging station,
making it impossible for the UAV to complete the remote sensing of the target points
covered by that charging station at one time, there is a possibility that the end points and
start points of the subroutes are the same charging station. Note that if the start and end
charging stations of one subroute are different, they must be neighbors.

We denote the set of all subroutes as SP and the set of subroutes of a UAV from pi to
pj as SPi,j. Based on the above description, we can see that the following conditions must
be satisfied for SPi,j to exist:

pi ∈ N
(

pj
)
∪
{

pj
}

(15)

where the kth subroute spk
i,j
=
{

ok,1
i,j , ok,2

i,j , . . . , ok,r
i,j

}
denotes a possible subroute from pi to pj,

and ok,i
i,j (1 ≤ i ≤ r) denotes the ith target point in the subroute. Let Ok

i,j be the set of target

points contained in subroute spk
i,j

. According to the UAV model mentioned above, the time
of the UAV flying along a subroute is expressed as follows:

Timek
i,j = tmov + thov + tturn (16)

where tturn denotes the time spent by the UAV to turn while traveling in spk
i,j

.

Meanwhile, the energy consumption of the UAV in spk
i,j

can be calculated as follows:

Costk
i,j = Pmovtmov + Phovthov + turnk

i,j + ρ× imagek
i,j (17)

where turnk
i,j, imagek

i,j denote the turning energy consumption and the total number of

images captured by the UAV traveling along spk
i,j

, respectively.

The decision variable xk
i,j is defined below:

xk
i,j =

{
1 if the UAV flies along the subroute spk

i,j
0 otherwise

(18)

We consider the case where there is a direct flight from one charging station to another
during the UAV flight, i.e., there exists spk

i,j
= ∅ such that Ok

i,j = ∅. To simplify the
description, we define the following computation:

xk
i,j ∗Ok

i,j =

{
Ok

i,j if xk
i,j = 1

∅ otherwise
(19)
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Therefore, the total time required by the UAV to complete a remote-sensing mission
can be calculated using the following equation:

T = ∑
SPi,j∈SP

∑
spk

i,j
∈SPi,j

xk
i,j

Timek
i,j (20)

Our goal is to plan a route such that T is minimized. Based on the above, our problem
is defined as follows:

Definition 1 (The Proplem of PAD-based UAV Remote Sensing with Minimized Energy
Consumption, PURSTM). Given a network region Ω, a set of target points O = {o1, o2, . . . , oN},
a set of charging stations P = {p0, p1, . . . , pM}, the objective is to find the UAV flight route that
achieves the remote-sensing mission with minimum energy consumption. The problem can be
formulated as follows:

objective : minT (21)

s.t.Costk
i,j ≤ EUAV (22)

imagek
i,jδ ≤ BUAV (23)

∑
SPi,j∈SP

∑
spk

i,j
∈SPi,j

∣∣∣xk
i,j
∗Ok

i,j

∣∣∣ = N (24)

⋃
SPi,j∈SP

⋃
spk

i,j
∈SPi,j

xk
i,j
∗Ok

i,j = O (25)

∑
SP0,j∈SP

∑
spk

0,j
∈SP0,j

xk
0,j

= ∑
SPi,0∈SP

∑
spk

i,0
∈SPi,0

xk
i,0
≥ 1 (26)

Constraints (22) and (23) ensure that all possible subroutes cannot exceed the energy
and storage limit of the UAV, and Constraints (24) and (25) ensure that the UAV travels to
all the target points to capture the images and travels to them only once in completing the
remote-sensing mission. Constraint (26) demonstrates that the UAV departs from the BS
and eventually returns to the BS.

Theorem 1. The PURSTM problem is NP-hard.

Proof of Theorem 1. Assuming that the energy and storage of the UAV are infinite, the
UAV will not need to return to the charging station during the remote-sensing mission. In
this case, the PURSTM problem becomes a problem of finding a route that can traverse all
the target points to minimize T, starting and ending at the BS. According to Equation (20),
the number of images captured at each target point is constant, so T is related to tmov and
tturn. According to [12], we can construct a directed weighted graph by discretizing the
turning angles, thereby providing a finite set of angle options using the weights of the edges
to represent the turning time. The problem is transformed into a generalized traveling
salesman problem (GTSP) problem, which was shown to be NP-hard in [12]. Thus, the
PURSTM problem is a GTSP problem without considering energy and memory, and since
the GTSP problem is NP-hard, the PURSTM problem is NP-hard.

4. Proposed Scheme

As described in Section 3.3, the PAD must satisfy the connectivity constraint and the
coverage constraint in the remote-sensing region, where each target point is covered by a
charging station, and the charging stations are connected. For any target point oi, the UAV
can travel from charging station P

(
oi) to oi for the remote-sensing mission. Based on the
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above considerations, we propose the PAD-based remote-sensing (PBRS) scheme to solve
the PURSTMP problem.

The PBRS scheme constructs the route of the UAV based on the locations of the PADs,
and the main idea is as follows: First, a loop is constructed that starts from the BS and
returns to the BS after traveling to all the PADs. Then, the UAV travels along this loop,
and when the UAV reaches each a PAD, it travels to all the target points covered by that
PAD for remote sensing. If the UAV has enough energy to travel to the nearby target points
covered by the nearest charging station that have not yet completed the remote-sensing
mission, it will travel to the remaining target points covered by that charging station and
then fly directly to the next charging station of the loop. In the PBRS scheme, these target
points are called piggyback points. Three flight routes for UAVs in the PBRS scheme are
shown in Figure 4.

In Section 3.1, a connected graph G=(P, E) was created using charging stations, but
there is no guarantee that it is a Hamiltonian graph. To obtain the shortest loop, we
generated a weighted complete graph G′ and obtained our loop based on the result of the
TSP algorithm.

A weighted complete graph G′=(P, E′) based on G=(P, E) was constructed. As shown
in Figure 5, we first added the set of edges E to E′. Then, for the charging station pi, we
checked the edge e

(
pi, pj

)
∈ E, i 6= j, and if it was not satisfied, we added the edge e

(
pi, pj

)
to E′ and set the weight w

(
pi, pj

)
as the length of shortestpath

(
pi, pj

)
computed in G. After

conducting the above operations for each charging station in P, we obtained the weighted
complete graph G′.

We ran the Lin–Kernighan–Helsgaun(LKH) algorithm based on G′ to find the shortest
Hamiltonian loop. Then, each edge e(pi, Succ(pi)), i = 0, . . . , M was required to be checked
in this loop, where Succ(pi) became the successor of pi in the loop. If e(pi, Succ(pi)) /∈ E,
we replaced the edge in the loop with shortestpath

(
pi, pj

)
. Finally, a valid loop comprising

all the charging stations could be obtained.
After achieving a valid loop, we established the sequence for the UAV visiting the

charging stations. The following step involved identifying piggyback points between
adjacent charging stations in a specific sequence. To include more target points as potential
piggyback points, we initially created an ellipse with pi and pj as focal points. The long
axis length is determined as follows:

aellipse =
Erem −ωπ − β− Phovbmaxµ− bmaxρ

Pmov
×VU (27)

The ellipsoid was generated by rotating the constructed ellipse around the axes de-
fined by the two focal points; since the UAV departs from pi with full energy, we have
Erem = EUAV . According to the properties of the ellipsoid, it can travel to any target points
within this ellipsoid for remote sensing before traveling to pj. If multiple target points fall
within the ellipsoid, the UAV chooses the target point op that is closest to the charging
station pi to be the piggybacking point. Then, using op and pj as focal points, we proceeded
to construct the ellipsoid through the aforementioned method in order to locate the subse-
quent piggyback point. Whether the construction of the ellipsoid is valid or not depends
on the success of the ellipse’s construction. Therefore, it is necessary to check that the
length of the long axis is greater than the new focal length. If so, the above operation will
be repeated until no ellipsoid can be constructed or until there are no more target points
within the current ellipsoid. Finally, all piggyback points for a remote sensing mission
were determined.

After determining the piggyback points, we considered the charging process of the
UAV in a subregion of individual charging stations. Upon reaching the charging station pi,
the UAV will travel to the non-piggyback point in pi for remote sensing. According to [26],
the route-planning problem of UAV in this subregion can be considered as a VRP problem.
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We solved this problem using a genetic algorithm to obtain the final route of the UAV. The
details of the PBRS scheme are depicted in Algorithm 1.

Algorithm 1: PAD-based remote-sensing scheme
Input: P, O, UAV
Output: the remote sensing of the UAV route
/* construct G′ = (P, E′) and G = (P, E) */

1 add E into E′

2 for PAD pi in P do
3 for PAD pj in P\{pi} do
4 if edge (pi, pj) not in E then
5 add (pi, pj) into E′

6 find shortestpath(pi, pj) in G
7 the weight of (pi, pj)←the length of shortestpath(pi, pj)

8 route←LKH(G’)
9 for pi in route do

10 if (pi, SUCC(pi)) not in E then
11 replace (pi, SUCC(pi)) with shortestpath(pi, SUCC(pi))

12 for pi in route do
13 Target← pi
14 while coverTargetPoints(pi) > 0 and d(TargetPoint, succ(pi)) <= dellipse do
15 ellipsoid(Targetpoint,succ(pi),dellipse)
16 op ← the nearest TargetPoint
17 if the UAV can’t fly to succ(pi) after charging st then
18 break

19 insert op into route
20 add op into Oi

piggyback

21 TargetPoint← op
22 calculate new dellipse

23 for pi in P do
24 Oi

VRP ← C(pi) - Oi
piggyback

25 routei
VRP ← GA(Oi

VRP)
26 insert routei

VRP into route

27 return route

Figure 4. Three flight routes for UAVs in the PBRS scheme.
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Figure 5. Complete graph (b) constructed based on (a); the purple lines are the newly added edges
for G′.

5. Experimental Simulation

In this section, we evaluate the performance of our proposed scheme. To better
showcase the performance of our algorithm, we introduce a very basic route-planning
scheme, known as target point-based remote sensing (TBRS), for comparison, as no existing
studies align with our mission scenario. The TBRS scheme plans the flight route of the UAV
based on the location of the target points. It constructs a Hamiltonian loop based on the BS
and the locations of all the target points while ignoring the energy and storage limits of the
UAV; it then checks the energy and storage of the UAV before each target point and inserts
the nearest PAD if the energy and storage constraints of the UAV are not satisfied to obtain
a final route.

To assess the performance of the proposed scheme, we conducted four sets of simula-
tion experiments by varying the number of target points, the size of the region, the energy
capacity of the UAV, and the storage capacity of the UAV.

The reasons for selecting these four variables are as follows:

(1) The number of target points significantly impacts the scale of UAV missions for remote
sensing, thus resembling a node-density consideration. By adjusting the number of
target points, we evaluate the scheme’s performance across varying mission scales.

(2) Simultaneously, the size of the region directly affects mission range and complexity,
thereby posing a fundamental challenge akin to node density. Altering the size of the
region allows us to gauge the scheme’s adaptability to diverse environmental conditions.

(3) The energy capacity of the UAV determines its endurance for flight. By varying
the energy capacity, we can evaluate the performance of the scheme under different
endurance requirements and assess its feasibility for prolonged remote-sensing mis-
sions [27]. Meanwhile, changes in the energy capacity of the UAV can influence the
deployment of PADs [24], thus altering the network topology. Studying the impact of
energy variations on the performance of UAVs completing remote-sensing missions in
this scenario is crucial for understanding the scheme’s robustness.

(4) Due to the constraints in our mathematical model, the UAV will travel to the charging
station for data offloading when faced with insufficient storage space. Nevertheless,
in practical scenarios, we could address storage issues by replacing the storage card of
the camera on the UAV. For the sake of the completeness of our model, we incorporate
this factor into consideration.

We evaluated the performance of the scheme through three metrics: the duration of
remote sensing, the frequency of visits to the charging station, and the data-storage rate
of the UAV. Our objective was to optimize the remote-sensing duration to achieve higher
efficiency. A shorter remote-sensing time signifies improved performance of the scheme.
The trips to the charging station correlate with the frequency of the UAV for charging or
data offloading. Therefore, a reduced frequency results in a shorter remote-sensing time,
thus demonstrating the enhanced performance of the algorithm. The data-storage rate,
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quantified as the ratio of stored data to the UAV’s storage capacity during charging-station
visits, holds a pivotal role. A heightened data-storage rate reflects enhanced efficiency in
executing remote-sensing missions, thereby demonstrating the scheme’s performance in
planning more efficient routes.

5.1. Setup of the Simulation Environment

To demonstrate how our proposed scheme could be put into practice, we selected
the geographic data of Hutou Village in Beibei District, Chongqing City, China, which is
located at 106.33 degrees east longitude and 29.76 degrees north latitude with a width of
2034.6 m and a height of 2861.2 m, as the simulation environment, i.e., the remote-sensing
region model for the simulation experiments, and the digital orthophoto model of Hutou
Village is shown in Figure 6.

Figure 6. Digital orthophoto model of Hutou Village in Beibei District, Chongqing, China.

5.2. Impact of the Number of Target Points

In each simulation, target points were randomly distributed across the region, with the
exception of experiments exploring variations in region sizes. Specifically, in simulations
with different region sizes, the BS was centrally positioned within the rectangular region.
The region’s size was adjusted by manipulating the side length of the rectangular region.
The center of the region consistently served as the designated position for the BS across all
experimental setups. The locations of the PADs were determined using the deployment
algorithm mentioned in [24]. The parameters utilized for these simulation experiments are
detailed in Table 2.
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Table 2. Default parameters.

Parameter Value

Number of target points 500
BS location central

EUAV 10,000 J
BUAV 2 GB

VU 20 m/s
[bmin, bmax] [10, 20]

η 0.05 s
δ 2.57 MB
β 104.65 J
ω 5.3316
ρ 50 J

Figure 7 depicts the simulation results for increasing the number of target points
from 100 to 1000. According to [24], the variation in the number of target points does not
have a significant effect on the number of PADs deployed, since the number of PADs is
mainly limited by the coverage of the UAV and the size of the region. In this simulation,
the remote-sensing duration for the PBRS scheme was reduced by 48.26% compared to
the TBRS scheme. Additionally, the number of trips to the charging station decreased by
71.48%, and there was a 69% increase in the data-storage rate.

According to Figure 7, it is evident that the remote-sensing duration, as well as the
trips to the charging station, tends to increase as the number of target points increases. This
is due to the fact that the increase in the number of target points leads to an increase in
the amount of data for remote sensing, which prolongs the remote-sensing duration and
increases the trips to the charging station. With both metrics evaluated, the PBRS scheme
outperformed the TBRS scheme. This is because in the TBRS scheme, the route of the UAV
is adapted from a Hamiltonian loop based on the location of target points. The UAV may
shuttle between different charging stations due to the case that multiple adjacent target
points on the initial route are not covered by the same charging station, thus significantly
prolonging the remote-sensing duration and causing the UAV to travel to the charging
stations repeatedly for energy replenishment. In the PBRS scheme, the UAV travels to all
the target points covered in a charging station before traveling to the next, which saves a
lot of time traveling between charging stations, thus resulting in fewer trips to the charging
stations. While the PBRS scheme has a shorter remote-sensing time and fewer trips to
charging stations compared to the TBRS scheme, the UAV also has a higher data-storage
rate. This difference is attributed to the fact that in the TBRS scheme, the UAV constructs
the route based on target points; there are cases where the UAV only travels to a node
for remote sensing and then travels to a charging station that is more distant from it or
even travels to a charging station without traveling to the nearby nodes directly, thereby
resulting in a lower data-storage rate for the UAV than for the PBRS scheme.

Figure 7. The simulation results of varying the number of target points.
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5.3. Impact of the Size of Region

Figure 8 shows the simulation results for varying the remote-sensing region sizes, with
side lengths growing from 1100 m to 2000 m; this is because the terrain data we use is not
a regular rectangle but an irregular polygon with a maximum width of about 2000 m. In
this simulation, the remote-sensing duration for the PBRS scheme was reduced by 48.33%
compared to the TBRS scheme. Additionally, the number of trips to the charging stations
decreased by 71.94%, and there was a 71.75% increase in the data-storage rate.

Figure 8. The simulation results of varying the size of region.

Unlike the variation in the number of target points, PAD deployment is influenced
by the size of the region, as it is evident that the need for more PADs increases with larger
remote-sensing regions. Based on the data from Figure 8a,b, we identified rising trends
in both the remote-sensing duration and the trips to the charging stations as the remote-
sensing region expanded. However, some fluctuations occurred, which can be attributed
to changes in the number of deployed PADs resulting from the variation in the size of
the remote-sensing region. When the region is limited, there are only a few deployed
PADs. In such situations, increasing the size of the remote-sensing region results in an
increased number of deployed PADs. This allows for closer proximity of the PADs to
each target point, thereby enabling UAVs to travel shorter distances to return to nearby
charging stations after remote sensing and reducing the traveling time. The growth in the
remote-sensing duration can be attributed to the region’s expansion, thereby resulting in a
decrease in target-point density. As a result, the average distance for the UAV travel to each
target point increases, thereby leading to longer travel. This, in turn, results in an increased
number of trips to the charging stations, as illustrated in Figure 8b. Since the number of
target points in the region and the amount of sensed data remained constant, an increase in
the trips to the charging stations led to a decline in the average amount of data unloaded
per trip to the charging stations, as illustrated in Figure 8c.

According to the findings depicted in Figure 8, it can be concluded that the PBRS
algorithm outperformed the TBRS scheme.

5.4. Impact of the Energy Capacity of the UAV

In this simulation, the energy capacity of the UAV was increased from 10,000 J to
14,500 J. The remote-sensing duration for the PBRS schem was reduced by 41.09% compared
to the TBRS scheme. Additionally, the number of trips to the charging stations decreased
by 58.60%, and there was a 56.97% increase in the data-storage rate. The simulation results
of two schemes are shown in Figure 9.

The energy-consumption trends for both the TBRS scheme and the PBRS scheme in
Figure 9a exhibit fluctuations in an upward direction. The reason for this observation is
that [24] takes into account the cost required to deploy PADs and seeks to use the minimum
number of PADs in the region to enable the UAV to accomplish the mission. In [24], the
energy capacity of the UAV determines the dcover and dmax. The higher the energy of the
UAV, the larger dcover and dmax, which will change the number of PADs deployed and their
locations. The increased energy of the UAV leads to a decrease in the number of PADs
deployed, which means that each PAD covers more target points. And it also leads to an
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increase in the distance between charging stations and a greater distance between the target
points and the nearest PADs, which increases the traveling time of the UAV. Meanwhile,
Figure 9b illustrates a reduction in the trips to the charging stations for both algorithms
as the battery capacity increased. This is due to the UAV’s increased energy capacity,
which allows it to travel to more target points for remote sensing in a single flight without
exceeding its storage capacity. As a result, the trips to the charging stations decreased while
the data-storage rate of the UAV increased, as shown in Figure 9c.

Based on the results of Figure 9, it can be concluded that the PBRS algorithm outper-
formed the TBRS scheme.

Figure 9. The simulation results of the energy capacity of the UAV.

5.5. Impact of the Storage Capacity of the UAV

In the experiment of UAV storage capacity, we increased the storage capacity from
512 MB to 5 GB. In this simulation, the remote-sensing duration for the PBRS scheme was
reduced by 38.29% compared to the TBRS scheme. Additionally, the number of trips to the
charging stations decreased by 51.96%, and there was a 50.97% increase in the data-storage
rate. Figure 10 shows the simulation results of the two schemes.

It can be seen that the simulation results of the two algorithms were very similar
when the storage capacity is 512 MB. This is due to the UAV’s limited storage capacity,
which forces it to travel to a single target point for remote sensing. This resulted in the
UAV wasting a lot of time on the route, regardless of whether there was still energy left,
thus resulting in similar performance outcomes of the two schemes. As the UAV storage
capacity increased, both the remote-sensing duration and the trips to the charging stations
showed a clear downward trend at the outset before plateauing thereafter, as indicated
by Figure 10a,b. This trend can be attributed to the fact that, as storage capacity increases,
energy capacity becomes the main constraint on UAV flight. Figure 10c illustrates that the
data-storage rate of the UAV decreased as its storage capacity increased. Our previous
analysis showed that energy limitations constrain UAV flights, and the amount of data
collected in a single flight to the target point does not change significantly, thereby resulting
in a decrease in the data-storage rate of the UAV.

The results from the simulation depicted in Figure 10 are consistent with those obtained
in the previous three experiments and demonstrate the superior performance of the PBRS
scheme over the TBRS scheme in all three aspects.

Figure 10. The simulation results of the storage capacity of the UAV.
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6. Discussion

Combining the results of the four simulation experiments, we found that our pro-
posed PBRS scheme consistently outperformed the TBRS scheme. We take the simulation
experiment in Section 5.2 with the number of target points of 100 as an example. The routes
of the TBRS and PBRS schemes are shown in Figure 11.

Figure 11. The route results. (a) shows the route of the TBRS scheme, and (b) shows the route of the
PBRS scheme.

Figure 11a illustrates that the TBRS scheme contained numerous target points that
the UAV traveled to and then directly to the adjacent charging station without traveling
to other nodes, which increased the flight route, thus increasing the traveling time of
the UAV and also causing an increase in the trips to the charging station. Conversely,
in Figure 11b, black lines represent the UAV’s path from one charging station to another,
either directly or via piggyback points. The lines in various colors signify the UAV’s remote-
sensing routes within different charging stations. It is evident that the UAV visited multiple
target points for remote sensing on each subroute, which resulted in shorter flight routes,
thereby reducing both the sensing time and the number of trips to charging stations. This
efficiency in the PBRS method is attributed to two factors. First, the use of piggyback points
in the PBRS scheme optimizes the UAV’s travel route. Second, a more realistic energy
consumption model for the UAV is employed in the PBRS scheme, thereby focusing on
optimizing its turning energy consumption. The simulation results demonstrate that the
PBRS scheme we propose can be employed in extensive UAV remote-sensing missions and
exhibits excellent performance.

Furthermore, considering the three existing methods, let us examine the first one:
assuming the terrain is obstacle-free, we hypothesize that the BS’s movement speed is
5 m/s and its redeployment time is 5 min. It will result in an additional time of about
64.45% of the remote-sensing time, which is unacceptable for remote-sensing missions. In
the second method, according to Figure 11, nine extra UAVs and nine additional BSs are
required, thereby significantly increasing economic costs. Additionally, damage to any one
UAV could severely compromise the remote-sensing outcomes. According to [28] through
mathematical modeling, the comparative study of communication architectures, routing
protocols, and the decision-making roadmap in multi-UAV systems require resolution. The
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technical implementation faces a significant challenge. If the third method is used, in order
to cover all the target points in the region, the battery capacity of the UAV needs to be
increased, and according to [29], assuming the use of Ni-Cd batteries, the weight of the
UAV’s batteries will increase by approximately three times, and the volume of the batteries
will increase by approximately 51.84 cm3 , which will result in a consequent increase in the
volume of the UAV; in order to carry a larger volume of the batteries, the UAV’s own weight
will increase, which drastically increases the energy consumption rate of the UAV. At the same
time, this adds an additional element of unexpectedness to the flight control of the UAV.

7. Conclusions

Our work introduced a new idea using PADs in the field of huge-region UAV remote
sensing. This innovative approach may change the way in which huge-region remote-
sensing missions are executed. We enabled a single UAV to accomplish a significant
remote-sensing operation in one continuous flight by using predeployed PADs inside the
target region such that the UAV can fly autonomously to the PADs for energy replenishment
without human intervention. The incorporation of PADs not only improved efficiency, but
also expanded the possibilities for huge-region UAV remote sensing. The PURSTM problem
was the result of our investigation into the nuances of this novel approach. In order to
carry out remote-sensing missions across large territories using predeployed PADs, the
optimized route must be planned while minimizing the UAV’s total energy. We proposed
the PBRS scheme, which accounts for real-world constraints such as the UAV’s limited
capacity for storing and using data, to provide an efficient solution to the PURSTM problem.
We used real-world geographical conditions in a series of group simulations to prove the
effectiveness of the proposed scheme. These simulations were essential proof that our
method is applicable and useful in practice.

In addition, the PAD deployment approach has a major effect on the performance of
UAV route-planning algorithms for huge-region remote sensing. We directly used the PAD
deployment scheme originally used for WRSNs in our work, and some assumptions of this
scheme, such as the assumption that a PAD can be deployed at any location in the target
region, may not be valid in some remote-sensing domains due to terrain constraints, e.g.,
in forest remote sensing, the UAV may not be able to hover and recharge over the PAD
due to ground-vegetation obstruction. As a result, our future research will focus on PAD
deployment approaches that are tailored to the topographical features of various target
regions for remote-sensing applications. Moreover, the concurrent involvement of multiple
UAVs in simultaneous remote-sensing missions stands poised to substantially enhance
mission efficiency. This improvement, however, necessitates a thorough quantification
of the supplementary power requirements linked to the inclusion of each UAV in the
charging infrastructure when utilizing the same docking station. This critical analysis is
imperative for understanding and optimizing the collective power demands inherent in
the simultaneous operation of multiple UAVs, thereby contributing to the ongoing efforts
to enhance mission effectiveness.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicle
WRSN Wireless rechargeable sensor network
TSP Traveling salesman problem
VRP Vehicle-routing problem
BS Base station
LKH Lin–Kernighan–Helsgaun
PBRS PAD-based remote sensing
TBRS Target-based remote sensing
PURSTM PAD-based UAV remote sensing time minimization
GTSP Generalized traveling salesman problem

References
1. He, J.; Lin, J.; Zhang, X.; Liao, X. Accurate estimation of surface water volume in tufa lake group using UAV-captured imagery

and ANNs. Measurement 2023, 220, 113391. [CrossRef]
2. Zhang, H.; Li, Y.; Yang, Y.; Feng, Y.; Li, Y.; Deng, C.; Yuan, D. UAV Tracking Based on Correlation Filters With Dynamic

Aberrance-Repressed Temporal Regularizations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 7749–7762. [CrossRef]
3. Zhu, F.; Li, H.; Li, J.; Zhu, B.; Lei, S. Unmanned aerial vehicle remote sensing image registration based on an improved oriented

FAST and rotated BRIEF-random sample consensus algorithm. Eng. Appl. Artif. Intell. 2023, 126, 106944. [CrossRef]
4. Zeng, Y.; Xu, J.; Zhang, R. Energy Minimization for Wireless Communication With Rotary-Wing UAV. IEEE Trans. Wirel. Commun.

2019, 18, 2329–2345. [CrossRef]
5. Jones, M.R.; Djahel, S.; Welsh, K. Path-Planning for Unmanned Aerial Vehicles with Environment Complexity Considerations: A

Survey. ACM Comput. Surv. 2023, 55, 234:1–234:39. [CrossRef]
6. Wang, M.; Lin, J. Retrieving individual tree heights from a point cloud generated with optical imagery from an unmanned aerial

vehicle (UAV). Can. J. For. Res. 2020, 50, 1012–1024. [CrossRef]
7. Javaid, S.; Saeed, N.; Qadir, Z.; Fahim, H.; He, B.; Song, H.; Bilal, M. Communication and Control in Collaborative UAVs: Recent

Advances and Future Trends. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5719–5739. [CrossRef]
8. Simic, M.; Bil, C.; Vojisavljevic, V. Investigation in Wireless Power Transmission for UAV Charging. Procedia Comput. Sci. 2015,

60, 1846–1855. [CrossRef]
9. Choi, C.H.; Jang, H.J.; Lim, S.G.; Lim, H.C.; Cho, S.H.; Gaponov, I. Automatic wireless drone charging station creating essential

environment for continuous drone operation. In Proceedings of the 2016 International Conference on Control, Automation and
Information Sciences (ICCAIS), Ansan, Rpublic of Korea, 27–29 October 2016; IEEE: New York, NY, USA, 2016; pp. 132–136.
[CrossRef]
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